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Abstract— For an autonomous robot to accomplish tasks
when the outcome of actions is non-deterministic it is often nec-
essary to detect and correct errors. In this work we introduce a
general framework that stores fine-grained event transitions so
that failures can be detected and handled early in a task. These
failures are then recovered through two different approaches
based on whether the error is “surprising” to the robot or not.
Surprise transitions are used to create new models that capture
observations previously not in the model. We demonstrate how
the framework is capable of handling uncertainties encountered
by a robot in “pick-and-place” tasks on the uBot-6 mobile
manipulator using both visual and haptic sensor feedback.

I. INTRODUCTION

Building robots that can handle uncertainty is neces-
sary for autonomous robots to accomplish tasks in a non-
deterministic environment. However, the vast majority of
failures either evade detection completely or are detected
only after a high level action fails to reach the target
state. This approach makes robots inefficient and can lead
to catastrophic failure if the robot continues to execute a
plan when the actual state is quite different from what the
robot expected. In this work, plans are monitored during
the execution of low-level actions to create a fine-grained
observer for error detection. This allows the robot to compare
observations to stored models frequently and to handle
unexpected outcomes immediately after they are detected.

In [24], environment, sensors, robots, models, and com-
putation are considered as the five factors that give rise to
uncertainty in robotic applications. Instead of categorizing
uncertainty based on the cause, we focus on how it is
perceived. Uncertainties a robot may encounter are classified
into two categories: 1) random transitions that are within
the model domain but may still be unlikely given transi-
tion probabilities, and, 2) “surprise” transitions that lead to
outcomes that are not represented in the model domain. An
example of a random transition is the outcome of rolling a
loaded die that should come up 6 with high probability, but
instead comes up 1. The robot will not be able to predict
the exact outcome, but by having a model that captures low
probability outcomes it is capable of handling each of them
accordingly. An example of a surprise transition is if the
outcome of rolling a 6 sided die is 13 while the robot’s
die model has possible outcomes from 1 to 6. In [3], Casti
describes that “surprise can arise only as a consequence of
models that are unfaithful to nature.” Therefore we define a
“surprise” transition as when the robot observations are not
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Fig. 1. The uBot-6 mobile manipulator performing a “what’s up?” gesture
to convey that it is surprised after an unexpected event.

explainable by any model in the robot memory. During the
surprise transition a new model of the environment that can
explain this surprising outcome is learned. Failures detected
by the fine-grained observer are then recovered differently
based on this classification.

In this work, we use the interaction with objects as an
example task with such uncertainties. We model each object
using a directed multigraph where each node corresponds
to a stored observation and each edge corresponds to a
stored action. We call a stored observation an aspect and this
object model an aspect transition graph (ATG) model [13].
An ATG model captures how actions change observations.
We discuss how an ATG model is capable of handling
uncertainties encountered by a robot in “pick-and-place”
tasks. This framework is tested on the balancing mobile
manipulator uBot-6 [22]. We demonstrate that the framework
can handle random transitions and recover from surprise
transitions at fine-grained time scales.

II. RELATED WORK

In the work done by Rodriguez et al. [21] a classifier
is used to predict whether a grasp is a successful grasp
for completing a task based on haptic feedback. If it is
classified as a failed grasp the robot aborts and retries.
Our approach is based on a similar concept but instead of
running a classifier at a specific step we present a general
framework that constantly checks if the observation is within
expectations. In research done by Donald [4], a theory for
error detection and recovery strategies based on geometry
and physical reasoning are introduced. In our work, error
detection and recovery is based on an observation-based
model of the environment.

Baldi introduced a computational theory of surprise where
surprise is defined by the relative entropy between the prior
and the posterior distribution of an observer [1]. This formula



is shown to be consistent with what attracts human gaze in
natural video stimuli [10]. However, this theory of surprise
would identify informative robot actions that reduces the
entropy over models significantly as surprising. In this work
we introduce a simpler definition that agrees better with
intuition.

Intrinsic motivators for behavior have long been studied
in psychology. Hull introduced the concept of “drives” such
as hunger, pain, sex, or escape in human behavior, in terms
of deficits that the organism wishes to reduce to achieve
homeostatic equilibrium [9]. Later, researchers extended the
Hullian theory by introducing drives for manipulation [7],
and for exploration [17]. Berlyne proposed a number of other
intrinsically motivating factors such as novelty, habituation,
curiosity, surprise, challenge, and incongruity [2]. In our
work, we use surprise as an intrinsic motivator to learn new
models of the environment.

Our work also has many connections to prior work on
affordances defined as “the opportunities for action provided
by a particular object or environment.” [5] Affordances
are associative and can be used to infer control actions
from observations. Our object models are based on this
interactionist view of perception and action that focuses on
learning relationships between objects and actions specific to
the robot.

Aspect graphs were first introduced to represent shape
in the field of computer vision [12], [6]. An aspect graph
contains distinctive views of an object captured from a
viewing sphere centered on the object. The aspect transition
graph (ATG) introduced in this paper is an extension of this
concept. In addition to distinctive views, the object model
summarizes how actions change viewpoints and, thus, the
state of the coupled robot/object system. In addition to visual
sensors, extensions to tactile, auditory and other sensors
also become possible with this representation. The aspect
transition graph model was first introduced by Sen [23]. In
previous work a mechanism for learning these models by
autonomous exploration was introduced using a fixed set of
actions and observations [14], [15]. These models support
belief-space planning techniques where actions are chosen
to minimize the expected future model-space entropy and
can be used to condense belief over objects more efficiently.
In [13], the aspect transition graph model was extended to
handle an infinite variety of observations and continuous
actions.

Our work also relates closely to a body of work on Par-
tially Observable Markov Decision Process (POMDP) [11].
Since different objects may result in a similar observation
from certain viewpoints, there is uncertainty in the state of
the interaction defined by aspects. The goal of a POMDP
problem is to find the optimal policy that maximizes reward
over a finite or infinite horizon. However the computational
complexity was shown to be PSPACE-complete over finite
horizons [19] and is undecidable over infinite horizons [16].
In this work, the first action on the shortest path to the goal
state is executed based on the most likely current state.

Fig. 2. Part of an aspect transition graph model of a dice. The top right
node indicates the observation when the robot successfully flipped the dice
while the bottom right node indicates when the dice slipped. The red circles
indicate the robot hands and the green arrows indicate haptic feedback.

III. MODEL

The finite state controller (FSC) [20] used to solve many
POMDP problems is defined as a directed graph where each
node is an action and each edge is an observation. The aspect
transition graph (ATG) model used in our work uses the
dual of this graph where each node is an observation and
each edge is an action. An aspect transition graph (ATG)
object model is represented using a directed multigraph G =
(X ,U), composed of a set of aspect nodes X connected by a
set of action edges U that capture the probabilistic transition
between aspects. We define an “aspect” as a distinctive set
of multiple features called an observation that is stored in
the object model. An action edge U is a triple (X1, X2, A)
consisting of a source node X1, a destination node X2 and
an action A that transitions between them. Figure 2 shows
an example of part of an ATG model that captures possible
observations when interacting with a die.

Unlike hidden Markov models (HMM) that assume obser-
vations are generated from a “true” hidden state such as the
robot position, the ATG is an observation-based model that
uses a single observation and the corresponding aspect node
to represent a robot state directly. The observation-based
approach avoids modeling and planning with hidden robot
states and uses a model based on observation and memory.
More details are described in the Recursive Bayesian Esti-
mation subsection.

A. Observation

An ATG model is used to estimate robot state transitions
based on the robot’s observations; however defining robot
states directly in the observation space of raw sensor outputs
is problematic due to the large volume of data in raw sensor
feedback such as images. Therefore, instead of defining
observation based on raw sensor feedback directly, we define
an observation as a list of features detected by feature



detectors. Features are patterns in signals that reflect structure
in the interaction between the robot and the environment. We
assume that feature detectors are robust and output consistent
patterns under the same conditions. Each feature is presented
with a binary feature state that indicates whether the feature
exists or not and are associated with a Cartesian position
in R3. Position references for multiple features provide an
estimate for the object pose with which to scale and orient
actions that transition between aspects.

Visual features in the experiment designate: a feature type;
the mean Cartesian position for the feature µ in R3; and
the estimated covariance for the feature location Σ in R3×3.
For example, the ARtag feature type identifies a unique tag
id, the Cartesian coordinate of the center of the tag in the
robot (sensor) frame, and the Cartesian covariance of the
position. A red blob feature uniquely identifies the position
and uncertainty of the red robot hand in the visual signal.
Haptic feature types include both positions and normals.
For positions, µ designates contact positions with covariance
Σ and for normals, µ designates a unit vector in R3 and
covariance Σ in R2×2 represents the uncertainty cone of the
unit normal vector. The grasp feature type is computed over
a population of contacts. It has two types that designate the
force and moment residuals µ in R3×3 with uncertainty Σ in
R3×3. Aspects that define intermediate states in interactions
with an object, for example, are patterns of responses in
these types of random variables that fit the Cartesian template
stored in memory of past interactions with the object. In the
experiments presented in this paper, a simple 28 cm cube
object is employed with these features distributed over the
six square surfaces of the cube. The size of the set of features
can be arbitrarily large. For example, the set of features
that belongs to the ARtag feature type includes features that
represent all possible tag patterns. We describe how we detect
feature types that have a large set of features in the Top Down
Inference subsection.

An aspect node X in an ATG model represents one
observation of an object O and stores a list of feature states
described above. We say that two observations are equal if all
features that have positive states in one of the observations
also have positive states in the other observation. There could
be multiple aspect nodes with the same observation within
one or more ATG models.

B. Action

In an ATG model an action edge U represents an action
that causes an aspect transition. Actions can be implemented
with open-loop or closed-loop controllers. For each action,
its type, parameterization, and reference frame are stored. A
robot has a set of actions available to interact with objects.
These actions include visual and haptic servoing actions
as well as gross motor (mobility) actions and fine motor
(arm and hand) actions. While mobility actions can be used
to bring an object into reach for manipulation, they also
alter the view of an object, possibly revealing previously
hidden visual features. Actions such as pick-up and lift can
be used to manipulate objects, but they can also gather

1: procedure BAYES FILTER(bel(xt−1), at, zt)
2: for all xt do
3: bel(xt) =

∑
xt−1

p(xt|at, xt−1) · bel(xt−1)

4: bel(xt) = p(zt|xt) · bel(xt)
5: end for
6: NORMALIZE(bel(xt))
7: end procedure

Fig. 4. Bayes Filter Algorithm

haptic feedback and change the current viewpoint to reveal
otherwise unavailable features (e.g. surface markings on the
bottom face of a box).

High-level manipulation actions can be represented as a
sequence of primitive actions and aspect transitions. For ex-
ample, the “flip” macro action is implemented as a sequential
composition of the following four primitive actions: 1) reach,
2) grasp, 3) lift, and 4) place. These four actions connect
five fine-grained aspect nodes that represent expectations for
intermediate observations. Figure 3 shows these intermediate
stages. These fine-grained aspect nodes allow us to monitor
and detect unplanned transitions at many intermediate stages
of the flip interaction. In Section IV, we describe how failures
are handled in the ATG model.

C. Recursive Bayesian Estimation

In our framework the Bayesian filtering algorithm [24]
is used to estimate which aspect node likely generates
the current observation. The recursive Bayesian estimation
described in Figure 4 is used to update the posterior belief
bel over all aspect nodes xt when action at is executed from
state xt−1 and new observation zt is acquired. The initial
belief is set based on a prior distribution over all aspect
nodes.

D. Top Down Inference

The number of different feature types that could exist in
an environment could be enormous. A bottom up approach
that runs all possible detectors would be inefficient and often
infeasible in robotic applications. Although there is evidence
that human vision is processed in parallel in the primary
visual cortex [8], there is also evidence that secondary and
tertiary cortical areas strongly focus perceptual effort on
features that are related to tasks and expectations. We argue
that mid-level perceptual features may be strongly influenced
by top down expectations so that only a subset of detectors
must be active at a time. This is consistent with a hypothesis
introduced by Notredame et al. that explains how visual
illusions could be caused by prior expectations overtaking
the actual stimulus [18]. A lot of research in computer
vision has also been done on building models that perform
top down inference [26] [25]. However, when dealing with
single images independently the ability of top down inference
is limited. Most work uses information from larger image
regions to infer low level features. In our work, we focus on
top down inference that is based on past observations and
how the actor interacts with objects and the environment.



Fig. 3. Fine-grained flip action. The photos shown from left to right are the five intermediate stages of a flip action. The robot checks whether the
sub-action succeeded for each stage.

Given a new set of raw sensor feedback, our framework
does not run all available feature detectors. Instead, only
feature detectors corresponding to features in the feature list
of an aspect node with significant posterior probability are
executed. We define a posterior probability to be significant
if it is within a fixed percentage difference to the maximum
posterior probability among all aspect nodes.

E. Acquiring the Model

In our previous work [14], [15], we demonstrated that ATG
models can be learned without supervision from a fixed set of
actions and observations. However, with a set of actions that
take continuous parameters, learning ATG models without
supervision may require a significant amount of exploration
over the parameter space. In [13], we introduced a way
to learn ATG models through imitation learning by tele-
operating the robot and memorizing action parameters that
transition between aspect nodes. The work presented in this
paper focuses on how previously acquired ATG models are
used to monitor for transition errors during the execution of
a task. Therefore, we employ hand-built ATGs for objects as
well as action for transitioning between aspect nodes. During
surprise transitions new models that capture new transitions
are created based on these hand-build models.

IV. HANDLING UNCERTAINTIES

In a non-deterministic environment it is inevitable that a
robot will encounter randomness and surprises while per-
forming tasks. In this section, we describe approaches to
handling uncertainty in robotics, including a new definition
of surprise.

A. Modeling Randomness

We define a random transition as an outcome of an action
that is non-deterministic but is within a previously seen
set of outcomes that can be captured in the model. For
example, due to uncertainty, the “flip” macro in Section III-
B may place the object in an ungraspable pose and, thus,
causing a different observation in the terminating state. These
random outcomes are represented in the ATG using transition
probabilities p(xt|at, xt−1), which is nonzero for all possible
outcome states. As a consequence, the Bayesian filtering
algorithm will update the belief accordingly. For simplicity,
we assign an equal transition probability to all of the outcome
states possible under action at. In general, each outcome of
a randomized transition requires a different action to achieve
the goal aspect.

B. Recovery from Surprises

In [3], surprise is described as “the difference between ex-
pectation and reality.” Although one might associate surprise
or unexpected events with low probability events, observing
a rare event does not always lead to surprise. For example,
a person that observes a lottery drawing will likely not be
surprised if the outcome is 29 - 41 - 48 - 52 - 54 even though
this outcome has a low probability.

Baldi [1] measures the degree of surprise in a Bayesian
setting in which there is a well-defined distribution P (M)
over the space of models M. He uses a measure S of how
much the new information in an observation d changes the
distribution over models. Specifically, he computes the KL-
divergence between the current belief state P (M) and the
belief state P (M |d) induced by the new observation:

S(d,M) =

∫
M
P (M) log(P (M)/P (M |d))dM.

An event is then defined to be a surprise if this divergence
is greater than some threshold θ.

However, this formula considers transitions where an
informative action reduces the entropy over models signifi-
cantly as surprising. If there is a uniform distribution over
models, observing an outcome that concentrates the posterior
probability on one model should not be surprising. We offer a
simpler definition of surprise that agrees better with intuition.
Our definition can be applied to a distribution over models,
but it also applies when there is just a single model M , and
we start with this simpler case.

The entropy HM (D) = E[− logPM (D)] associated with
a model M of observation D defines the expected negative
log probability of an observation D. We define a specific ob-
servation d to be surprising if its information, − logPM (d),
is much greater than the entropy:

− log(PM (d))� HM (D).

Consider the example of a perfect fair die with six outcomes.
No outcome can be surprising since the information of each
outcome is equal to the entropy of the die. On the other hand,
if we acknowledge that there is some minute probability of a
die landing on its corner and balancing, then a better estimate
of the probability of each face is 1

6−ε, and the probability of
landing on a corner extremely small. If the die does in fact
land on a corner, it is not the rarity of this event that makes
it surprising, but the probability relative to the entropy of the



die. That is, the event is thousands of times less likely than
what we expected, which is 1

6 − ε.
In the Bayesian setting, where the model M is unknown,

we extend our definition of surprise by simply computing
expectations over the unkown models:

EM[− log(PM (d))]� EM[HM (D)].

Intuitively, a “surprising event” is still an outcome whose
probability is far lower (and information is much higher)
than what was expected. And again, when all events are a
uniform low probability, there can be no surprise.1

In practice, rather than trying to define a precise probabil-
ity for extremely rare events, we simply define events that are
not part of a model as having extremely low probability. For
example, while the robot is grasping an object if someone
covered the robot’s camera and such a transition is not
modeled in any of the object models, the observation will
be inconsistent with what the robot expects (i.e., has an
extremely low probability) and therefore be classified as
a surprise transition. During the surprise transition a new
ATG model that includes this new transition is created by
extending the ATG model with the highest belief in memory.
If an identical transition reoccurs the robot will be able to
expect the outcome with the new model.

Since surprise transitions are unpredictable and do not lie
within a bounded set of possible outcomes, they are handled
by resetting the belief among all aspect nodes to the prior
distribution. If a possible plan that will lead to the goal still
exists, the robot will continue to accomplish the task. In our
experiment, when a surprise transition occurs the robot also
shows a “What’s up?” gesture that conveys confusion as in
Figure 1. This gesture has proven to be useful for indicating
the robot’s current state in experiments.

V. ALGORITHM

The action selection algorithm that uses the ATG to
achieve goals and handle surprise transitions is described
in Figure 5. Here, M represents a set of ATG models
stored in the robot memory and xtarget is the target aspect
given to the robot. The function INITIALIZEBELIEF(M)
initializes prior probability specified in the set of ATG
models M. The function INFERASPECTS(M, bel) infers
a set of possible aspects Xcandidate based on the belief
bel. The function GETOBSERVATION(Xcandidate) returns
the current observation zcurrent and the corresponding fea-
ture positions in R3 fpose from active feature detectors
derived from the set of possible aspects Xcandidate. The
function BAYESFILTEROBS(bel, zcurrent) refers to part of
the Bayesian filtering algorithm that updates the belief given
an observation. The function SURPRISE(bel) returns true
if the belief in all aspect nodes are zero. If a surprise
transition occurs, the robot shows the “What’s up?” ges-
ture, backs up and move arms to the ready pose. The

1This addresses the case of “television snow” that Baldi raises. When
snow occurs in the context of a low entropy process, it is surprising, since
it has much lower probability. However, when it occurs in the context of a
snow distribution, it has probability equal to the other outcomes.

1: procedure ALGORITHM(xtarget,M)
2: bel = INITIALIZEBELIEF(M)
3: while true do
4: Xcandidate = INFERASPECTS(M, bel)
5: zcurrent, fpose = GETOBSERVATION(Xcandidate)
6: bel = BAYESFILTEROBS(bel, zcurrent)
7: if SURPRISE(bel) then
8: WHAT’SUPGESTURE(())
9: CREATENEWMODEL(M, bel, a, zcurrent)

10: bel = RESETBELIEF(bel,M)
11: BACKUPANDREADYPOSE()
12: continue
13: end if
14: a = INFERACTION(M, xtarget, bel)
15: EXECUTEACTION(a, fpose)
16: bel = BAYESFILTERACT(bel, a)
17: end while
18: end procedure

Fig. 5. Algorithm for achieving goal aspect and handling surprise
transitions.

function CREATENEWMODEL(M, bel, a, zcurrent) creates
a new ATG model by adding a new aspect node rep-
resenting zcurrent and an action edge representing ac-
tion a to the ATG model with the highest belief in M.
The belief over aspects are reset to the prior distribu-
tion through function RESETBELIEF(bel,M). The func-
tion INFERACTION(M, xtarget, bel) finds a shortest path
to the target aspect xtarget. The function then returns the
first action on the shortest path. EXECUTEACTION(a, fpose)
executes the action based on information stored in the
action edge a and feature positions fpose. The function
BAYESFILTERACT(bel, a) refers to part of the Bayesian
filtering algorithm that updates the belief given an action.

VI. EXPERIMENTAL RESULTS

In order to evaluate the techniques we introduced to handle
randomness and uncertainty, two different experiments were
performed. For both cases, the uBot-6 mobile manipulator
has to perform simple manipulation tasks. The performance
is compared with and without the presented techniques.

A. Experimental Setting

The goal of task is to manipulate an ARcube until the
requested features are observed on the corresponding faces.
An ARcube is a cube box with a different ARtag on each of
its face as shown in Figure 3. An ARtag is a square fiducial
marker commonly used in robotics due to ease of use and
robust detection. In this work an ATG model representing an
ARcube has 174 nodes and 408 edges.

B. Surprise Recovery

For the first experiment, the model is provided with a
fairly detailed ATG model of the handled ARcube. The
robot has to reach the desired state with ARtags 1 and 2 on
the top and front faces of the cube respectively. The robot
has to first perform this task solely based on the provided
model and the contained transitions. Despite the model
being fairly complete, a small perturbation in the visual and



haptics sensors, as well as slightly different dynamics when
manipulating the ARcube can result in an observation not
contained in the model or not agreeing with the model (e.g.
an action resulting in new outcome). Without the ability to
recover, reaching such a state, the robot will not be able to
complete the task.

The robot was repeatedly provided with random con-
figurations of the ARcube and the performance of both
methods was compared. The robot was able to complete
the task reliably 10 out of 10 times when provided with
the ability to recover from unforeseen observations. Without
this capability, the robot succeeded 5 out of 10 runs.

C. Error Detection Through Fine-Grained Actions

In the second experiment, the robot was presented with an
ARcube such that one flip action of the cube will lead to the
desired goal state. The ARcube was then perturbed during
the grasping action to cause a grasp failure. The performance
of the robot was evaluated based on the number of actions
it needed to complete the task despite this perturbation.

We tested two different setups. In the first setup the robot
has access to a “flip” macro which combines four primitive
actions described in Section III-B into one macro action. In
the second setup, the robot uses the fine-grained actions and
aspects directly. The experiment was performed 10 times for
each setup. Using the flip macro, the robot needed 16.1±3.37
primitive actions to complete the task, whereas with the fine-
grained actions it only needed 10.6± 0.69 primitive actions.
The difference in the required number of primitive actions is
due to the capability of detecting the error much earlier and
reacting appropriately when using fine-grained actions and
aspects.

VII. CONCLUSION

In this work we describe how failures in stochastic robotic
actions can be detected and handled properly. We introduce
a general framework that stores fine-grained event transitions
for early error detection. We further categorize detected
failures into random transitions or surprise transitions based
on how it is perceived by the robot. These two types of uncer-
tainties are then handled and recovered separately. We have
shown that the overall framework increases the robustness
towards handling uncertainties and decreases the number of
actions needed on manipulation tasks experimented on the
uBot-6 mobile manipulator.
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