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Scene Text Recognition using Similarity and a Lexicon
with Sparse Belief Propagation

Jerod J. Weinman, Member, |IEEE, Erik Learned-Miller, Member, IEEE, Allen R. Hanson Member, IEEE

Abstract —Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and store fronts. Relative to document
recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve
this problem is frequently ignored or used sequentially. Similarity between character images is often overlooked as useful information. Because of
language priors, a recognizer may assign different labels to identical characters. Directly comparing characters to each other, rather than only a model,
helps ensure that similar instances receive the same label. Lexicons improve recognition accuracy but are used post hocWe introduce a probabilistic
model for STR that integrates similarity, language properties, and lexical decision. Inference is accelerated with sparse belief propagation, a bottom-up
method for shortening messages by reducing the dependency between weakly supported hypotheses. By fusing information sources in one model,
we eliminate unrecoverable errors that result from sequential processing, improving accuracy. In experimental results recognizing text from images of
signs in outdoor scenes, incorporating similarity reduces character recognition error by 19%, the lexicon reduces word recognition error by 35%, and
sparse belief propagation reduces the lexicon words considered by 99.9% with a 12X speedup and no loss in accuracy.

Index Terms —Scene text recognition, optical character recognition, conditional random elds, factor graphs, graphical models, | exicon, language
model, similarity, belief propagation, sparse belief propagation

F

1 INTRODUCTION reading process, we require a computational model that can
combine factors in a uni ed framework.

THE problem of optical character recognition (OCR), or the In this paper, we propose a probabilistic graphical model

ref:ogmtlon Of_ text in machine-printed documents_, ha.lsfgr STR that brings together bottom-up and top-down infor-
long history and is one of the most successful applications_.. ) . S
. . . : .mation as well local and long-distance relationships into a

of computer vision, image processing, and machine learnin o S
: . ..smgle elegant framework. In addition to individual chdesc
techniques. In this paper, we focus on scene text recognitio

(STR), the recognition of text anywhere in the environmeng PP e arance our model integrateappearance similarityone

: : underused source of information, with local language stias
such as on store fronts, traf c signs, movie marquees, of : . : —
.and a lexicon in a uni ed probabilistic framework to reduce

parade banners. While super cially similar to OCR, STR i3 : : .
o ; alse matches—errors in which the different characters are
signi cantly more challenging because of extreme font vari

. . o o given the same label—by a factor of four and improve overall
ability, uncontrolled viewing conditions, and minimal Guage .
: o LT accuracy by greatly reducing word error. The model adapts
context. Dif cult viewing angles, shadows, occlusionsjqure

fonts, and lack of language context are all problems thatemal?néginfgf d F\)/\:EZ?\nrte:dii SSF?E:’:L S@mgealgg Les)j; aﬁi tggﬁzy,y
the typical STR problem sign cantly more dif cult than a g signs, g g

. e knowledge to increase robustness.
straightforward OCR application. The paper is organized as follows. In the remainder of this
In fact, while state-of-the-art OCR systems typically avki pap 9 |

o ection, we give additional background on using similarit
character recognition rates over 99% on clean documeretg, tﬁ : 9 . grou 9 y
and lexicons in text recognition and discuss why sparsebeli

fail catastrophically on STR problems. Humans of courseeha ropagation is important. The next section brie y introdac

no trouble reading text in the environment under normal Coﬁie discriminative probabilistic framework in terms of tiac

ditions. One reason for the gap between human and machmgphs_ Section 3 describes the particular form and femture

erformance in STR problems could be that people are ableg{o
P P . : peop of our model for scene text recognition. We describe the
apply many more sources of information to the problem than . . .
rticulars and advantages of sparse belief propagation fo

. o X al
current automated techniques. This is not unique to charadla" . . . . _
" oo . : ef cient approximate inference in Section 4. Our experinan
recognition, of course; using more information sources Ih : . .
- : results on scene text images are presented in Section 5, and
approaches to many computer vision problems should impraove ; )
: : we conclude in Section 6.
results. Because several sources of information factorthr
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F D@ in the rst part of this paper a model that incorporates all of
Information ‘ Result these important information sources [1].

Kumar and Hebert [7] have used such a strategy for the
general image labeling problem, associating image sitéds wi
particular labels and biasing the eventual classication b
measuring the similarity of neighboring image regions. Our
approach broadens this to incorporate all pairs of chamcte

Fig. 1. A query image (top) is interpreted with varying amounts 4t must be classi ed, not just neighboring characters.
of image and linguistic information. Only when uni ed with simi -

larity information is the other contextual information constrained 1.2 |exicon
to global consistency.

Appearance Fleet
Appearance, Language Fteat
Appearance, Language, Similarity Fleet
Similarity !  Appearance, LanguageFteet

Higher-level information, such as a lexicon, can also help
improve recognition. When images have low-resolution or

N contain uncommon fonts, a lexicon can inform an otherwise
In an effort to make character recognition more robust {greliable character recognizer. Humans are more reliable

font variations or noise, recent advances in OCR performang; reading characters when they are present in words, or
have exploited the length of documents to leverage m“mpﬂ)%eudo-words [8], motivating us to consider how this infor-

appearances of the same character. Hong and Hull [3] cluiesiion may be incorporated in the recognition process. The
word images and then label the clusters, rather than indalid ggyjiest uni cation of character confusion likelihoodsthvia

yvords. Similarly, Breuel learns a probability of whetherotw lexicon constraint is by Bledsoe and Browning [9]. Device-
images contain the same character and uses the probabdifcic character confusion likelihoods are combined with
to cluster individual characters [4], with subsequent Wus . unigram probabilities to nd the most likely dictionar
labeling (i.e., by voting) and nearest neighbor (most il \yorg given the OCR output. One major drawback is that the
classi cation [5]. These methods capitalize on the idea @mputational load is linear in the size of the lexicon. v
similarity, that characters and words of similar appeaganesolution document images, Jacobs et al. [10] have imgrove
should be given the same label. However, they suffer frogycyracy by forcing character parses to form words drawn
the drawback that there is no feedback between the labelipgy, a lexicon, but this technique will not be able to corhect
and clustering process. Hobby and Ho [6] ameliorate thigcognize non-lexicon words. In the STR problem, non-words
somewhat by purging outliers from_a cluster and matchinge quite common due to the abundance of proper names.
them to other clusters where possible. These processes afkelated work on specialized models for scene text recogni-
solve the clustering and recognition problems in separaign either ignores helpful contextual and lexical infotioa
stages, making it impossible to recover from errors in thg incorporates them in amad hoc fashion. For instance,
clustering stage. Furthermore, they rely on having hurglreger isolated character recognition, Thillou et al. [1Hsp
or thousands of characters in each recognition problemago tBrocess results by applying argram model to then-best
clustering is practical, making them impractical for re®li |ist of characters. Beaufort and and Mancas-Thillou [12]
short text segments like those encountered in the STR pmblesim"a”y use a lexicon in a post-processing stage with a
Prior to our recent work [1], thedissimilarity between njte state machine. Linguistic processing is divorcednfro
character images had not been used as evideg@@stgiving recognition in both cases by ignoring the relative proligbil
them the same label, but in many circumstances this too is@characters based on their appearance. Alternativelgngh
reasonable approach. Previous clustering-based metmdgls @nd Chang [13] have handled this by explicitly including a
ensure that all cluster members are given the same labgl; theical decision variable in a probabilistic model. Howeve
do not prevent different clusters from being assigned theesatheir model does not include local language propertiesh suc
label. as bigrams, for the case when a word is not in the lexicon.
Consider the example in Figure 1. The top row of text i$ve nd both are important for recognition accuracy.
the result of reading the sign using only basic information As indicated above, one practical issue with using a lexicon
about character images, and the lowerdagell) is mistaken is the time it takes to examine candidate words in a large
for an uppercase (eyg. The next result combines the imagdexicon. Lucas [14] addresses this issue by reusing compu-
information with some basic local language informationisThtation in a trie-formatted lexicon. Another approach, take
does not correct the error but in fact introduces new eriidie. by Schambach [15], is to eliminate words from consideration
image and language information is based on local context dpased on the low probability of their constituent character
do not require any global consistency. By factoring in chtma ~ We present an addition to our discriminative model that
similarity information in the third line, the errors are oected; incorporates a bias for strings from a lexicon [2]. Modelihg
the twoe characters that appear the same are given the sadmdcal decision process allows word predictions to conoenfr
label, while thd andt characters of dissimilar appearance areutside the lexicon, based on the evidence and a prior bias fo
given different labels. In contrast, using similarity infmation (or against) lexicon words. Our model allows ef cient appro
rst to determine which characters are the same and thenate inference schemes by eliminating the need to explicit
identifying character clusters, as shown in the last limeesd consider all possible strings, only evaluating entriesnfrine
not perform as well as a unied model. This is particularlyexicon. Notably, we can speed this process even further by
true when the number of characters is very small. We preseplying an approximate “sparse inference” technique.
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1.3 Sparse Belief Propagation and using the point approximatign( jD;l)= d b so

Belief propagation (BP) is a popular and simple method fépat the integral (1) becomes

learning and prediction in probabilistic graphical moddlke

algorithm's message passing operations require sums beer t piyix;D;1) p yixBl : 3)
domain of functions (factors) measuring local compatiili

between assigned labels. Since the complexity of the sumThe probabilityp(yjx; ;) is the typical undirected graph-

functions, it is typically only used with factors of two orpositions ofy, so thatyc gives the values of the subset.
three unknowns. Adding a lexicon to our model introduceBhe conditional probability is expressed as a product oélloc
factors over several more unknowns—the characters of factors,

entire word. Without simpli cation and approximation, us- . 1
ing belief propagation would be untenable. Fortunately-no Plyix: 1)
lexicon information allows us to make reasonable predictio

about which characters are not possible candidates. We us®ereZ(x; ) is the observation-dependent normalizing factor
the sparse belief propagation algorithm proposed by Pal etsuring the expression is a proper probability distrduti

al. [16] toward this end. By eliminating unlikely character The non-negative factoréc express the local compatibility
from consideration in messages passed between nodes @irong the unknowns igic and the observatior, andC is a
graphical model, we can drastically reduce the set of wordsllection of the subsets for indexing these factors. Taihic
that must be considered. Previous work by Coughlan atitkre are several categories of factors that are instadtiat
Shen [17] features an approach similar in spirit for paievisseveral times in the product (4). Each of these instantiatio
functions, but it has not been generalized to higher-ordwolves the same function, but accepts a different set of
functions, and it uses thresholds for sparsity that may natgumentsC. For example, the same character recognition
provide good approximations to the messages. Importantiynction is applied at many locations in the image.

sparse belief propagation doest completely drop characters

from consideration. Rather, it merely reduces the contxtu

dependence between characters when one of them has w&ak Inference

isnugp;%rttiot:]azed on other information. Further details a"®VThe index set€ induce a bipartite graph between the factors
' fc and the unknowng, as illustrated in Figure 2. When this

In summary, by fys!ng_the avallabl_e mfo_rmatlc_m sourceé, aph (not includingx and edges connected to it) is a tree,
such as character similarity and a lexicon, in a single mod . : .
xact inference may be performed efciently via the sum-

we improve overall accuracy and eliminate unrecoverab?e . . .
. . o f Igorithm [1 Iso known lief pr ioR)YB
errors that result from processing the information in safar product algorithm [19)], also known as belief propagatioR

Local information stored in the factors in uences the glbba
stages. : . ;

interpretation by passing messages between the factors and
nodes. Factors neighboring noden the graph are indexed
2 PROBABILISTIC FRAMEWORK by members of the sé¥l (i) = fC2 Cji 2 Cg. The node-to-

Graphical models of probability are a powerful tool forfaCtor messages have the form

describing and modeling the logical dependence of various _ = e
information sources and unknowns in a Bayesian framework. M) M COZNO(i)nCrrbq () )
We employ a discriminative undirected graphical model [18]

for predicting character identities. the product of all the incoming messages to a node from
Let x be an input image representation ane yi1y>:::yn other neighboring factors. The resulting functional mgssa

be the string of characters contained in the image, tak@nnormalized (sums to 1 ovey;) for numerical stability.

from an alphabeY. Letting | represent our information andThe factor-to-node messages combine the local information

assumptions about the problem, we frame the task of readiggpressed in the factor and the current messages from is oth
text in images as an inference problem—usingnd some arguments,

training dataD—over a model or parameter spaQe .
_ z _ . me ()= a feyeix) O mpc(y)): (6)
p(yix;D;1)= p(yix; ;)p( iD;nd : (1) Yonfi j2Cnfig

= mc(zjc fc(yeix); 4)

Note we have assumed that (i) given a prediction model Note that the summation is taken over all values of the nodes
the training dataD do not reveal anything additional aboutn the setCnfig.

y, and (ii) given the training datd, an additional image If the graph has cycles, these messages are iterativelggass
x does not give any information about the prediction modehtil convergence, which is not guaranteed but empirically
. Evaluating such an integral is non-trivial, so we take thtends to give reasonable results in many applications.t@rea
standard approach of nding the most likely model detail about factor graphs and inference may be found in an
b — article by Kschischang et al. [19]. We add more about a sparse

= argmaxp( D) ) version of BP for accelerating inference in Section 4.
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2.2 Training

To learn from training data, the probability distributiof) (is
parameterized by, with each factorfc having some subset of
the parameters,c, as gfgumentg. Given a set of independent,
labeled example® = y®:x® o the parameters may be
estimated by maximizing the posterior probabilgy jD;l).
The optimization (2) is the usual maximwsposteriori(MAP)
estimation with some parameter prigr{ j1) [18]. Using
Bayes' rule, the parameter posterior is

p( jD;lyp p( jl)?p y®jx®; 1 7)

where the product terms have the same model form (4). After
taking logarithms, the objective function is given by

L( ;D)= logp( j :I)+
akdcocm log fe yék);x(k); ¢ logz x®;

8)

where p( j ;1) is a prior on the parameters with condi-
tioning parameters and informationl. The set of factor<
depends on how many characters there are in the observatio
and is thus indexed by the particular examkléVhen fc is
log-linear in ¢ (as all of the learned factors we employ are)
and the log prior is convex, the objectite( ;D) is convex,
and a global optimum can easily be found.

Because it is a combinatorial sum, the normalization term
Z(x; ) is generally intractable. To simplify training, we use
a piecewise approximation [20], which changefom a sum Fig. 2. Factor graphs for inferring characters y from a given
over ally to a product of local sums over the terms for eaciage X. The solid (black) factors capture relationships between
factor. Thus, the log term in (8) is replaced by the upperthe image and character identity (IA). Hatched (blue) factors

bound& c,clogZc where between neighboring ys capture language information including
o bigrams, (I B), and letter case (IC). Shaded (red) factors among

Zc (% )= a felye;x; c): 9 ys account for similarities between characters in X for jointly

ye labeling the string (IS). Cross-hatched (magenta) factors can

Since the factors are local and typically include only a $malonstrain portions of y to be drawn from a lexicon, (I'V), while the
set of unknowns, sums over the set of the valuesyfomare tiled (cyan) factors capture the bias for lexicon words, (I I-). ToP:
practical to compute. Replacing ldgwith an upper bound Model using pairwise similarity comparisons. BoTTOM: Model
means we are optimizing a tractable lower bound on the lggorporating a lexicon and lexical decision unknowns wa and
posterior probabilityl ( ;D). wg for two words.

3 MARKOV MODELS FOR RECOGNITION _ . . . ,
_ o _ _ __exceptions to this certainly exist, our database of sigrs ha
Using the probabilistic framework described in the Presiolynly a few that stretch the assumption, and it is not dif cult

section involves de ning parameterized factors for theadat, imagine introducing a factor for deciding whether two
and the labels. For this recognition problem, model inpyharacters or words are in the same font. While Assumption 2
will be size-normalized character images and the outputi$ not the most general, with high-resolution digital caaser

the predicted character labels. In this section we willioatl adequately lit scenes and an area of interest that occupies
the details of our model, including the form of the input andys cient area on the sensor, it is reasonable. Note that it
features, the relevant information being used, and thécpdat  jpes not require a binary image, only a rough localization

factors that are learned to form the model. of each character. Furthermore, with an automated version
Our model makes the following assumptions: of Niblack's binarization algorithm [21], we can accuratel
1) For each sign, the input is all of the same font segment over 96% of characters in our evaluation. Finadly, a

2) Characters have been segmented (that is, the coordinai@sption 3 is not overly restrictive since word boundarias ¢
of their bounding boxes are known), but not binarizedmostly be found by modeling intra- and inter-word character
3) Word boundaries are known spacings. These assumptions are all reasonable for theprob
Our conditioning information consists of these in addition towe are trying to solve, namely, reading short amounts of text
our other basic information. Assumption 1 is especially- reéound on signs in images of scenes.
sonable for signs containing small amounts of text. Althoug In the remainder of this section we build up our model
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/// // Gaussian blur and downsampling. This adds a slight amount of

44 s insensitivity to feature location for different fonts butostly
serves to reduce the size of the feature vector used as imput t
the model. All of the downsized responses are collected into
a single feature vector for each charackgra function of the
original imagex.

Given a relationship between the identity of the character
from its constituent factors, based on the assumptionsdlistand the lter responses, this information is denotédecause
above. These will re ect several useful sources of infoiprat it is based on the appearance of the character image. We then
namely: associate character classes with these Itered images bg-a |

character appearanceifat doAs, Bs, etc., tend to look linear factor
like?)

local language propertiesvbat letters tend to follow

other letters? where do we expect capital lett¢rs? The same appearance parameters are used for every character
character similarity Which characters look similar or so there is no dependence df on indexi.

different?)

lexicon (s this string more likely to belm or clm)? 3.2 Language Model

Each of these are combined effortlessly into a uni ed mod@gperties of the language are strong cues for recognizing
for character recognition with the basic form outlined iRnaracters in previously unseen fonts and under adverse con

Section 2. ditions; much previous work has made use of it in various

Eventually, we will want to compare the results of the modglays (see, e.g., [26]). We add simple linguistic properties
with various information sources (mathematically repme the model in the form of two information sources: character
as factors) included. Since we denote the assumptions bRrams and letter case.
information | that a particular modep yjx; ;1 employs, It is well known that the English lexicon employs certain
this is used to also indicate the information sources beseglu character juxtapositions more often than othé&tsggrams are
To this end, when a particular class of factors is used, &49., a widely-used general feature for character and handritin
for character appearance, we indicate this by conditiottieg recognition. Our model uses this informatio® via the log-
model on the corresponding “informatiom®. linear factors

The models resulting from the combination of the factors B ... B _ Bror.
we will de ne are shown in Figure 2. All of the various factor log fif' i3yi: = "y 1)
types may be combined in one model, but we show them \fherei and j are ordered, adjacent characters within a word.

two separate graphs for clarity. The top graph highlights thn this model, we do not distinguish letter case in the biggam
“‘adaptive” model that uses similarity between the charactgo the weights in B are tied across case (i.e.B(RA) =

images as part of the recognition process. The bottom graph(r; A= B(Ra)= B(r;a)).
demonstrates how other factors may be introduced to promoteprior knowledge of letter case with respect to words also
the recognition of strings as lexicon words. Details of eath proves important for accurate recognition in English. Imso
these factor types are given in the remainder of this sectiofonts, potentially confusable characters may have differe
cases (e.g.] and |, lowercaseell and uppercaseye re-
3.1 Appearance Model spectively). We can improve recognition accuracy in contex
The most obvious component of a recognition model involv&$cause English rarely switches case in the middle of the wor
relating character appearances to their identity. Gabtarsl Additionally, uppercase to lowercase transitions are comm
are an effective and widely used tool for feature extractigi the beginning of words, but the reverse is not. Note tfgit di
that decompose geometry into local orientation and scap [zcharacters have no case. This informatl6nis incorporated
Their success in handwriting recognition [23] and printeith the feature Welghsts

Fig. 3. An example training character with (left to right) real,
imaginary, and complex modulus Iter responses for one orien -
tation and scale.

log fA yi;x; A = Aw) R(X): (10)

B

character recognition [24] demonstrates their utility tors < °S yiy; same case
task. Using a minimally redundant design strategy [25],mkba  |og £C viyis © = @9 y;y; different case  (12)
of 18 Gabor lters spanning three scales (three full octaves . 3 0 otherwise

and six orientations (30increments from 0 to 150) is ) ) ] o

applied to the grayscale imageyielding complex coef cients Wheni and | are adjacent charactevsthin a word and

f that contain phase information. The real and ir'maginaryspartI (€ oy C = cu oy, lowercasey; uppercase
of the lter are even and odd functions, respectively. oghiy Yy, © = 0 otherwise,

Taking the complex modulus of the Iter outpuf$ provides (13)
phase invariance and makes the responses less sensitiverteni and j are the rst and second characters of a word,
translations of the input; see Figure 3. Practically, thiskes respectively. Thus, for this letter case modét, we have the
the Iter responses invariant to th@olarity of the text (white- parameters®= &S &4 Y . Note that the functions
on-black versus black-on-white). After Itering, the cofep (12) and (13) have the same general log-linear form as (10)
modulus of each response image is downsized by applyinguad (11), but we present their more compact, tied form here.
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Basis Functions Learned Function 3.4 Lexicon Model

A lexicon is a useful source of high level information that

0 can be applied to recognition. We propose another set of

- factors for our model that incorporates lexicon informatio

oo T 5 First, we add auxiliary unknowns that represent lexical de-
e cisions. We then add two new factors involving these and

—-In k N the character unknowns. The rst factor is simply a bias

"o Ink-2) i determining how likely it isa priori for a given string to

1

T S ey — 0 05 s be from the lexicon. The second is a simple binary function

. 1 :
Distance k Distance k that connects all the constituent characters of a word to the

Fig. 4. Similarity basis functions and the learned compatibility lexical indicator. Although this factor is simple in appaace,

for the distance between different images of the same character; ? naive mplementauongvoul(;j presen.t a gregtfdeal of dlt)m:]l d
the coef cients are S— 0:9728 93191 6:9280 . The or common message-nase approxmate Inference methods,

dotted line in the right-hand gure shows the crossover from such as BP,' Fortunately, the form Of_thls partlculqr fl_Jm:t'o_

reward to penalty, which occurs at a vector angle of about 37 . makes _the |m_plemer_1tat|0n much easier, _though still "”E‘f?“ I
the lexicon size. This can be problematic when the lexicon

is large, therefore we use a sparse message passing scheme

for a lexical model that avoids most of the overhead required

with no loss of accuracy on our data. In the remainder of

An important, underused source of information for recdgnit thjs section, we introduce the new lexical factors, follavsy

is the similarity among the character images themselveste specialized message passing scheme for inference in the
two character images that look the same should rarely h&ulting model.

given different labels. Toward this end, we need a compariso
function for images. We have found the vector angle betwegm, 1 |exicon Factors
the concatenated real and imaginary parts

3.3 Similarity Model

To represent the lexical decision, we introduce auxiliany u
fio: Af) A(f) (14 knqwnsw: WaWBWC & : that,_ fpr each wprd in thg string,
indicateswy 2 f 0;1g whether it is present in the lexicdn For

of ltered image vectors; andf; for each character to be anotational clarity, we use numerical indices for the chemac

robust indicator of image discrepancies. We use unknownsy and alphabetical indices for the lexical/word
0 50 unknownsw. Let C be the set of unknowns relating to a single
kij = 1 i ] (15) word unit; such a set will contain the in_dices of some letters

o0 f? fo, y and one entry fronw. The factor relating the lexicon, the

predicted string, and the lexical decision, is a simple lyina

as a distance measure, which has rajfgg]. If r is the angle function

between the two vector§ andf{ , the distance is related by Wo .o n_ 0 we=1"yc6d
r = 1 arccosk. When the distance is small the characters fc (Yo,we) = 1 otherwise,

are very similar, but when large they are dissimilar. Usimg t
information S, we add the factors

(18)

where we have writtenvc to indicate the value of the sole
index of w present inC. Thus, the corresponding factor (18)

log fi? Vi Vi X; S = d(yi;yj) S Fij (X); (16) is zero only wherwc indicates the string is a word byt
is not found in the lexicon. This tautological factor simply
whered( ; ) is the Kronecker delta, and represents the proposition
Fij(x) = In(kij)) In(2 ki) 1 (17) we=1) yc2L (19)

is a vector of basis functions that transform the distakge and would not be much use were it not for the fact the
between two character images xn The rst two functions Valueé ofwe is unknown. The indicatowc could help control
each have a distance range boundary as an asymptote, %tﬁgr aspects of _mterpretathn in the model. For instanee,
the last is a bias term. Thus, the rst weight in the paramet8#ght want to disable the in uence of the local language
vector S establishes a high compatibility reward for smal?omp‘f"t'lb'_l't!es_ wheme = 1; no matter how unlikely the word
distances, the second weight a low compatibility penalty f(_yukkyls ,itisin the Iexu?on and sh_o_uld not be discounted for
larger distances, and the bias helps (in conjunction with tfS Unusual bigrams during recognition.

rst two) establish the crossover point. This is qualitetiy The. other new factor is a simple tgrm biasing the preference
similar to the inverse of the sigmoid function with a scalefPr strings to be drawn from the lexicon

range, except t_hat it is no Ionger_symmetrlc about the zero- log ka wWeas = (1 w)g (20)
crossing; see Figure 4. Once again, we note that the function

(16) has the genere}l log-linear form E&é, but we present its 1. Under a bigram model trained on a corpus of English textwbed is
more compact version here. actually the least likely from a large lexicon.



WEINMAN ET AL.: SCENE TEXT RECOGNITION USING SIMILARITY AND A LEXICON WITH SPARSE BELIEF PROPAGATION 7

This function also has a general log-linear form, but wiom all values ofycrsy to the portion of the lexicon that
present here its interpretable compact form, so that ttglesinagrees with the argument valye whenwg = 1. Furthermore,
parameterg- can be thought of as penalty for non-lexicowhenwg = 0, the factor is always one. In the last line, we
predictions. may push the sums over each character vaiiend y; in
Introducing these two new classes of factd® and f- against the corresponding messages. Because these nsessage
will be re ected by conditioning on informatiomV and I-. are normalized to sum to one in practice, these terms are
The factor graph for a model including these factors appeai®pped, leaving us with a relatively simple sum over a subse
in the bottom of Figure 2. In the next section, we describef lexicon terms. Calculating the message to character 5 for
more about how the two new compatibility functions (18) andll values ofys involves a sum over all lexicon words of
(20) affect inference in the model and introduce the aptiica the appropriate length. Messages to other character nodes
of a sparse inference technique for making predictionsgusiwill have the same form, with the number of node-to-factor
loopy BP. messages in the product depending on the length of the word.
Only two values need to be computed for messages from
the factor to the word indicatowg. When the string is not
a lexicon word g = 0), the value of the factor is always
Inference, even approximate inference, in the model pro; and the sums over the remaining unknowns in (6) may be
posed above might be computationally taxing in general. Th@shed inside the product against their correspondingagess
sum-product algorithm involves computing local marginalgerms. This results in a product of node-to-factor message
of factors, which is generally much easier than the mogms. Since the messages are normalized, the product (and
global marginalization desired. However, the complexify ahus the message value) is simply a constant 1.
marginalizing the lexicon word factors¥ growsexponentially When the string is a lexicon woravg = 1), the product of
with the length of the word. For instance, with a six letter/o messages must only be evaluated at lexicon strings because
in a 62 character alphabet, each iteration of message passif is zero when the string is not in the lexicon:
would require a sum over 62r nearly 57billion strings. - 1)= & W (Ve Ve Vo W = 1
Fortunately, the on/off “gating” behavior of the functiéW Mer 8(Ws = 1= aygypra1 fe (ys’ye’w’w.B =D
allows us to take advantage of its special form. The effect is Mt ¢ (¥s) Mer ¢ (ye) Mn ¢ (¥7):
that whenwe = 1, the “product” in the sum-product equationy SpaRSE BELIEF PROPAGATION

only needs to be S“.”‘T“ed over words in the I_eX|con. For trA(?though the sums for belief propagation (21) and (22) have
case whemwc = 0, it is summed over all strings, but the

; . complexity linear in the size of the lexicon, they can still
sums over constituent characters become independent. Tg{
e

B
means we can make the calculation a much more efci ation is very important for accurate recognition, so we use

sent a computational drag in practice. The top-dowrrinfo
product of sums. Thl.JS’ thg SpeCI?.l form (18) .makes tI}ebottom-up scheme to speed the recognition process. Pal et
inference calculation linear in the size of the lexicon oe th

L . l. [16] propose a probabilistically motivated sparse riefee
character_ alphabet, rather thgn exponential in word sm_e_. T;ethod that simpli es the message passing calculations. Th
computational expense of a six letter word drops from billio

) . . . central idea is to reduce the number of summands in such
of possible strings to just a few thousand lexicon words. factor-to-node messages by creating zeros in the nodastosf
As a concrete example, consider the three letter weygly,

ith lexical decisi K in the riaht-hand - ; messages.
with lexica ECISION UNKNOWMg 1N the right-hand portion of  x every node, a belief state, or local approximate marginal
the bottom graph in Figure 2. The general form of a factog

3.5 Inference with the Lexicon Factors

(22)

, “““probability, is represented by the normalized product osme
to-node message (cf. Eq. 6) is a product of the factor tim ages to that node from its adjacent factors

the messages to that factor from all its arguments except the -
message recipient. This product is then summed over alethos bi(y) b O moi(y): (23)
arguments leaving a function whose value is dependent on C2N (D)

the recipient node. To calculate the message from a lexicDring each iteration of loopy BP, each factor combines
factor to the characteys, we may split the marginalization information from its adjacent node arguments and returns
(the summation of all unknowns excep) into two cases, updates to them. As described above, the update for theokexic
one where the string is a lexicon word and another whenféctor involves a sum over every word in the lexicon (of the
is not: the two values fowg. For the lexicon factor we are appropriate length), even those words containing chasacte
calling C, the specialized form of the message fr@o the with low probabilities. We may therefore desire to elimmat

characterys has the form these unlikely lexicon words from consideration during the
. W belief update stage. The well-motivated approach givendly P

Mer 5(Y5) = AtyeyeyraLiveg Tc (Y51 Ye:Y7:We = 1) et al. is to revise the local beliefs such that the largestbem
me ¢ (Vo) Mn c(y7)Mer c(Wg = 1) + (21) of the lowest probability states are given zero probability

subject to a constraint on the divergence of the sparsefbelie
from the original. In other words, consider the fewest numbe
We rst separate the sums for the two valueswgf. Because of characters while staying close to the original beliefs1-E
the factor f(‘é\’ (yc;we) is zero whenever the argumewt is ploying this strategy, we expect to greatly reduce the arhoun
not in the lexicon butwc = 1, the sum can be restrictedof lexicon scans for a given query.

mg; c(wg = 0):
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If bj represents the marginal belief for nodim the graph, m

our goal is to compress this distribution hﬁsuch that it has

the maximum number of zero entries, subject to a divergenk€ig. 5. Examples of sign evaluation data illustrating (left-right)

constraint: regular fonts similar to those found in documents, unusual

regular fonts, and custom irregular fonts.

maximize &y,,v, d(bX(yi);0) (24)
subject to Kbk by) e
node's beliefs, and this is constantly updated as inforonati
o b2(y) propagates through the graph.
KL bPkbi = & bi(y)log, = (25)
yi2Yi ) 5 EXPERIMENTS

is the Kullback-Leibler divergence between the originatlanin this section we present experimental validation of our
compressed beliefs. This can easily be accomplished fopdel on sign images containing previously unseen fonts and
each node in timeD(jYijlogjY;j) by sorting the beliefs and non-lexicon words. The alphabet of characters recogni¥ed,
calculating the log cumulant. Once the sparse befigis consists of 26 lowercase, 26 uppercase, and the 10 digits (62
calculated, the messages to the factoisc (cf. Eq. (5) ) are total).
compressed to respect the sparsitybdaind re-normalized. We nd that adding similarity reduces character recogmitio
These sparse node-to-factor messages are then subsgquef®r by 19%, whereas using it in a separate stage harms
used to calculate the reverse factor-to-node messages. ®heuracy. Adding the lexicon reduces word recognitionrerro
practical effect of sparse BP is that certain characters dn¢ 35%. Using sparse BP eliminates 99.9% of the lexicon,
temporarily eliminated from consideration. For instanttey  giving a 12X speedup with no loss in accuracy.
visual and contextual evidence fgr to be at may be so  First we describe the data used in our experiments for
low that it can be assigned a zero belief without greatjoth training and testing, and then the procedures used to
changing the current local marginal. When this happeri§ain and evaluate the models. The section concludes wéth th
we may eliminate summands for any word whose secofdperimental results and a subsequent analysis and discuss
character ig in the messages (21) and (22). Taken together,
pruning highly unlikely characters reduces the lexiconamd>5.1 Experimental Data
consideration from tens of thousands of words to just a feBecause we have such a rich model involving many infor-
dramatically accelerating message passing-based imferen mation sources, there are many corresponding data sets for
In the original work on sparse BP, only a linear chaitraining, including character images, English text cogpand
graph was used. This topology permits exact inference aadexicon. We describe these after detailing the nature @f th
requires messages only be passed once in each directias. Hefimary evaluation data.
a loopy variant is used. We note that depending on the order Sign Evaluation Data: Our evaluation data comes from
of operations, characters need not be strictly eliminatethf pictures of signs captured around a downtown area. There
possibility when a sparsifying step is taken. Speci caify, are 95 text regions (areas with the same font) totaling 215
outgoing messages to factors are made sparse in agreem@ntis with 1,209 characters. Many signs have regular fonts
with the compressed disributids®, this only means that terms (that is, characters appear the same in all instances) that a
are dropped from the summation used to calculate messagesttaightforward, such as basic sans serif, and should by eas
other nodes. The return message is not sparse in general. Thecognized. Other signs contain regular fonts that areooust
using sparse methods to “eliminate” characters means oolyrarely seen in the course of typical document recognition
that we lose the in uence of the dropped character hypothegeinally, there are a few signs with custom irregular fonts,
upon their logically dependent nodes. The nal belief at where repeated characters have a different appearancge The
node (from which predictions are made) is calculated usieg tpose the greatest challenge to the premise that similzufioy-i
most recent incoming messages from the factors, which dre neation is useful. Examples of each of these three categories
generally sparse. Therefore we have not necessarily caetitare shown in Figure 5. The signs are imaged without extreme
to a mistaken elimination of correct character hypotheBes. perspective distortion—they are often roughly fronto-fata
fact, in some of our experiments, certain character hypethe Following the assumptions laid out in Section 3, we have
are restored as information propagates through the graph. annotated our evaluation data with the approximate bowgndin
The information-theoretic criterion for pruning statearsts boxes for the characters.
in contrast to that of Coughlan and Shen [17]. In their dymami  Synthetic Font Training Data: We generated images of
qguantization algorithm, states are eliminated by thredihgl each character in several commercially available fontagusi
the beliefsbi(y;)) e and restored by keeping statgs that GIMP2 Each image is 128 128 pixels with a font height of
have high factor valueféc (yc) e The former criterion may 100 pixels (an x-height of roughly 50 pixels). No anti-airas
not be stable when the marginal distributions are relatiagl, was used in the image synthesis and the bounding box of the
having many states with equally low probability. The lattér  character is centered in the windotv.
_terion may not accurately re ect information frqm_elsewﬁaer 2. GNU Image Manipulation Prograhtip/wawgimporg .
in the model. By contrast, the KL-divergence criterion @8suU 3 ront images and sign evaluation data are publicly availast
that a minimum total probability mass is maintained for eadtap:/imwww.cs.grinnell.edu/~weinman

where
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Text Corpora: A corpus of English text was acquiredf 49 million characters contains nearly 780,000 occureenc
from Project Gutenbefg—82 books including novels, non-of the bigramth . Rather than doing inference on the entire
ction, and reference for a total of more than 11 million werd chain of text with an exact method, we need only do inference
and 49 million characters (from our 62 character alphabet)once in a two-node chain fah and count it 780,000 times.

Lexicon: The lexicon we use is derived from SCOSVL The books were split into two sets of roughly equal size,
and contains 187,000 words including proper names, abbrewne for training and one for validation. The (case-insémit
ations, and contractions. Because our current model daes bigram counts were taken for each set, and the value of the
account for word frequency in its lexical bias, we only uskyperparametea for the Laplacian prior (cf. Eq. (26) ) that
those words in the list up to the 70th percentile of frequengyelds the highest likelihood on the validation set is the on
for our lexicon. used for optimizing the posteriors foP on the entire corpus.

In practice, we found that enabling the language model,
regardless of the value of the auxiliary word indicatersm-

. . _ - proved accuracy over disabling it whenever the correspandi
In this section we describe the prqcedure used for trainimy 8y, = 1. Our results re ect this aspect of the model.
evaluating our model. We rst outline the nature of the ollera Case model parameter§ use a uniform prior

model parameter training followed by details of training fo Similarity Model: Because the functiof® is one when-

each component of the model. The section concludes with,go jis two character arguments have different labels ind o
brief description of how the model is applied to the actugl,yise has a functional value parameterized By(displayed

image data for evaluation. in Figure 4), we may equivalently learn the parameters for a
. function fS that takes only a single argumepntwith a label
5.2.1 Model Training of Same or Different. The piecewise training approximation
The model parameters = q- are described above follows naturally because these charaaitesr
learned from the data outlined above. Typical parameteér egre completely decoupled from any related stream of text.
mation procedures in such discriminative jOint models m.l To learn the S|m||a|’|ty pararnetergS we generated pairs
labeled data involving all the information at once. In othesf the same character (in the same font) and pairs of dif-
words, training data should be like the testing data. ferent characters (also in the same font) with the following
The parameters, B, C© , and S are each learned procedure. First, we select a font and a character unifoenly
independently in the piecewise, decoupled fashion destrirandom. To produce a similar character, we generate a random
in Section 2.2, while the lexicon bias paramegeris chosen [inear transformation with rotatiog N (0;1 ), scale factors
by cross-validation. Next, we detail the training procexuior sx;Sy N (1,0:01), and skew factors x;ry N (0;0:009.
each of these parameter sets. This transformation is then applied to the original image.
Appearance Model: The character image appearantg produce a dissimilar pair, a different character is chose
model parameters” are trained on 200 fonts, and 800 fontginiformly at random. We choose a different character from
are used as a validation set. We use a Laplacian prior [2ifle same font, having assumed the input is from a single font.
[28] Such characters are likely to be more similar than different
p( ja;l)pexpf ak k;g; (26) characters from different fonts, allowing a better and more

wherek k, is the'; vector norm. The value of hyperparamete?ppmpriate threshold to be learned. Additive Gaussiasenoi

a that yields the highest likelihood on the validation setis t . N (0; O.:Ol) s added to' the or!glnal and transformed
one used for optimizing the posterior fof. images prior to Gabor ltering. Unlike for the appearance

The lter outputs for the 128 128 training images are model, the full-size (128 128) Iter outputs are used to
downsized by a factor of four to 3232. Although some calculate the distanckj; between images. The ner details

information from the highest frequency lters is lost, thid"® useful for these comparisons, and the dimensionality is

; inedES
reduces the dimensionality of* by a factor of 16. noltzgrnclsf,ilrj:alsmrceéciic?ir\]/g giiir??r:ﬁ\ilt?oar:amzt??ti.o of same to
The evaluation data is far from having perfect contrast 8’;} P P '

nearly 0/1 binary image). As a very simple alternative t3 fferent pairs in the training data should be the ratio we

T e é)ect in testing data. Toward this end, we sample small
a more elaborate contrast normalization scheme, we scal

the training images so that the contrast (absolute diftearenw'ndowS of text from our corpus. The window length is

between background and character intensity) is 0.3. sampled from a geometric distribution with a mean of 10
characters and length at least 3; these parameters arenchose

Language Model: To avoid the need for performm%gsed on our expectation of sign contents. In 10,000 samples
t

inference on Iarge'chalns of .texj[, We Use piecewise tr_alnl e same/different ratio is consistently about 0.057. Tai®
(c.f., 2.2) to approximate the likelihood. The approxiroatis . g S .
ontrols the relative number of similar and dissimilar paire

especially advantageous for the bigram and case switchlmods
(11), (12), and (13), which do not depend on an observgg"nfar"?lte‘.j (100,000 total). s . .
Similarity model parameters> use a uniform prior.

image. Thus, training instances may be collapsed into @niqu .
. : Lexicon Model: We found acceptable performance for
h heir f . F le, th . . .
cases and weighted by their frequency. For example, t Ewsorpr)nodels conditioned or”;18;1C;1S with corresponding pa-

4. http:/lwww.gutenberg.org , rameters found in the decoupled piecewise fashion detailed
5. http://wordlist.sourceforge.net . above. One way of doing this for the bias paramefeis to

5.2 Experimental Procedure

A B C S L
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. . TABLE 1
use our English corpus, using each word from the text as N it it ; f the uni ed model (t
training instance witlw= 1 if it is in our lexiconL andw= 0 ecognition results (percentages) of the uni ed model (top)

otherwise. We found that decoupling the Iearningq'oiin this and clustering followed by recognition and voting (bottom) with
way does not yield a strong enough lexical bias to improvéarying information. Overall character accuracy, false negative
(FNR), false positive (FPR), and hit rates (HR) for pairs (see

results as originally hoped, so we turn to a cross-valigatio .
text) are given.

strategy to “re-couple” the parameter learning.
To addl* to the model, we keep all other parameters xed

X " ] ) Information | Char. Accuracy FNR FPR  HR

at their values learned from decoupling. The 95 regionsén th L 84.04 11.42 051 91.07

evaluation sign data are randomly split into ten subsets. In I::Is 84.04 1142 051 91.07

a ten-fold cross-validation procedure, we iterativelychelt He 87.92 914 053 938]

t for testing. Several valuesgpfare used, and the one - 87.92 8.79 087 94.03

one set for g. Sed, and , 1A;1B;|C 91.65 685 0.66 98.68

with the highest word accuracy on the nine training sets is [A:|B:|C|S 93.22 545 014 99.28
then applied to the test set for evaluation. IS - 22.67 0.25 -

. S A

We can also force the model to always predict words from L 83.54 703 0.69 88.28

the lexicon by adjusting the biag to  ¥. We will usel- LI 87.92 439 080 91.75

- 1) y adjusting : , ¥ 1S11AC 87.76 580 1.02 92.72

to indicate such a closed-vocabulary assumption. IS |A:|B.|C 91.40 369 088 97.26

Sparse message passing as proposed by Pal et al. [16]
was created for BP in a chain-structured graph where a
well-de ned forward-backward schedule for message pa@ssigontrols the amount of pruning, but we found accuracy was
achieves exact inference. While the graph based”o?;1¢ not.
is a chain, adding the lexical informatioV makes this
graph not only not chain-structured, but cyclic. Thus, th&2.2 Model Application
results of BP will not be exact in general. It is onl} Here we add a few additional details of how the evaluation
that is truly problematic from a computational standpofifte images are processed for the model. The height of the input
other messages—of which there are only a few—only requigBaracters in the evaluation data is normalized so thatahie f
complexity of at mosD Y? , which is substantially less thansijze is roughly that of the appearance training data. Ortsr |
the messages from the lexical factor. For this reason, we r%ponses from within the annotated bounding box of each
BP in a phased schedule, only sending any lexical factor ¢Baracter are used when calculating the factors for appeara
node messages after the others have converged. Once thésgnd similarity fS, image areas outside the bounding box
messages have converged, we have the best possible lggalzeroed out. Note that Gabor lters are applied to theactu

marginals on the available information, exceptil’fb andlIt, grayscale image; no binarization is performed.
We then use these beliefs for computing the sparsity of the

cha'lrac'Fer state;. va\)ingpqrsity is calculated once, then th%_g Experimental Results
lexical informationl;1* is introduced, and the same sparsit . .
structure is maintained. Belief propagation then comsi;nui"ere we describe the performance of several variants of
until the termination criterion is reached (convergenceanr OUr Model on the evaluation data, as well as alternatives
iteration limit). from prior a_1pproaches to chaIIenglng character recgg_mtm
This phased processing has two advantages. First, becdRf@0!ems. First, we demonstrate the impact of using siitylar
messages are passed within a limited portion of the mod@&formation in a unied model for recognition. Then, we
until convergence, the beliefs used to calculate sparbiylsl  INvestigate how incorporating a lexicon affects results.
be more reliable since the available information has owed , o
throughout the graph. This stands in contrast with the radter >3-+ Uni €d Similarity
tive of doing state pruning with the initial beliefs, whickillw Prior work using similarity incorporated this informatian
only be based on factors immediately adjacent to the nod@sProcessing stage separate from that using characterrappea
Longer distance dependencies certainly exist in thesestyce. Here we will compare our uni ed model to the approach
of models, and these could have an effect on the Sparsq)tfyBreueI [4], [5], where characters are rst clustered gsin
and correctness of the approximate beliefs. The second dR@ degree of similarity as a distance metric. Followings thi
arguably more important advantage is that it avoids the ne@gproach, to cluster letters, we maximigey j x;P;1;1S  for
to make a complete lexical scan required in the messagesgia simulated annealing, initialized at the predictionick
from the lexical factor. Since the messages are initializétbm 1* (the strategy taken by Breuel [4]). The identity of
to uniform, the lexical factor merely ends up contributingach cluster is then chosen by using the classi cation oheac
positional unigrams to the initial belief. This is not wottthe character derived from other models (safsas a vote. Ties
cost of the lexical scan and could be modeled directly if ware broken by choosing the label whose members have the
wished. Returning to our initial point, we prefer to use thiwest average entropy for their posterior marginal, atatra
best available information before incorporating the leric  that slightly outperforms random tie breaking.
We usee= 10 ’ as the divergence bound for sparse BP. This Table 1 gives the results of the uni ed model using different
corresponds to keeping nearly all of the probability ma&s§)( combinations of appearance informatidfy language infor-
for each character. The runtime was sensitive to this, sincemation|8;1€, and similarity information S. It also shows the
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FIBER ART HASTINGS THE -

[@= QU= SNGREETING CARDSIEUERGREENS RO
24 Hour Banking fEN:-S:U R-AN C ER &1 - W isis]
COFFEE | Traditional Asian UNITED STATES [ Information | Char. Accuracy] Word Accuracy |

TABLE 2
Word and character accuracy with various forms of the model.

SE i Hecaling Arts POSTAL SERVICE A 84.04 16,05
PORARY - — "= .1B.
CRAFTS Lsose-Gosse IBANANADRAMA [GEISSSIEE ,/1.A|’E!.B|’c'.cls gégg ;ggg
Upstairs ‘ S0P & BO bAENT BRIGIDS W EIR E |A; |L,|W 93.63 72.56
AL W
Fig. 6. Examples from the sign evaluation data that are read IA,IIB’,IIé‘,’IIL,IW gé'gg gg'gg
correctly with 14;18;1;1S, |A:[B.|C. S LW 94.62 86.05
) _ 12;18;1C; by W 92.39 81.40
PRODUCTS FSR Tiee 1y THE FAST WP The € W= IA1T Aspell 73.78 53.49
— Acupunct - ) ' ’
TSTERY TRANRECORSS ottt IA,18;1€ 1 Aspell 89.50 77.21
14:18;1C;1S1 Aspell 90.98 79.07

Fig. 7. Challenging signs from the evaluation data that have
unique fonts, are hand-painted, or contain three-dimensional Appearance App. + Language App. + Lang. + Similarity

effects, real and virtual. dian < _ _

500 Median = 11 500 Median = 4 500 Median = 2
results when the similarity information is used rst to des 9710 2030 40 50 60 9710 20 30 40 50 60 910 20 30 40 50 60

A A ) Characters Characters Characters

the characters, and the other information (used sepayasely Appearance App. + Language App. + Lang. + Similarty
then used to vote on character identities. Character aogura 200 200 200
. . . .. Median = 0.204% Median = 0.070% Median = 0.033%
is the percentage of characters correctly identi ed (idahg 100[Median No. = 45 100l Median No. = 16 100l Median No. = 6
case). To evaluate the ability of our model to recognize

different instances of the same character in the same foni ° 20080100  © 20456050100 2070 €0 8 100
for intra-sign and intra-font characters we measure: ) _ _
False negative rate:Percentage of character pairs thag'g,' 9. Top: H'Stograms OT CharaCter state space size after
are the same but are given different labels. elief compression. BoTTOM: Histograms of lexicon words (per-

False positive rate:Percentage of character pairs that ar entage) considered after belief compression. LEFT: Appear-
different but are given the same label ance only model I%;1%; 1. CENTER: Appearance and language

A.|B.|C.|L. W . .
Hit rate: Percentage of character pairs that are the sanqé?del ImIE 1 -li{fg'_ﬁ-c_ﬁ‘g_'l['?f;’f_' with appearance,

given the same label, and correct (correctly labeled trlﬂguage’ and similarity

positives).
For the modellS, only false negative and positive rates mayodels, one with similarity and a lexicon, and one with only
be reported as cluster purity measures. Figure 6 contaifjs |exicon. We also compare the relative speed of these two
examples of signs correctly read, and Figure 7 shows examplgodels and the different inference techniques in Table 4, as
from the evaluation set that are more dif cult. measured by the geometric mean of time per character (to

532 Lexicon-Based Model normalize for query length) on the signs [29].

In addition to the unied similarity model, we also test the54 Discussion
effect of the integrated lexicon and the impact of using spar™
BP. Table 2 compares the character and word accuracy for 8ift-1  Similarity Model

model with varying amounts of information. For comparisorfiigure 6 contains examples of signs correctly read withioeit t
the output of our best lexicon-free model is passed throutgxicon, showing that the features are robust to varioussfon
the spell-checker Aspell, keeping the top suggestion.rgigu and background textures (e.g., wood and brick). Although th
shows results on example data of varying dif culty, inclngi number of characters per sign is small compared to OCR
where corrections were made and errors introduced. applications, adding similarity information undoubtediy-

We show in Figure 9 (top row) the histogram of howproves character recognition accuracy, reducing overalt-c
many characters remain possible after belief compressitim wacter error by nearly 20% (Table 1). Not surprisingly, most
sparse BP for several of the models. The elimination of this improvement comes from greatly reducing the cases
many characters from consideration excludes certain wondken different characters are given the same label (paie fal
in the lexicon with characters in particular positions. Thpositives).
resulting reductions in length-appropriate lexicon woede Perhaps surprisingly, adding similarity informatidR to
shown in the bottom row of histograms of Figure 9. Differerthe simple image information® does not alter the results.
word lengths have differing numbers of possible words in thEhis is probably because test images have relatively little
lexicon, so we give length-specic lexicon size-normafize noise and are mostly dif cult due to font novelty and non-
values. However, to illustrate the raw impact we also givieonto-parallel orientations. Therefore, it is expectbdttthe
the median absolute size of the resulting lexicon. same characters, though novel, would often be given the same

Table 3 compares the accuracy of full loopy BP and tHabel in different locations, due to their logical independe
sparse variant used to speed up prediction on the two bsstely with informationl”. However, when other sources of
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Image No Lexicon Lexicon Forced Lexicon Aspell
- USED BOOKS USED BOOKI | USED BOOKS USED BOOKS USED BIOKO
Free checking Free crecking Free checking Free creaking Frag recurred
31 BOLTWOOD 31 BOLTWOOD SI BENTWOOD | 31 BELLWOOD
DELANO'S RELAMO3 RELAMO3 DELANOS Reclaim
HOOK-UPS) HTOR UP5 HOOK UPS HOOK UPS THOR UPI
MAOUGRY ARAIN MAOUGRY ANTIN LATHERY ANTIN| MARGERY AARON
REGOLNE RERTTRE RERTTRE RESTORE RETRIER

Fig. 8. Example recognition results on dif cult data. Correct wo rds indicated in bold. Model examples are [A;1B:1C: 1S (No Lexicon),
A 1B 1C515;151W (Lexicon), 14,18;1€;15; 1L, IW (Forced Lexicon) and 14;15;1C;1S1  Aspell  (Aspell).

TABLE 3

. information. However, unifying all the information availe—
Accuracies under sparse and full BP.

including similarity— does vyield better results than a idist

Char. Accuracy|| Word Accuracy clustering step. It is intere;ting that cIustering.yielmq’e'r
Information Sparse| Full || Sparse| Full false negatives than the uni ed approach. This is most yikel
AA:;B;AQS'L;L'WW 93.88 | 93.63 || 85.58 | 84.19 because clusters are not forced to have different labels at
ITIZITISITIT | 9462 | 94.38 || 86.05 | 86.05 the secondary assignment stage. Thus, instances of the same

character assigned to different clusters are not forcecate h
different labels (up to the fact that there are only as many
clusters as characters in our alphalgt Indeed, if thiswere

TABLE 4
Relative speeds of models with full and sparse BP.

| Model and Inference [ Mean Relative Speedup the case, the false negative rate would be intolerably high.
No Similarity; Full vs. Sparse 19.53 Conversely, the clustering pre-processing step does commi
Similarity; Full vs. Sparse 12.15 unrecoverable errors by pairing characters that are not the

No Similarity vs. Similarity; Sparsg 0.57 same; subsequent information cannot reduce the falsevgosit

rate. This is especially critical because the probabilitywn
hgharacters being the samaepriori is much smaller than their
Ipéaing different, thus the false positive rate has a greatpact
on total errors than the false negative rate.

Some signs in our data set present tremendous dif culty
é&d challenge the assumption that characters of the same
“font” appear similar. Some of these are due to rendered
dWarping effects, custom fonts, or inconsistent shadowctffe
(see Figure 7). Other signs just have unique fonts that age ve
different from those in the training set.

information are introduced to help resolve ambiguity, t
similarity information does make a difference because t
bigram and case information are based on local context.eTh
can push the beliefs about characters in different dirastio
even though they tend to look the same, because their cent
are different. Adding the similarity information on top dfese
other sources ensures that the local context does not uteo
a contradictory bias. In the example of Figure 1, addingdrgr

information pushes the secoado ana because preference for
theea bigram outweighs botbe and the character appearance

factor. Similarly, adding case information pushes th&bom 5.4.2 Lexicon Model and Sparse Belief Propagation

being recognized as the upper cdseo lower caset; dué ere we discuss the results of adding the lexicon, some of
to kerning in this italic font, some of thé overlaps in the \ynich are shown in Figure 81 and BOLTWOORre not in

I's bounding box, leaving a little crossbar indicative of 2 he |exicon, so errors arise with the forced lexicon and Mspe
Finally, adding the similarity information corrects thesince |,,qdels. DELANOSIs in the lexicon. but the image evidence
it is very different from the nalt, and corrects thes since gyerpowers the bias in this case; forced to be a lexicon word,

they are very similar. . it is correctly interpreted. The last two images exemplifyne
All of the differences in accuracy for the unied model,f the more dif cult text in our data set.

(Table 1) are statistically signi carft.In particular, adding Incorporating the lexicon factor boosts the character ac-
the similarity informationIS to 14;18;1€ reduces CharaCtercuracy but adding the language model (i.e., bigrams) after
classi.catiqn error bY 19%. _While the. _reduction of falsethe lexicon seems to have little impact. However, the word
negg_uves is not signi cant with the a‘?'d'“O” o, t.he false accuracy reveals a 41.5% error reduction with the inclusion
positives are cut by 79%. When the uni ed model is compareg e |exicon. Results do improve over an appearance-only
t(,i tge glpglmed (élusteﬂngB a(;:)proach, the differences Betw ,,4e| \when words are forced to be from the lexicon, but
. . . | . . H H A ! X
IBIZI% 1= and 11 1%1% 1™ are signi cant for character g,me nroper nouns and numbers in the data are not lexicon
accuracy, false negative rate, and false positive rate. — \yor4s and thus are misinterpreted. Using Aspell xes some
The results of clustering the letters prior to recognitifR a gy e errors, but most errors are more complex. Ignorirg th
pear worse than doing recognition outright with no simtiari character image for poorly recognized words tends to reduce

6. In all cases, signi cance is assessed by a paired, twedsiign test on OVerall character accuracy (since poor suggestions are)nad
the accuracy per query; signi cance is determinedgby 0:02. We also experimented with trigrams and word frequencies
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(i.e., using a word-specic value fotJV), but found no  The basic discriminative framework for character recogni-
improvement in word accuracy on our evaluation data. tion is not new, but it has typically been relegated to indiil

As accuracy gets close to 100%, more data is requiretlaracters. Language information is usually employedr afte
for signi cant improvements to be shown. However, insteatecognition in a post-processing clean-up. Most prior nede
of comparing accuracies—the outcome of a decision ruléntegrating language with recognition have been genexativ
comparing the likelihoods of the data is more direct waywhose independence assumptions often prohibit them from
of showing model improvement. When the likelihood of theising richer features of the data (observations). A recent
correct character string is higher in one model than therpthexception by Jacobs et al. [10] is a discriminative modet, bu
it demonstrates that there is indeed additional infornmatidorces recognition output to be lexicon words. In contrast,
contributed. In this case, when the similarity is added tmodel allows a smooth trade-off between the interpretation
a model already using a lexicon, the log likelihood ratia string as a known word, or some other string.
improvement is signi cant (the character accuracy incesas Classi er adaptation is a useful strategy for recognition.

from 93.88 to 94.62). The average improvement is However, when recognizing signs or scene text, there isra sca
2 31 amount of data, and it is generally insuf cient for reliahlee
N p y®jx®: b A B CySLyw N with the existing methods for coping with novel typefacear O
4 5 3:87. (27) recognition strategy improves on two issues lacking in prev
k=1 p y®jx®;bsiA; B C LW ous approaches. First, by simultaneously incorporatiray-ch

acter identity and similarity information in a uni ed model
In other words, the data is nearly four times as likely whege eliminate the need for distinct clustering/recognitateps
we add similarity information. This signi cantly moves theang the potential for unrecoverable errors. Second, we trea
probabilities in the “right direction” relative to the de®n gjmijlarity and dissimilarity as two sides of the same issue,

rule. _ _ which prevents dissimilar characters from being given the
Sparse BP speeds the lexicon integration by eliminatisgggme label.
characters from consideration after belief compressiagu¢e It has long been known that the use of a lexicon can

9). This results in a 99% reduction of candidate lexicon Worgmprove recognition accuracy. Although some computationa
overall. We must consider different lexicon words for ggsrof  tricks exist, the size of a lexicon can often be prohibitioe f
different |engthS. The median elimination of candidate dgor processing that integrates recognition, rather than uslaga

for each string was 99.97% (Figure 9), or just 6 remainingost-processing step. Our model provides a natural, pedcti
candidates when not normalized for the differing sizes ef thestbed for the sparse inference methods proposed by Pal et
original candidate lists. Table 3 shows that using sparse BP [16] for acyclic models. This has the advantage over the
yields no signi cant difference in accuracy. However, #1€s  traditional approach, which is to prune to one possibility f

a very large speed improvement (Table 4), from about 1.3ggjher-level processing or to use a mae hoc method to

per character to 0.11s in the complete model. consider a reduced number of alternatives. By eliminating

With sparse BP, adding the similarity information slightlcharacters from outgoing messages in a principled fashion,
increases the (already greatly reduced) inference time Rgs are able to drastically reduce the size of the lexicon
cause there are now more factors to pass messages amfiyd. is used for a given query. This does not necessar"y
Fortunately, the additional similarity information doesake mean that characters are eliminated from possibility,esihe
character beliefs more certain, allowing more charactets aincoming messages—from which beliefs are calculated—are
lexicon words to be pruned (Fig. 9). This keeps the additiongot generally sparse. We have also introduced lexical iecis
message passing overhead to a minimum while providing tfio a model that also includes other important linguisties;,
bene t of a more accurate model. such as bigrams.

In this article, we have presented a model for character
recognition that ties together several important infororat
sources. We have shown that the uni ed model clearly im-
We have laid out a general framework for recognition thaglroves results over pipelined processing. No doubt many
is probabilistically well-motivated and can accept longga opportunities exist to add other information sources. Aeic
information in a unied fashion. The conceptual advantagenharacter recognition model could easily be incorporated t
provided by discriminative Markov models easily allows ongoost accuracy, and higher ordegrams for both characters
to imagine and implement a relationship among the unknowngd words could be added. All manner of language models

Our principal contributions are as follows. First, we haveould be considered, and there is likely much mileage to be
constructed a model that allows uni ed processing of sdvergained by integrating these with the recognition procestber
important pieces of information (appearance, languags; sithan using them as post-processors.
ilarity to other characters, and a lexicon). Second, we show
how a similarity function can be learned and integrated s
that recognition is improved and more consistent with sm
samples of novel fonts. Finally we have proposed a simplée authors thank Chris Pal and Charles Sutton for helpful
construction that incorporates a lexicon into the model amliscussions on sparse BP and approximate inference. This
facilitated its use by applying principled sparse methods. work was supported in part by The Central Intelligence
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