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Figure 1. A mixture model for segmentation based on optical flow
orientations.

1. Introduction

In this supplementary material, we present some addi-
tional details and results for our paper. The sampling proce-
dure used in our graphical model is in Section 2. The entire
set of 46 orientation fields used as the “library” FOFs are
presented in Section 3. Comparison of our segmentation re-
sults to various other methods is presented in Section 4. In
Section 5, we compare our model to other models with op-
tical flow orientations as the input. In addition to this doc-
ument, the supplementary material includes sample video
results for all 37 videos that we tested. Video results are
discussed in Section 6.

2. The model

As explained in the paper, Figure 1 represents our proba-
bilistic segmentation model. Our sampling scheme is given

in Algorithm 1. The algorithm is similar to the Gibbs sam-
pling for Dirichlet processes with non-conjugate priors as
described by Neal (algorithm 8 in [3]). The algorithm adds
additional auxiliary ® parameters at each iteration. We be-
gin with K = 1 component and add one new auxiliary
component(M = 1) to the model at each iteration.

Algorithm 1 Sampling procedure in our model

Step O : Initialize ®; = c¢; where ¢; is sampled from
a uniform distribution over the set of “library” camera
motion parameters.
for n iterations do

Let K be the current number of motion components.

Sample M new motion parameters from f3.

for i = 1to N pixels do

Sample label [; with the following probability:

P(ll = C‘Cfi7ai,®]7©27 "‘@K+]W) =
{bNN_EJ:aP(ai,@c) forl<c¢< K

bN—le—&-aP(aiv(I)c) for K < CSI(+]\4'7
1)

where c_; represents c; for all j # i, N_; . repre-
sents the number of labels /; that have value ¢ and
j # i, and b is an appropriate normalization con-
stant.

end for

for all ¢ € {¢1,¢a,...cny} do
Draw a new value ®.|l; such that [; = c.

end for

end for

3. Flow orientation fields

As explained in the paper, we use a discrete number of
orientation fields or FOFs’ which try to explain the observed
orientations in the current frame. In the paper, we presented
a subset of FOF’s used. The complete set of orientations



is given here in Figure 2. The motion parameter tuple { =
(ty,ty,t.) responsible for each FOF is listed within each
image.

4. FOF versus flow vector-based segmentations

In the paper, we compared our segmentation results to
spectral clustering results of Ochs and Brox [4], which rep-
resented the best method among many that we experimented
with. K-means, Dirichlet process Gaussian mixture model,
and the spectral clustering method of Elqursh and Elgam-
mal [1], were among the other methods we used. Sample
results from all methods are given in Figure 4. The first
four rows are the input image, a visualization of the opti-
cal flow vectors [5], the optical flow magnitudes, and op-
tical flow orientations respectively. The optical flow vec-
tors appear to have similar values for all background pix-
els when the background is relatively simple and at roughly
uniform depth from the camera. When background objects
are at varying depths (columns 3 and 4), their flow vectors
are not uniform. The magnitudes of the vectors (row 3)
depend heavily on object depth. Optical flow orientations
(row 4), arguably, are the most reliable indicators of inde-
pendent motion. For orientations, it may be noted that the
color blue represents 0 degrees and red represents 360 de-
grees. Hence they should be considered as equivalent (for
instance, in column 3).

As a baseline method, we first used K-means with the
flow vectors as input. Rows 5, 6, and 7 show the results of
K-means clustering for K = 2, K = 3, and K = 5, re-
spectively. The results are highly sensitive to the value of
K. For videos with simple backgrounds (columns 1, 2, and
5), small values of K work well. For complex background
videos (columns 3 and 4), there is no value of K that yields
good results. This can be seen in row 8 where human judge-
ment was used to pick the best results from many different
K values.

Since requiring knowledge of K beforehand severely
limits the use of K-means to general video settings, we next
show a non-parametric mixture model with optical flow
vectors as the features. We use the accelerated variational
Dirichlet process Gaussian mixture model (DPGMM) im-
plementation of Kurihara et al. [2]. Results from DPGMM
are shown in row 9. Although DPGMM is non-parametric
and can adapt to the complexity in the data, the use of op-
tical flow vectors as the features causes the method to over-
segment the background.

Spectral clustering has been shown to be useful for mo-
tion segmentation by clustering tracked keypoints based on
their long-term trajectories. Elqursh and Elgammal [1] find
a low-dimensional embedding for trajectories from 5 con-
secutive frames. However, their method tends to separate
the background into several clusters. In order to apply their
method for background subtraction, they assume that the

background is a Gaussian mixture model of 5 components.
Row 10 shows keypoints with the colors representing clus-
ter memberships for their algorithm with a mixture model
of 5 components'. It is not clear whether using a mixture
of 5 components would work for across all videos. In some
videos, the foreground object keypoints clearly form a sepa-
rate cluster (column 1 and 5), but in others, they are grouped
with the background.

Finally, we compare to the spectral clustering of Ochs
and Brox [4] which represents the state of the art for seg-
mentation of trajectories. This method considers interac-
tion between triplets of keypoints instead of simply us-
ing pairwise distances for the clustering. Further, they use
some post-processing to merge regions with similar motion
properties. The results from their implementation’ that in-
cludes a merging step is given in row 11. Again, the re-
sults show keypoints with the colors representing their clus-
ters. The method works well when the background is fairly
at a uniform distance from the camera. Complex back-
grounds, however, still suffer from over-segmentation. Both
the above spectral methods result in labels for sparse key-
points. For a dense labeling of all pixels, additional pro-
cessing is required. In contrast, our method directly returns
a dense labeling of the image.

Our results in the last row show the efficacy of our
method across different scenarios. Note that these results
are from the orientation-based segmentation alone, without
any use of color or prior information. Foreground objects
are broken down into smaller segments depending on their
motion, but all of the background is correctly identified as
one segment. Our method is prone to failure when the ob-
ject’s motion happens to be in a direction that is consistent
with the orientation field due to the camera’s motion (col-
umn 5). The object will go undetected until it or the camera
change their motion direction. In the above video, the object
is detected after 5 frames.

S. Our model versus other models using flow
orientations

Section 4 shows the advantages of using flow orienta-
tions compared to flow vectors. In this section, we compare
other models to ours while using the same feature represen-
tation. Using flow orientations as the common feature rep-
resentation, our segmentation model is directly compared
to K-means and DPGMM in Figure 5. Once again, re-
sults from K-means (rows 3, 4, and 5) are sensitive to the
choice of K. When the correct value of K is provided by
human judgement, the resulting segmentations are reason-
able (row 6), but still fall short of our FOF results in the last

I Our own implementation of [1]
2We set the number of tracked frames to 3 in order to keep the compar-
ison to our method fair
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Figure 2. The complete set of orientation fields used in our model. The motion parameters responsible for each field are given within each
image. The color bar on the bottom right of the figure shows the mapping from angles in degrees to color values in the images.

row. For complex backgrounds (columns 3 and 4), K-means
with flow orientations results in a better segmentation than
K-means with flow vectors in Figure 4. DPGMM automat-
ically determines the number of components, but tends to
break the background into smaller sections. Our segmen-
tation method, by explicitly modeling the spatial depen-
dency between pixels through the “library” FOFs’, results
in a better segmentation compared to both human-assisted
K-means and DPGMM.

6. Video results

Sample video results from all our test videos are avail-
able in the supplementary submission. We show the first
20 frames in each video®. The same set of parameters (as
specified in the paper) have been used for all 37 videos.

3Some videos in the data sets contain fewer than 20 frames. All frames
are reported for these videos

The videos are compressed AVI files and have been tested
on Windows 7 Media player and IrfanView version 4.35.
The videos are organized into three folders - Hopkins, Seg-
Track, and complexBg. Each video shows the input image,
the optical flow orientations, the FOF-based segmentation,
and FOF-based segmentation with color and prior infor-
mation. The results show our system capable of handling
situations when there is no independently moving object
(Hopkins-marple6 and 11), detecting objects that are ini-
tially at rest but begin moving later (Hopkins-marple9), and
recovering objects that are initially not detectable using ori-
entations (Hopkins-cars1). Videos with no camera motion
are handled well by using a “zero-motion” FOF (SegTrack-
birdfall). This video shows the noisy optical flow orienta-
tions which are actually ignored when computing the seg-
mentation. Most videos show that using only orientations
can cause occasional errors, but the use of color and prior
information helps recover from them.
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Figure 3. Comparison of FOF segmentation to several other optical flow vector-based methods.
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Figure 4. Comparison of our FOF model to other methods using orientation fields.

Some difficult cases for our algorithm are when the ob-
ject moves very slowly (Hopkins-cars9) and when optical
flow is not reliable (SegTrack-cheetah). In presence of
camera rotation (complexBg videos, Hopkins-cars7), the
orientation-based segmentation is more prone to making er-
rors. In these videos, color and prior information are very
useful in correcting such errors.
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