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Abstract

With the advent of commodity 3D capturing devices and better 3D modeling tools, 3D shape content is becoming increasingly
prevalent. Therefore, the need for shape retrieval algorithms to handle large-scale shape repositories is more and more im-
portant. This track aims to provide a benchmark to evaluate large-scale shape retrieval based on the ShapeNet dataset. We
use ShapeNet Core55, which provides more than 50 thousands models over 55 common categories in total for training and
evaluating several algorithms. Five participating teams have submitted a variety of retrieval methods which were evaluated
on several standard information retrieval performance metrics. We find the submitted methods work reasonably well on the
track benchmark, but we also see significant space for improvement by future algorithms. We release all the data, results, and

evaluation code for the benefit of the community.

Categories and Subject Descriptors: H.3.3 [Computer Graphics]: Information Systems- Information Search and Retrieval

1. Introduction

3D content is becoming increasingly prevalent and important to ev-
eryday life, due to the ubiquity of commodity depth sensors and
better 3D modeling tools. The increasing availability of 3D models
requires scalable and efficient algorithms to manage and analyze
them, to facilitate applications such as virtual reality, 3D printing
and manufacturing, and robotics among many others. A key re-
search problem is retrieval of relevant 3D models given a query
model. The community has been actively working on this task for
more than a decade. However, existing algorithms are usually eval-
uated on datasets with few models. To process the millions of 3D
models available on the Internet, algorithms should be both accu-
rate and scalable, which calls for large-scale benchmark datasets
to be used in developing and evaluating shape retrieval methods.
Thanks to the recent effort in creating ShapeNet [CFG* 15], we can
now use a much bigger dataset of 3D models to develop and eval-
uate new algorithms. In this track, we evaluate the performance of
cutting edge deep-learning based 3D shape retrieval methods on

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

ShapeNet Core55, which is a subset of the ShapeNet dataset with
more than 50 thousand models in 55 common object categories.

Five participating teams have submitted a variety of retrieval
methods. All the methods are based on deep learning models and
projection-based inputs. We evaluate the methods based on several
standard information retrieval performance metrics. The submis-
sion by Hang Su et al. performs the best on aligned models, while
the submission by S. Bai et al. performs the best on models with
perturbed rotations. Both the data and evaluation code are publicly
released for the benefit of the community. As our results show that
there is still space for us to improve upon, we hope that our release
will catalyze future research into 3D model retrieval.

2. Dataset

The ShapeNet Core55 competition dataset contains a total of 51190
3D models categorized into 55 WordNet [Mil95] synsets (lexical
categories belonging to a taxonomy of concepts in the English lan-
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guage). Before using this data for the competition, the models were
deduplicated. Furthermore, each model was assigned a sub-synset
(sub-category) label which indicates a more refined class for the ob-
ject (e.g., a model may have a sub-synset of “fighter jet” within the
synset of “airplane”. There are 204 sub-synset labels across the 55
synsets and these are used to establish a gradated relevance score
(beyond just matching vs not matching synset label) in one of the
evaluation metrics.

The original models in the evaluation dataset were taken from the
ShapeNet corpus which was collected primarily from the Trimble
3D warehouse [Tril12]. To make training and evaluation of learn-
ing based methods possible, we established standard training, val-
idation and test splits of the dataset. The proportions chosen were
70% (35765), 10% (5159) and 20% (10266) respectively out of the
total 51190 models. The ShapeNet model data was converted to
OBJ format with only geometric information, and the model di-
mensions were normalized to a unit length cube. In addition, since
ShapeNet provides consistent upright and front orientation annota-
tion for all models in the ShapeNetCore corpus, all model data was
consistently aligned. We call this the “normal” dataset. To estab-
lish a more challenging version of the data without the assumption
for pre-existing consistent alignments, we generate a “perturbed”
version of the model data where each model has been randomly
rotated by a uniformly sampled rotation in SO(3). As most deep-
learning methods rely on view-based feature computation, the sec-
ond dataset is a more challenging scenario. All participating meth-
ods were evaluated on both datasets.

3. Evaluation

Each split of the dataset (train, val, test) was treated independently
as a query and retrieval corpus. Participants were asked to return a
ranked list of retrieved models for each model in a given set, where
the target models to be retrieved were all models in that set, includ-
ing the query model itself. Retrieval ranked lists were required to
provide at most 1000 results in descending order of similarity (or
relevance) to the query model. Although a similarity score is pro-
vided for each entry in the submission, it is not used in evaluation.
Each participant method was free to choose whether to return fewer
relevant retrieval results to obtain better evaluation performance.

The ranked lists were evaluated against the ground truth category
(synset) and subcategory (subsynset) annotations. An item in the
retrieved lists is positive if it is in the same category with the target
model in the retrieval. Otherwise, it is negative. For each entry in
the lists, we calculate the precision and recall. The precision at an
entry is defined as the percentage of positive items up to this entry.
The recall at an entry is defined as the number of positive items
up to this entry divided by the smaller number between the total
number of objects in the category or maximally allowed retrieved
list length (1000 in this competition). Combining the precision and
recall at each entry, we calculate the F-score.

At each entry, we also calculate normalized discounted cumu-
lative gain (NDCG). The NDCG metric uses a graded relevance: 3
for perfect category and subcategory match in query and retrieval, 2
for category and subcategory both being same as the category, 1 for
correct category and a sibling subcategory, and 0 for no match. Sub-
category is only used in NDCG. The simplistic graded relevance

we defined using just categories and subcategories is a somewhat
limited attempt at capturing a human notion of graded relevance
between 3D models. In the near future, the track organizers plan
to collect judgments of retrieved 3D model relevance from people
in order to establish a more proper relevance for retrieved models.
This will allow computation of a more challenging version of the
NDCG evaluation metric which will measure the degree to which
retrieval methods match human notions of relevance/similarity or-
dering of the 3D models.

In summary, we can calculate four scores at each entry in a
list: precision, recall, F-score and NDCG. In Section 5.5, we show
precision-recall plots to compare different submitted methods. Be-
sides using average precision to evaluate the quality of each re-
trieved list, we also use precision, recall, F1 and NDCG at the end
of the retrieval list as a summary metric. These metrics are referred
to as P@N, R@N, F1@N and NDCG@N, where the N refers to
the total retrieval list length chosen by the method, and is allowed
to vary across queries. The scores of the lists in a category are com-
bined by taking the average.

In order to combine the retrieval results of different categories,
we use two versions of the above metrics: macro and micro aver-
aged. The macro-averaged version is used to give an unweighted
average over the entire dataset. The retrieval scores for all the mod-
els are averaged with equal weights. In the micro-averaged ver-
sion, each query and retrieval results are treated equally across cat-
egories, and therefore the results are averaged without reweight-
ing based on category size. This gives a representative performance
metric average across categories.

4. Participants

There were five participating groups in this track. Each group sub-
mitted results on both the normal and perturbed versions of the data
as well as for each of the dataset splits (train, val, test), with one ex-
ception of a group that did not submit train results.

e MVCNN: Multi-view Convolutional Neural Networks, by H.
Su, S. Maji, E. Kalogerakis, E. G. Learned-Miller (referred to
as Su)

e GIFT: A Real-time and Scalable 3D Shape Search Engine, by
S.Bai, Z.Zhou, M.Liao, X .Bai (referred to as Bai)

e ViewAggregation: 3D Model Signatures via Aggregation of
Multi-view CNN Features, by Y.Li, N. Fish, D. Cohen-Or and
B. Chen (referred to as Li)

e CCMLT: Channel-wise CNN for Multitask Learning by Triplet,
by Y. Wang, N. Zhang, J. Han and W. Deng (referred to as Wang)

e DB-FMCD-FUL-LCDR: Appearance-based 3D Shape Feature
Extraction using Pre-trained Convolutional Neural Networks, by
A. Tatsuma and M. Aono (referred to as Tatsuma)

5. Methods

In this section we compile the description of methods by each par-
ticipating group, from the participants’ perspective.
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Figure 1: Overview for MVCNN Team. Illustrated using the 1*' camera setup for non-perturbed shapes.

5.1. Multi-view Convolutional Neural Networks, by H. Su, S.
Maji, E. Kalogerakis, E. G. Learned-Miller

Our method is based on the Multi-view Convolutional Neural Net-
works (MVCNN) [SMKLI15]. Our code is available at http:
//vis—www.cs.umass.edu/mvenn/.

5.1.1. Pre-processing

Our method takes rendered views of 3D shapes as inputs. We
use two different camera setups for rendering. For the 1% cam-
era setup, we assume that the shapes are upright oriented along
a consistent axis (e.g. z-axis). The non-perturbed shapes provided
in the contest satisfy this assumption, as well as most modern on-
line shape repositories. In this case, we create 12 rendered views by
placing 12 virtual cameras around the shape every 30°. For the 2nd
camera setup, which is used for the perturbed shapes, we make no
assumption about the orientation of the shapes and place 20 virtual
cameras at the 20 vertices of an icosahedron enclosing the shape.
We generate 4 rendered views from each camera, using 0°, 90°,
180°, 270° in-plane rotations, yielding a total of 80 views.

The 55 categories in ShapeNetCore55 are highly imbalanced.
In the training set, the largest category has about 150 times more
shapes than the smallest category. The subcategories are even more
imbalanced. To perform category balancing, we apply Eq. 1 to the
training class distribution d, and randomly sample a training set
for each training epoch according to dpganceq- t 1S @ parameter that
controls the trade-off between macro-averaged and micro-averaged
evaluation metrics. We set ¢ to 0.5 for training the 55-category net-
work and 0.2 for the 204-subcategory network.

d(k)

e @) o))

dpatanced (k) = av(g(d) : (

5.1.2. Network Architecture

As shown in Figure 1, each rendered view of a 3D shape is passed
through the first part of the network (CNN;) separately, aggre-
gated at a view-pooling layer using max-pooling, and then passed
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through the remaining part of the network (CNNj). All branches of
CNN; share the same parameters. CNN; and CNN, together con-
tain 5 convolutional layers (convy _s) and 3 fully-connected layers
(fce,... 8). For best performance, the view-pooling layer should be
placed somewhere between convs and fc; [SMKL15]. We use fcy
for all our submitted results.

We initialize the parameters of the network from the VGG-M
network [CSVZ14], and fine-tune the network on ShapeNetCore55.

5.1.3. Retrieval

We train two networks for each camera setup: one for 55-way clas-
sification and another for 204-way subcategory classification. For
each query, we first predict its label and construct a retrieval set
containing all shapes with the same predicted label. Then we ex-
tract features for the query and the targets from the output layer of
the 204-way subcategory network (i.e. the features are the classi-
fication probabilities) and re-rank the results according to their L2
distances to the query. The re-ranking step will not influence preci-
sion and recall, and is designed mainly for improving NDCG.

In [SMKL15], we used the penultimate layer in the network as
features together with low-rank Mahalanobis metric learning for
dimension reduction. For this contest, we use the output layer as
features directly due to time constraints.

5.2. GIFT: A Real-time and Scalable 3D Shape Search
Engine, by S.Bai, Z.Zhou, M.Liao, X.Bai

Our method is based on GIFT [BBZ*16]. It is composed of four
components: projection rendering, view feature extraction, multi-
view matching and re-ranking (see Figure 2).

5.2.1. Projection rendering

For each 3D shape, we place its centroid at the origin of a unit
sphere and normalize its scale by resizing its maximum polar dis-
tance to unit length. Then we render the 3D shape into depth images
from N, (N, = 64 in our experiments) viewpoints located uniformly
on the surface of a sphere.
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Figure 2: Overview for GIFT Team. Illustration of the overall GIFT pipeline.

5.2.2. View feature extraction

A convolutional neural network (CNN) is used to extract view fea-
tures. In the training phase, we fine-tune a pre-trained CNN (VGG-
S from [CSVZ14]) using the rendered views. Each depth view is
taken as a training exemplar, with the label of its corresponding 3D
shape.

Since each shape in the competition dataset has two labels (cate-
gory and subcategory), the training loss of the CNN consists of two
parts. This setting is different from the CNN in GIFT [BBZ"16],
where only one loss function is used. The first part is a vector,
whose length is equivalent to the number of subcategories in the
training dataset. Each element of the vector denotes the classifi-
cation probability of the training examplar to the corresponding
subcategory. According to the relationship between category and
subcategory, we map this vector to a new vector whose length
is the number of main categories. This second part describes the
probability distribution over the main category. Specifically, for
a given main category, we sum the probability of all its subcate-
gories. Lastly, the final training loss is combined via negative log-
likelihood criterion.

In the testing phase, we take the activation of the fully-connected
layer L7 as the feature of each view, which we empirically deter-
mined to be the most discriminative layer.

5.2.3. Multi-view matching

Given a query shape x4 and a certain shape x, from the database
X ={x1,x2,...,xy}, we can easily obtain two feature sets V(xg) =

{41:92,-..,qn,} and V(xp) = {p1,p2, ..., pn, } respectively using
the trained neural network.

In order to compute the dissimilarity between x4 and x,, we uti-
lize a robust version of Hausdorff distance, defined as

1
D(xihxp) =N min d(‘]vp '),
Ny q,EV(xq)p"ev(x”) v

(@)

where d(-) computes the Euclidean distance between two input
vectors. Compared with standard Hausdorff distance, this modified
version can eliminate the disturbance of isolated views in V(xg).

In [BBZ"16], the calculation of Eq. (2) is further accelerated us-
ing an inverted file, thus leading to an approximated Hausdorff dis-
tance. The approximated version can shorten the pairwise matching
time significantly by sacrificing some retrieval accuracy. Here, we
directly use Eq. (2) for better performance.

5.2.4. Re-ranking
Our last component is a context-based re-ranking algorithm.

Our basic idea is that the similarity between two shapes can be
more reliably measured by comparing their neighbors using Jac-
card similarity. Instead of using a crisp set, we define the neigh-
borhood set of x4 in fuzzy set theory to attach more importance
to top-ranked neighbors. Consequently, its k-nearest neighbors set
can be described as Ny (x4), where each element x; has member-
ship grade m(x;) > 0. We initialize m(x;) as S(xg,x;), which is the
similarity between x4 and x;. S(xg,x;) can be obtained by applying
Gaussian kernel to Eq. (2). For those shapes that are not among the
top-k ranking list, m(x;) = 0.

For the sake of convenience in comparison, one can easily con-
vert the membership distribution into a vector F, € RY as F|i] =
m(x;). In fuzzy set theory, the Jaccard similarity between N (xq)
and NV (xp) can be computed as

S (g, xp) = YN min(F,[i], Fpli]) |

YN max (Fyli], Fpli])

S’ is used later to produce the refined ranking list for the query Xq.

3

Since Fy itself is a sparse vector, Eq. (3) can be computed using
an inverted index (refer to [BBZ*16] for a rigorous proof). More-
over, the second-order neighbor can be considered by augmenting
Fyas Fy = % Yie M, (x,) F;. These two improvements can improve
the matching speed and matching accuracy of Eq. (3).

(© 2016 The Author(s)
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Figure 3: Overview for ViewAggregation Team. CNN architectures for extracting 3D model signatures by aggregating CNN features of
multi-view images rendered from 3D models. Multi-view CNN features are aggregated by concatenating per-view features when a consistent
3D model orientation is available (left), or by max-pooling when model orientations are unknown (right).

5.3. 3D Model Signatures via Aggregation of Multi-view CNN
Features, by Y. Li, N. Fish, D. Cohen-Or and B. Chen

A 3D model can be rendered into a 2D image from multiple view-
points, thus a possible signature for it can be obtained by an assem-
bly of multi-view image features [CTSO03]. To generate a high
quality shape signature, image features must be informative and
appropriately discriminative. In recent years, image features ex-
tracted from a CNN were shown to be highly successful in image-
based recognition tasks, as they are both informative and discrim-
inative. Considering the aforementioned multi-view render-based
shape signature paradigm, such advances in image feature extrac-
tion can be levereged to boost the performance of shape signatures,
for tasks such as shape retrieval.

Following [SMKL15], we represent a 3D model signature with
CNN features computed on a set of images rendered from the 3D
model from multiple viewpoints. We first extract CNN features for
each rendered view, with the convolutional layers of a CNN model
fine-tuned for classifying each individual rendered view into the
category and sub-category of the 3D model, and then aggregate the
view features. Finally, we train several fully-connected layers on
classification tasks based on the aggregated features.

In this approach, the aggregation of CNN features from differ-
ent views is key. In [SMKL15], the view features are aggregated
via max-pooling, such that all views are equally contributive. This
approach is therefore oblivious to the manner in which render-
ing views are chosen. This is an advantage when models within
a collection are arbitrarily oriented, but a disadvantage when a
consistent alignment is provided. An aggregation method that is
consistency-aware is likely to outperform its oblivious counterpart
in this instance. Thus, when a consistent shape alignment is given,
instead of aggregation via max-pooling, we aggregate multi-view
CNN features by concatenating view-specific features in-order.
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Here, the fully-connected layers can leverage the correspondence
that exists between renderings from consistent viewpoints across
different shapes, and make decisions based on a more holistic un-
derstanding of the various viewpoints. See Figure 3 for a visual
representation of the two CNN architectures employed in our ap-
proach.

More specifically, we render each model from 12 evenly spaced
viewpoints, and fine-tune the VGG-19 network [SZ14] for the con-
volutional layers that are used for view feature extraction. We
use the concatenation of the category and sub-category classifica-
tion probability vector as the 3D model signature for retrieval. We
open source our code at http://yangyanli.github.io/
SHREC2016/.

5.4. Channel-wise CNN for Multitask Learning by Triplet, by
Y. Wang, N. Zhang, J. Han and W. Deng

We render each 3D model into 36 channels of data by concatenat-
ing 36 2D rendered images in sequence. These images are captured
from 12 camera positions on the vertices of an icosahedron, for
each of 3 orthogonal view up directions. Each channel represents
a single pose of the model. Multi-channel data makes it possible
to train a feature fusion matrix inside a CNN in contrast to image-
based 3D model recognition where features extracted from 2D im-
ages of a single model need to be fused again. By avoiding the need
to fuse again, the performance is better than single channel data re-
gardless of whether the models are perturbed or not.

A Channel-wise Convolutional Neural Network is used to ex-
ploit geometric information in 3D models from this 36 channel
data. AlexNet [KSH12] is used as basic parametric model with
the layers modified to handle 36 channel data. As images in each
channel differ significantly due to varying camera positions, con-
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volutional layers with filters initialized as Xavier filters [GB10] different categories and also discriminates on subcategories:
are trained in a channel-wise fashion to extract discriminant pat- 3
terns from each channel. The locally connected layer are initialized Lrecog = OLso fimax + Limt BLuri(sr:ps5ni) @
. . 2
with the method of MSRA [HZRS15] used as the last convolutional Lovi = In(max(1,2 — [Lf () —f ()| [ ) (5)

layer, adjusting for local patterns. The batch normalization [IS15]
during iterations which is added after every convolution layer
is modified with a moving average Mean ;) = aBatchMean ;) +
(1 — a)Mean(;_y and Variance(y = aBatchVariance( + (1 —
o)Variance(; _y).

We perform an operation similar to the z-score operation
o) _ M —EaY) - *) o
= on the inputs x'*/ of the batch normalization

Var(x®))

layer, then a linear transformation y(k) = Bﬁ(k) + v is applied
on #*) where k indicates the number of channels. All opera-
tions are performing channel-wise during each iteration ¢. De-
noting by local# a local connected layer, by comv# a convo-
lutional layer where the size of the feature map is defined as
width x heightxchannel, by [rn# a local response normalization
layer, by pool# a pooling layer, by fc# a fully connected layer,
by relu# a linear unit transformation and by bn# a moving batch
normalization layer, the concatenated structure of the CNN learn-
ing and feature fusion in Fig.4 based on channel-wise concate-
nated data is defined by: dara(225 x 225 x 36) — conv1(54 x 54 x
8){12 groups} — bnl — relu2 — lrnl — pool3 — conv2(27 x 27 x
64){4 groups} — bn2 — relu3 — lrn2 — pool4 — conv3(13 x 13 x
384) — bn3 — relud — conv4(13 x 13 x 192){2 groups} — bnd —
relu5 —local5(13 x 13 x 128){2 groups} — bn5 — relu6 — pool6 —
fc3(4096) — fc4(4096) — dropout — fc5(210).

The 1085 Lrecog for the CNN is defined as a linear combination of
softmax loss and triplet loss for multitask learning which separates

[1£ (i) = f (xj)[[3+m

where f(x) is the input of the loss layer for sample x and m is the
margin(0.01) for the triplet. The proportion of positive and negative
pairs in L;,; avoids the gradient vanishing problem in [WSL*14].
That is, we avoid the issue of less effective back propagation when
models with the same subcategory label are used for training (dis-
tance is small between features from the same subcategory in the
triplet making the propagated gradient small). Correspondingly, the
36-channel input data generated from a perturbed model makes gra-
dient explosion likely as each channel varies significantly, so we
further apply natural logarithms on the loss of a triplet. A triplet
set composed of 3 triplets is applied for subcategory classification,
consisting of 1 reference sample s, 1 positive sample s, and 3 neg-
ative samples s,,;. As shown in Figure 4, at least 2 negative samples
are from a different category. The positive sample is either one in
the same subcategory or in the same category. The last negative
sample is one in a different category or the same category corre-
spondingly.

5.5. Appearance-based 3D Shape Feature Extraction using
Pre-trained Convolutional Neural Networks, by A.
Tatsuma and M. Aono

We propose a method that extracts 3D shape features by using a
pre-trained Convolutional Neural Network (CNN) [LBD*89]. The
overview of our approach is illustrated in Figure 5. Our method cal-
culates the Feature Maps Covariance Descriptor (FMCD) [TA16]
on each depth-buffer image rendered for a given 3D model.

(© 2016 The Author(s)
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Figure 5: Overview for DB-FMCD-FUL-LCDR Team. The overview of feature extraction process based on the feature map covariance

descriptor.

As a pre-processing step, to remove the arbitrariness of position-
ing and scale for the 3D model, we translate the center of the 3D
model to the origin and then normalize the size of the 3D model to
the unit sphere. In addition, for the perturbed data set, we normalize
the rotation of the 3D model by using Point SVD [TA09].

After the normalization, we render depth-buffer images with
224 x 224 resolution from 38-vertices on the unit geodesic sphere
arranged as to enclose the 3D model.

We obtain an effective feature vector of the 3D model by extract-
ing the FMCD from each depth-buffer image. FMCD comprises
the covariance of convolutional layer feature maps on the CNN.
We consider the d feature maps of size w x h outputted from the
[-th convolutional layer to be the d dimensional local features of
n=wxhpoints. Let F = [f|,....f;] € RY*" denote the set of lo-
cal features. To obtain a feature vector of a depth-buffer image, we
calculate covariance matrix of the local features

1 & T
Z(fi —m)(fi —m) s

n—1.5

C=

where m is the mean of the local features.

The covariance matrix lies not on the Euclidean space, but on
the Riemannian manifold of symmetric positive semi-define matri-
ces. To solve this problem, we project the covariance matrix onto a
point in the Euclidean space using the mapping method proposed
by Pennec et al. [PFA06].

The mapping method first projects the covariance matrix onto the
Euclidean space that is tangent to the Riemannian manifold at the
tangency point P. The projected vector y of the covariance matrix
C is given by

1 1 1 1
y = logp(C) = P2 log(P~2CP ™ 2)P?2,

where log(-) is the matrix logarithm operator. The mapping method
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extracts the orthonormal coordinates of the projected vector that are
given by the following vector operator

vecp(y) = vecy (P~ : yP~ : ),

where [ is the identity matrix, and the vector operator at identity is
defined as

.
vees(y) = [y1,1V2012V2015...322V2)253 .. -}’d,d] .

In general, the identity matrix is chosen for P [TSCM13,SGMC14].
Thus, the vectorized covariance matrix is given by

¢ = vecy(log(C)).

The vector c is finally normalized with the signed square rooting
normalization and ¢, normalization.

In our implementation, we use the VGG-M network [CSVZ14]
for the pre-trained CNN. The final feature vector of each depth-
buffer image is obtained by concatenating the fully connected
layer activations and FMCD extracted from the first convolu-
tional layer. To compare two 3D models, we apply the Hungarian
method [Kuh55] to all pair Euclidean distances between their fea-
ture vectors. We output models by which the distance to the query
is less than 0.9. We call this run DB-FMCD-FUL.

Moreover, we calculate ranking scores by using the Locally Con-
strained Diffusion Ranking (LCDR) [LLL*15], and call this run
DB-FMCD-FUL-LCDR. In this run, we output models for which
the ranking score is more than 0.0001.

6. Results

The summary results for all participating methods are given in Ta-
ble 1. The corresponding precision-recall plots are given in Fig-
ure 6 for the normal dataset splits, and in Figure 7 for the perturbed
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Figure 6: Precision-recall plots for all participating teams and methods, on the normal dataset splits.
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Figure 7: Precision-recall plots for all participating teams and methods, on the perturbed dataset splits.
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micro macro
Dataset Rotation Method | P@N R@N F1@N mAP NDCG@N | P@N R@N Fl@N mAP NDCG@N
Su 0.770 0.770 0.764  0.873 0.899 0.571 0.625 0.575 0.817 0.880
Bai 0.706  0.695 0.689  0.825 0.896 0.444 0.531 0454 0.740 0.850
Testing Normal Li 0.508 0.868 0.582 0.829 0.904 0.147 0813 0201 0.711 0.846
Wang 0.718 0.350 0.391 0.823 0.886 0.313 0.536 0.2806 0.661 0.820
Tatsuma | 0.427 0.689 0472 0.728 0.875 0.154 0.730 0.203  0.596 0.806
Su 0.805 0.800 0.798 0.910 0.938 0.641 0671 0.642 0.879 0.920
Bai 0.747 0.743 0.736  0.872 0.929 0.504 0571 0516 0.817 0.889
Validation Normal Li 0.343 0924 0443 0.861 0.930 0.087 0.873 0.132 0.742 0.854
Wang 0.682 0.527 0.488 0.812 0.881 0.247 0.643 0266 0.575 0.712
Tatsuma | 0.306 0.763 0.378 0.722 0.886 0.096 0.828 0.140 0.601 0.801
Su 0939 0944 0941 0.964 0.923 0.909 0935 0921 0.964 0.947
Training Normal Be}i 0.841 0571 0.620 0.907 0.912 0.634 0452 0472 0.815 0.891
Li 0.827 0996 0.864  0.990 0.978 0.374 0997 0460 0.982 0.986
Wang 0.884 0260 0363 0917 0.891 0.586 0.497 0428 0.775 0.863
Su 0.632 0.613 0612 0.734 0.843 0405 0484 0416 0.662 0.793
Bai 0.678 0.667 0.661 0.811 0.889 0.414 0496 0423 0.730 0.843
Testing Perturbed Li 0.467 0.789 0.534 0.749 0.865 0.134 0714 0.182 0.579 0.767
Wang 0.486 0.212 0.246  0.600 0.776 0.187 0319 0.163 0.478 0.695
Tatsuma | 0.372 0.622 0413 0.638 0.838 0.126  0.657 0.166  0.493 0.743
Su 0.691 0.671 0.673 0.813 0.894 0444 0516 0456 0.764 0.853
Bai 0.717 0.712 0.706  0.857 0.921 0.472 0530 0481 0.803 0.878
Validation | Perturbed Li 0.327 0.884 0423 0.776 0.891 0.083 0.840 0.126  0.600 0.775
Wang 0.499 0346 0336 0.571 0.736 0.162 0413 0.167 0.292 0.498
Tatsuma | 0.255 0.731 0.332  0.651 0.853 0.076 0.779 0.114  0.509 0.743
Su 0.562 0.529 0.540 0.608 0.737 0.403 0368 0376 0.529 0.672
Training Perturbed Bai 0.832 0.691 0.717 0.898 0.910 0.623 0544 0.526 0.804 0.888
Li 0.830 0.998 0.867 0.991 0.980 0.375 0996 0461 0979 0.984
Wang 0.726  0.192 0.282 0.763 0.801 0.389 0.271 0.254 0.486 0.658

Table 1: Summary table of evaluation metrics for all participating teams and methods, on all competition dataset splits.

micro + macro average
Rotation Method P@N R@N Fl1@N mAP NDCG@N
Su 0.671 0.698 0.669  0.845 0.890
Bai 0.575 0.613 0.572  0.783 0.873
Normal Li 0.328  0.841 0.392  0.770 0.875
Wang 0.516  0.443 0.338 0.742 0.853
Tatsuma | 0.290  0.709 0.338 0.662 0.841
Bai 0.546 0.581 0.542 0.770 0.866
Su 0.519 0.549 0.514  0.698 0.818
Perturbed Li 0.301  0.751 0.358 0.664 0.816
Wang 0.337  0.265 0.205 0.539 0.736
Tatsuma | 0.249  0.640 0.290 0.566 0.791

Table 2: Participating methods ranked on normal and perturbed
test datasets. The rank is computed by the average of the micro and
macro mAP.
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dataset splits. We can get several observations from the summary
evaluation metrics.

Firstly, all participating teams adopt projection-based ap-
proaches, i.e., they render 3D meshes into RGB images or depth
images and then make the comparison over renderings. In addition,
deep learning methods are used by all teams to extract strong image
features. Clearly, shape retrieval is benefiting from the development
of computer vision techniques, in particular, the recent progress of
deep learning methods.

Secondly, the overall retrieval performance on the normal test
dataset as measured by micro-averaged mAP and NDCG values is
fairly high (in the 70-80% range for mAP and in the high 80% to
90% range for NDCG). The mAP measure is highly correlated with
the AUC giving a sense of the area under the precision-recall curve
for each method’s chosen retrieval list length. Similarly, NDCG
evaluates the overall relevance ranking of the retrieved model list
against an ideal ranking of the same retrieved list. All methods per-
form well when judged on the chosen retrieval list lengths. How-
ever, the methods have very different trade offs of performance
when we consider precision and recall. For example, Li have the



M. Savva, F. Yu, H. Su et al. / SHREC’16 Track: Large-Scale 3D Shape Retrieval from ShapeNet Core55

highest R@N value but a fairly low P@N value, whereas Wang
have a high P@N value and significantly lower R@N value. Other
methods are more balanced in precision and recall.

When using macro-averaging instead, we no longer adjust for
class sizes, thus giving proportionally more weight to synsets with
fewer models. The same relative patterns between methods as ob-
served in micro-averaging hold with macro-averaging as well, but
the overall performance for all methods is significantly lower, as
expected (F1@N scores drop from a high in the 70% range to a
high in the 50% range).

The performance on the normal validation set is similar and gen-
erally a bit higher than the test set, as expected. The performance of
the methods on the training set indicates that most likely Su and Li
are starting to be data-starved and perhaps over-fitting (most evalu-
ation metrics are in the mid 90% range). Other methods have lower
metrics on training indicating that they could perhaps still extract
more utility out of the data.

When contrasting the normal dataset with the perturbed dataset
we see that, as expected, there is a significant drop in performance
for all methods, except for Bai which in general experience a much
smaller drop. Overall, Bai seem to have the best performance on the
perturbed dataset, very likely due to the views uniformly sampled
on a sphere.

Interestingly, for the perturbed datasets, validation performance
is lower than test performance, and only Li seem to be fully data-
starved and overfitting in the training set performance. Other meth-
ods still seem to have significant room to improve even in the train-
ing set for the perturbed data. This suggests that better ways of
handling unknown orientations in the 3D models might be benefi-
cial.

We also see two different ways to handle subcategories. Su trains
separate models for categories and subcategories, while Li tries to
model them jointly. In our benchmark, only NDCG considers sub-
categories. From Table 1, in micro evaluation, Li has better scores
than Su in NDCG, despite the aforementioned overfitting problem.
It indicates that the joint training may be better in modeling subcat-
egories.

Overall, deep learning models achieve good performance in this
competition. Projection-based inputs are used in all of the submis-
sions, because it is easy to make use of additional image data to
help learn features for 3D shapes. Because of this, the models are
based on image classification models and they are not built from
scratch for the 3D problems. In the case of unknown rotations, it is
helpful to sample views on a sphere instead of circle (as indicated
by the advantage of the Bai team’s approach over others in the per-
turbed data. If subcategories are considered, it is potentially bet-
ter to model category and subcategories jointly. As the projection-
based models are popular in this competition, we hope to see ex-
ploration into a broader variety of models in the future.

7. Conclusion

In this paper, we compared several methods for 3D model retrieval
on a new large-scale dataset of 3D models. All methods use some

form of neural network architecture and the performance on a con-
sistently aligned version of the dataset is fairly high. In contrast,
there is space for improvement when handling models with un-
known orientations.

The findings of the competition demonstrate that view-based
methods leveraging recent advances in deep learning can provide
very strong performance in 3D shape retrieval tasks. Furthermore,
fine-tuning neural networks that were originally trained on exter-
nal image datasets seems to be another common theme in partic-
ipant methods. However, the sensitivity of view-based methods to
consistent model orientations was evident in the drastically lower
performance on a dataset with random model orientations. Future
work might investigate methods for improving performance when
the consistent orientation assumption cannot be made. Hybrid ap-
proaches integrating view-based and geometry-based approaches
are another interesting avenue for future research.
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