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Abstract

Recent work has shown impressive transform-invariant modeling
and clustering for sets of images of objects with similar appearance.
We seek to expand these capabilities to sets of images of an object
class that show considerable variation across individual instances
(e.g. pedestrian images) using a representation based on pixel-wise
similarities, similarity templates. Because of its invariance to the
colors of particular components of an object, this representation en-
ables detection of instances of an object class and enables alignment
of those instances. Further, this model implicitly represents the re-
gions of color regularity in the class-specific image set enabling a
decomposition of that object class into component regions.

1 Introduction

Images of a class of objects are often not effectively characterized by a Gaussian
distribution or even a mixture of Gaussians. In particular, we are interested in
modeling classes of objects that are characterized by similarities and differences
between image pixels rather than by the values of those pixels. For instance, images
of pedestrians (at a certain scale and pose) can be characterized by a few regions
of regularity (RORs) such as shirt, pants, background, and head, that have fixed
properties such as constant color or constant texture within the region, but tend to
be different from each other. The particular color (or texture) of those regions is
largely irrelevant. We shall refer to sets of images that fit this general description
as images characterized by regions of regularity, or ICRORs.

Jojic and Frey [1] and others [2] have investigated transform-invariant modeling
and clustering for images of a particular object (e.g., an individual’s face). Their
method can simultaneously converge on a model and align the data to that model.
This method has shown positive results for many types of objects that are effectively
modeled by a Gaussian or a mixture of Gaussians. Their work with transformed
component analysis (TCA) shows promise for handling considerable variation within
the images resulting from lighting or slight misalignments. However, because these



models rely on an image set with a fixed mean or mixture of means, they are not
directly applicable to ICRORs.

We would also like to address transform-invariant modeling, but use a model which
is invariant to the particular color of component regions. One simple way to achieve
this is to use edge templates to model local differences in image color. In contrast,
we have chosen to model global similarities in color using a similarity template (ST).

While representations of pixel similarity have previously been exploited for segmen-
tation of single images [3, 4], we have chosen to use them for aggregate modeling
of image sets. Similarity templates enable alignment of image sets and decompo-
sition of images into class-specific pixel regions. We note also that registration of
two ICRORs can be accomplished by minimizing the mutual information between
corresponding pixels [5]. But, there is no obvious way of extending this method to
large sets of images without a combinatorial explosion.

Section 2 briefly introduces similarity templates. We investigate their uses for mod-
eling and detection. Section 3 discusses dataset alignment. Section 4 covers their
application to decomposing a class-specific set of images into component regions.
Future avenues of research and conclusions are discussed Section 5.

2 Similarity templates

This section begins with a brief explanation of the similarity template followed
by the mechanics of computing and comparing similarity templates. A similarity
template S for an N -pixel image is an NxN matrix. The element Si,j represents
the probability that pixel locations pi and pj would result from choosing a region
and drawing (iid) two samples (pixel locations) from it. More formally,

Si,j =
∑

r

p(r)p(pi|r)p(pj |r), (1)

where p(r) is the probability of choosing region r and p(pi|r) is the probability of
choosing pixel location pi from region r.

2.1 The “ideal” similarity template

Consider sampling pixel pairs as described above from an N -pixel image of a par-
ticular object (e.g., a pedestrian) segmented by an oracle into disjoint regions (e.g.,
shirt, pants, head, feet, background). Assuming each region is equally likely to be
sampled and that the pixels in the region are selected with uniform probability,
then

Si,j =
{

( 1
R )( 1

Sr
)2 if ri = rj

0 otherwise,
(2)

where R is the number of regions, Sr is the number of pixels in region r, and ri

is the region label of pi. If two pixels are from the same region, the corresponding
value is the product of the probability 1

R of choosing a particular region and the
probability ( 1

Sr
)2 of drawing that pixel pair. This can be interpreted as a block

diagonal co-occurrence matrix of sampled pixel pairs.

In this ideal case, two images of different pedestrians with the same body size and
shape would result in the same similarity template regardless of the colors of their
clothes, since the ST is a function only of the segmentation. An ST of an image
without a pedestrian would exhibit different statistics. Note that even the ST of
an image of a blank wall (segmented as a single region) would be different because



pixels that are in different regions under the ideal pedestrian ST would be in the
same region.

Unfortunately, images do not typically come with labeled regions, and so com-
putation of a similarity template is impossible. However, in this paper, we take
advantage of the observation that properties within a region, such as color, are
often approximately constant. Using this observation, we can approximate true
similarity templates from unsegmented images.

2.2 Computing similarity templates

For the purposes of this paper, our model for similarity is based solely on color.
Since there is a correlation between color similarity and two pixels being in the
same region, we approximate the corresponding value S̃i,j with a measure of color
similarity:

S̃i,j =
1

NZi
exp

(−||Ii − Ij ||2
σ2

i

)
, (3)

where Ii and Ij are pixel color values, σ2
i is a parameter that adjusts the color

similarity measure as a function of the pixel color distribution in the image, and Zi

is the sum of the ith row. This normalization is required because large regions have
a disproportionate effect on the ST estimate. The choice of σ2

i had little effect on
the resulting ST.

If each latent region had a constant but unique color and the regions were of equal
size, then as σ2

i approaches zero this process reconstructs the “ideal” similarity
template defined in Equation 1. Although region colors are neither constant nor
unique, this approximation has proven to work well in practice.

It is possible to add a spatial prior based on the relative pixel location to model the
fact that similarities tend to local, but we will rely on the statistics of the images
in our data set to determine whether (and to what extent) this is the case. Also, it
may be possible to achieve better results using a more complex color model (e.g.,
hsv with full covariance) or broadening the measure of similarity to include other
modalities (e.g., texture, motion, depth, etc.).

Figure 1 shows two views of the same similarity template. The first view represents
each pixel’s similarity to every other pixel. The second view contains a sub-image
for each pixel which highlights the pixels that are most likely produced by the same
region. Pixels in the shirt tend to highlight the entire shirt and the pants (to a
lesser amount). Pixels in the background tend to be very dissimilar to all pixels in
the foreground.

2.3 Aggregate similarity templates (AST)

We assume each estimated ST is a noisy measurement of the true underlying joint
distribution. Hence we compute an aggregate similarity template (AST) as the
mean S̄ of the ST estimates over an entire class-specific set of K images:

S̄i,j =
1
K

K∑

k=1

S̃k
i,j . (4)

For this quantity to be meaningful, the RORs must be in at least partial correspon-
dence across the training set. Note that this is a less restrictive assumption than
assuming edges of regions are in correspondence across an image set, since regions
have greater support. Being the mean of a set of probability distributions, the AST
is also a valid joint probability distribution.



(a) (b)

Figure 1: (a) The NxN aggregate similarity template for pedestrian data set. (b)
An alternate view of (a). This view is a width2xheight2 version of (a). Each sub-
image represents the row of the original AST that corresponds to that pixel. Each
sub-image highlights the pixels that are most similar to the pixel it represents.

2.4 Comparing similarity templates

To compare an estimated similarity template S̃ to an aggregate similarity template
S̄ we evaluate their dot product1:

s(S̄, S̃) =
∑

i

∑

j

S̄i,jS̃i,j . (5)

We are currently investigating other measures for comparison. By thresholding the
ratio of the dot product of a particular image patch under and AST trained on
pedestrian image patches versus an AST trained on random image patches, we can
determine whether a person is present in the image. In previous work [6], we have
illustrated encouraging detection performance.

3 Data set alignment

In this paper, we investigate a more difficult problem: alignment of a set of images.
To explore this problem, we created a set of 128x64 images of simulated pedestrians.
These pedestrians were generated by creating four independently-colored regions
corresponding to shirts, pants, head, and background. Each region was given a
random color. The RGB components were chosen from a uniform distribution
[0, 1]. Then, independent Gaussian noise was added to each pixel (σ = .1). Finally
the images were translated uniformly up to 25% of the size of the object. Figure 2
shows examples of these images.

1In our experimentation KL-divergence, typically used to compare estimates of distri-
butions, proved less robust.



Figure 2: A set of randomly generated “pedestrian” images used in alignment ex-
perimetns.

Using the congealing procedure of Miller et al. [2], we iteratively estimated the
latent variables (translations) that maximized the probability of the image STs to
the AST and re-estimated the AST. We were able to align the images to within .5
pixels on average.

4 Decomposing the similarity template

This section explains how to derive a factorized representation from the AST that
will be useful for recognition of particular instances of a class and for further refine-
ment of detection. This representation is also useful in approximating the template
to avoid the O(N2) storage requirements.

An AST represents the similarity of pixels within an image across an entire class-
specific data set. Pairwise statistics have been used for segmentation previously
[3]. Recently, work centered on factoring joint distributions has gained increasing
attention [7, 8, 9, 10]. Rather than estimating two sets of marginals (conditioned on
a latent variable) that explain co-occurrence data (e.g. word-document pairs), we
seek a single set of marginals conditioned on a latent variable (the ROR) that explain
our co-occurrence data (pixel position pairs). Hence, it is a density factorization
in which the two conditional factors are identical (Equation 1). We refer to this as
symmetric factorization of a joint density.

Also, rather than treating pixel brightness (darkness, redness, blueness, or hue) as
a value to be reconstructed in the decomposition, we chose to represent pixel simi-
larity. In contrast to simply treating images as additive mixtures of basis functions
[9], our decomposition will get the same results on a database of images of digits
written in black on white paper or in white on a black board and color images
introduce no difficulties for our methods.

We would like to estimate the factors from Equation 1 that best reconstruct our
measured AST, S̄. Let Ŝ be the estimate of S̄ constructed from these factors. Given
the number of regions R, it is possible to estimate the priors for each region p(r)
and the probability of each region producing each pixel p(pi|r). The error function
we minimize is the KL-divergence between the empirically measured S̄ and our
parameterized estimate Ŝ,

E =
∑

i

∑

j

S̄i,j log

(
S̄i,j

Ŝi,j

)
(6)

as in [8]. Because our model S̄ is symmetric, this case can be updated with only
two rules:

pnew(pi|r) ∝ p(pi|r)
∑
pj

p(r)p(pj |r) Ŝ(pi, pj)
S̄(pi, pj)

, and (7)

pnew(r) ∝ p(r)
∑
pi

∑
pj

p(pj |r)p(pi|r) Ŝ(pi, pj)
S̄(pi, pj)

. (8)
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Figure 3: The similarity template and the corresponding automatically generated
binary decomposition of the images in the pedestrian data set. The root node rep-
resents every pixel in the image. The first branch splits foreground vs. background
pixels. Other nodes correspond to shirt, legs, head, and background regions.

The more underlying regions we allow our model, the closer our estimate will ap-
proximate the true joint distribution. These region models tend to represent parts
of the object class. p(pi|r) will tend to have high probabilities for a set of pixels
belonging to the same region. We take advantage of the fact that aligned pedestrian
images are symmetric about the vertical axis by adding a “reflected” aggregate sim-
ilarity template to the aggregate similarity template. The resulting representation
provides a compact approximation of the AST (O(RN) rather than O(N2)).

Rather than performing a straight R-way decomposition of the AST to obtain R
pixel region models, we extracted a hierarchical segmentation in the form of a binary
tree. Given the initial region-conditioned marginals p(pi|r0) and p(pi|r1), each pixel
was assigned to the region with higher likelihood. This was iteratively applied to
the ASTs defined for each sub-region. Region priors were set to 0.5 and not adapted
in order to encourage a balanced cut.

The probabilistic segmentation can be employed to accumulate robust estimates of
statistics of the region. For instance, the mean pixel value can be calculated as a
weighted mean where the pixels are weighted by p(pi|r).

4.1 Decomposing pedestrians

Because the data collected at our lab showed limited variability in lighting, back-
ground composition, and clothing, we used the MIT CBCL pedestrian data set
which contains images of 924 unique, roughly aligned pedestrians in a wide vari-
ety of environments to estimate the AST. Figure 3 shows the resulting hierarchical
segmentation for the pedestrian AST. Since this intuitive representation was de-
rived automatically with absolutely no knowledge about pedestrians, we hope other
classes of objects can be similarly decomposed into RORs.

In our experience, a color histogram of all the pixels within a pedestrian is not
useful for recognition and was almost useless for data mining applications. Here
we propose a class-conditional color model. It determines a color model over each
region that our algorithm has determined contain similar color information within
this class of objects. This allows us to obtain robust estimates of color in the regions



Figure 4: Results of automatic clustering on three components: shirt, pants, and
the background. Each shows the feature, the most unusual examples of that region,
followed by the 12 most likely examples for the eight prototypical colors of that
region.

of regularity. Further, as a result of our probabilistic segmentation, the values of
p(pi|r) indicate which pixels are most regular in a region which enables us to weight
the contribution of each pixel to the color model.

For the case of pedestrian-conditional color models, the regions roughly correspond
to shirt color, pant color, feet color, head color, and some background color re-
gions. The colors in a region of a single image can be modeled by color histograms,
Gaussians, or mixtures of Gaussians. These region models can be clustered across
images to determine a density of shirt colors, pant colors, and other region colors
within a particular environment. This enables not only an efficient factored color
component codebook, but anomaly detection based on particular regions and higher
order models of co-occurrences between particular types of regions. To illustrate
the effectiveness of our representation we chose the simplest model for the colors in
each region–a single Gaussian in RGB space. The mean and variance of each Gaus-
sian was computed by weighting the pixels represented by the corresponding node
by p(pi|r). This biases the estimate towards the “most similar” pixels in the region
(e.g., the center of the shirt or the center of the legs). This allows us to represent
the colors of each pedestrian image with 31 means and variances corresponding to
the (2treeheight − 1) nodes.

We investigated unsupervised clustering on components of the conditional color
model. We fit a mixture of eight Gaussians to the 924 color means for each region.
Figure 4 shows the 12 pedestrians with the highest probability under each of the
eight models and the 12 most unusual pedestrians with respect to that region for
three of the nodes of the tree: shirt color, pant color, and color of the background.
Red, white, blue, and black shirts represent a significant portion of the database.
Blue jeans are also very common in the Boston area (where the CBCL database
was collected). Indoor scenes tended to be very dark, and cement is much more
common than grass.



5 Conclusions

While this representation shows promise, it is not ideal for many problems. First,
it is expensive in both memory and computation. Here, we are only using a simple
measure of pairwise similarity–color similarity. In the future, similarity templates
could be applied to different modalities including texture similarity, depth similarity,
or motion similarity.

While computationally intensive, we believe that similarity templates can provide
a unified approach to the extraction of possible class-specific targets from an image
database, alignment of the candidate images, and precomputation of meaningful fea-
tures of that class. For the case of pedestrians, it could detect potential pedestrians
in a database, align them, derive a model of pedestrians, and extract the parameters
for each pedestrian. Once the features are computed, query and retrieval can be
done efficiently.

We have introduced a new image representation based on pixel-wise similarity. We
have shown its application in both alignment and decomposition of pedestrian im-
ages.
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