
C-14: Assured Timestamps for Drone Videos
Zhipeng Tang

University of Massachusetts Amherst
Amherst, Massachusetts

zhipengtang@cs.umass.edu

Fabien Delattre
University of Massachusetts Amherst

Amherst, Massachusetts
fdelattre@cs.umass.edu

Pia Bideau
University of Massachusetts Amherst

Amherst, Massachusetts
pbideau@cs.umass.edu

Mark D. Corner
University of Massachusetts Amherst

Amherst, Massachusetts
mcorner@cs.umass.edu

Erik Learned-Miller
University of Massachusetts Amherst

Amherst, Massachusetts
elm@cs.umass.edu

ABSTRACT
Inexpensive and highly capable unmanned aerial vehicles (aka
drones) have enabled people to contribute high-quality videos at a
global scale. However, a key challenge exists for accepting videos
from untrusted sources: establishing when a particular video was
taken. Once a video has been received or posted publicly, it is
evident that the video was created before that time, but there are
no current methods for establishing how long it was made before
that time.

We propose C-141, a system that assures the earliest timestamp,
tb , of drone-made videos. C-14 provides a challenge to an untrusted
drone requiring it to execute a sequence of motions, called a motion
program, revealed only after tb . It then uses camera pose estima-
tion techniques to verify the resulting video matches the challenge
motion program, thus assuring the video was taken after tb . We
demonstrate the system on manually crafted programs represent-
ing a large space of possible motion programs. We also propose
and evaluate an example algorithm which generates motion pro-
grams based on a seed value released after tb . C-14 incorporates
a number of compression and sampling techniques to reduce the
computation required to verify videos. We can verify a 59-second
video from an eight-motion, manual motion program, in 91 seconds
of computation with a false positive rate of one in 1013 and no false
negatives. We can also verify a 190-second video from an algorith-
mically derived, 4-motion program, in 158 seconds of computation
with a false positive rate of one in one hundred thousand and no
false negatives.

CCS CONCEPTS
• Security and privacy; • Computing methodologies→ Com-
puter vision tasks;

1The name C-14 comes from the radioactive isotope used for carbon dating organic
matter.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419196

KEYWORDS
security and privacy, drone video, UAV video, video forensics

ACM Reference Format:
Zhipeng Tang, FabienDelattre, Pia Bideau,MarkD. Corner, and Erik Learned-
Miller. 2020. C-14: Assured Timestamps for Drone Videos. In The 26th Annual
International Conference on Mobile Computing and Networking (MobiCom
’20), September 21–25, 2020, London, United Kingdom. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3372224.3419196

1 INTRODUCTION
The continuous proliferation of drone-mounted, high resolution
video cameras is ushering in an era of global scale video sensing. For
instance, drones have enabled citizens to provide video coverage
of land areas that were previously inaccessible. In areas of Latin
America and Asia, citizen-powered drones are already proving
crucial in providing videos to monitor large areas of land vulnerable
to unauthorized development such as deforestation [45]. Similarly,
freelance journalists are producing invaluable evidence from war
zones and other difficult-to-cover areas from the air [1].

However, a key challenge is ensuring the trustworthiness of
videos. For instance, international agreements on climate change
will require detailed monitoring of land-use changes around the
globe, something that can be aided by user-contributed, aerial
videos. However, relying on such videos for policy decisions re-
quires knowing when the videos were taken. For instance, a devel-
oper could remove trees from an area at some time, but provide
older videos and claim that it was still being preserved.

A number of efforts have addressed two crucial problems: (i)
location establishment: the video was taken at a particular place [24,
39, 48], and (ii) integrity assurance: the video was unaltered after
recording (e.g. spliced, re-encoded, etc.) [27, 29, 37, 39, 46]. However,
we are unaware of techniques that establish how old a video is.

We propose a system, C-14, that provides a “challenge” to an
untrusted drone to assure a video was not created before some time
tb . Although we can assure the video was not created after some
time te by verifying the time it was posted to a public forum, the
video may be much older than that posting time. To establish that
a video was taken after tb , C-14 requires a sequence of motions,
called a motion program, to be incorporated into a drone flight that
could only be known by the untrusted drone after time tb .

One alternative is for the drone to video a large screen on the
ground showing a 2-D barcode of a signed timestamp. However,
this requires equipment external to the drone, complicating the

https://doi.org/10.1145/3372224.3419196
https://doi.org/10.1145/3372224.3419196

MobiCom ’20, September 21–25, 2020, London, United Kingdom Tang, et al.

deployment. Since the 2-D barcode only appears at the beginning
of the flight it becomes a single point of vulnerability to possible
video editing attacks. C-14 encodes patterns into a much larger part
of the video, marrying the timestamp, the flight pattern, and the
subject matter.

The assurance of timestamp tb relies on the untrusted drone
knowing the motion program only after tb . There are multiple
potential sources of programs. One is to derive the motions using
an algorithm seeded by a public, timestamped value, R, known by
the drone only after tb . For instance, a hash taken from a blockchain
published at tb can serve as a seed. Another is to use a trusted party
to reveal the motions. For instance, the trusted party can manually,
or algorithmically, create the motion program and then reveal it to
the untrusted drone after tb .

The motion program is a series of motions, including translations
(move up/down, left/right, forward/backwards), rotations (yaw, roll,
tilt), and combinations of the two. The program can either be placed
in the middle of a free-form drone flight or be used as the entire
flight. We demonstrate the system on two types of programs. The
first is a set of manually generated flight motion sequences. We
use these manual programs to show that C-14 can be applied to
a general class of patterns generated by algorithms or by hand.
C-14 verifies that the drone matched the program’s translation
and rotation sequence. We also provide an example of one such
algorithm, which generates motion programs consisting of a series
of hotpoint motions where the drone circles a center point with
its camera always pointed to the center. The algorithm produces a
series of target angles, either clockwise or counterclockwise, for the
untrusted drone to follow. C-14 then verifies that the drone video
rotated the correct number of degrees in the correct sequence.

In order to verify that the untrusted video demonstrates the cor-
rect motion program, C-14 uses state-of-the-art techniques from
computer vision to measure the optical flow of the video and derive
the motion of the camera. However, such methods are typically
slow, thus C-14 incorporates a number of techniques to speed ver-
ification: frame compression, skipping frames, spatial sampling,
and temporal sampling. A full analysis of the video to verify the
motion runs in 700x real-time (a 2 minute video takes 1 day to
verify), but through compression and sampling we can reduce the
amount of time needed. C-14 can verify a 59-second video from a
complex, manually generated motion program with 8 motions in 91
seconds of computation with a false positive rate of 1 in 1013. Using
programs generated by the example algorithm, C-14 can verify a
190-second video with 4 hotpoint motions in 158 seconds of com-
putation with a false positive rate of 1 in one hundred thousand
and no false negatives. The overhead for incorporating C-14 into
drone flights is minimal: in the most conservative sense, it uses at
most 15% of the flight time.

2 TRUST AND THREAT MODEL
C-14 is split across three parties shown in Figure 1: (i) a trusted
public source of either a number R or a motion program, and (ii)
an untrusted drone operator who provides an untrusted video to
(iii) a trusted verifier.

The trusted source can either provide a number R, or a full mo-
tion program as a “challenge” to an untrusted drone operator. In

Trusted Source

Untrusted Drone

Known Algorithm

R

C-14 Verifier

Video, tb

Time tb

Motion
Sequence, tb

OR

Figure 1: This figure shows an overview of the C-14 system.

both cases, this source must ensure it reveals them after a timestamp
tb . This tb then becomes the earliest time the drone can claim the
resulting video was made. In the case of revealing R, this random
number should be taken from a large range of values and should
not be duplicated from some earlier timestamp. The trusted pub-
lic source which generates R could be a distributed trust system
such as an existing blockchain, or a trusted server that produces
timestamped random numbers. The drone then uses that random
number to seed a known algorithm that produces a motion program
for the drone to follow while gathering a video. The trusted source
can alternatively reveal a full motion program after tb .

The untrusted drone flies the motion program, and produces
a video which it then provides to a verifier with its claim of tb .
The drone is fully untrusted and C-14 does not rely on any special
hardware on the drone, such as a Trusted Platform Module. Such
hardware is not yet readily available on drones and it would need
to encompass the clock, flight controller, and video sensor to be
effective at establishing a timestamp.

The trusted verifier then analyzes the video to determine if the
claimed tb provided with the video matches the same motion pro-
gram provided by the trusted source or as derived from R using the
same known algorithm. It then produces a determination which
could be published with the video as a signature or other attestation.

An attacker’s goal is to provide a video that is older than tb
and get C-14 to accept it as newer than tb . To do this, the attacker
would need to alter an old video to contain the motions revealed
after tb . C-14 relies on the assumption that the video provided by
the untrusted drone is unaltered. While at first this assumption
may seem unrealistic, the kinds of alterations needed to create a
different motion pattern in one video to match another motion
pattern are detectable. Video forensics is a field unto itself and we
rely on external techniques from that community, such as:

Video Splicing (aka Frame Insertion): An attacker could take a
large number of videos from a location, each of which performs
one of the motions required from the authenticated video. Once
the sequence of motions in the program is known, the attacker
can splice together those motions into a video and present it as
authentic. However, such splices can be detected in videos through a
number of techniques [10–12, 21, 23]. Any such splices would need

C-14: Assured Timestamps for Drone Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

to maintain the same illumination, texture and geometry across the
splices, which would be extremely difficult.

3D Rendering/Fake Video: If an attacker can generate a 3D re-
construction of a scene, they can arbitrarily create any motion
(rotation and translation) in the video. Detecting videos created
from whole-cloth is outside of the scope of our work, but the image
forensics community has worked on detecting such videos based
on a number of techniques, for example, camera noise [17], the
smoothness of images [32] and machine learning classification [33].
A similar technique would encompass such videos created by so-
called “bullet-time” or 3D reconstructions from large numbers of
photographs. 3D re-rendering and deep fakes are increasingly preva-
lent; however, to the best of our knowledge, this is still well-beyond
current adversarial systems.

Altered Optical Flow: Similar to a 3D rendering, one might be able
to take a genuine video, and frame-by-frame create pixel move-
ments that create the correct optical flow. However, we are unaware
of anyone who has successfully shown how to manipulate a video
this way. The closest known attack is to add a well chosen small
patch in the video, which will result in large modifications of the op-
tical flow [38]. But this method does not create any specific optical
flow, just a random motion pattern. We also believe that such heavy
manipulation of the video will result in a very distorted video as
occlusions and disocclusions that occur in real videos are difficult
to fake.

Field of View Manipulation: An essential metric we use to verify
the timestamp is matching the rate of rotation in the video to the
motion program. Due to how camera pose estimation works, the
rate of rotation can be manipulated in an existing video by cropping
the video. For instance, by cropping the video to a smaller frame
and scaling the frames up to the original resolution, objects will
move faster across the same number of pixels thus increasing the
measured rate of rotation. An attacker could possibly dynamically
adjust this cropping throughout an old video to create a particular
pattern of rotations. However, this dynamic scaling process will
leave detectable artifacts in the video, and there have been several
papers on detecting such manipulations of videos [22, 25, 40].

Most importantly it is best to think of C-14 in the same light as a
CAPTCHA—we can provide some assurance and raise the bar for
a malicious actor. C-14 is only one piece of a system for assuring
properties of drone videos.

3 DRONE BACKGROUND
Here we provide background on how drones fly and collect videos.
We focus on ‘copter’ drones which typically have four rotors al-
lowing the drone to translate in three dimensions, as well as rotate
around three axes, as labeled in Figure 2. The drone is equipped
with a front-facing video camera, mounted on a three-axis gimbal.
The gimbal can be manually pointed in any direction, but typically
it is set to yaw-follow meaning that the gimbal tries to maintain a
constant pitch angle and zero rotation with respect to the world
horizon. The yaw of the camera follows the drone’s heading, though
it does so with some elasticity to prevent sudden motions in the
video.

For the remainder of the paper, we use a frame of reference
we refer to as the ideal drone frame of reference. This frame of
reference is the drone without roll and pitch induced by aircraft
motion. Consider what happens when the drone moves to the right
(a positive y-axis translation). The aircraft adjusts the speed of the
propellers to roll slightly right (a positive roll), which makes the
aircraft move to the right. The gimbal counteracts this motion and
the resulting video has no roll. In the ideal drone frame of reference,
the drone would always appear to have no roll and pitch, but it
does yaw.

Figure 2: This figure demonstrates the axes of motion in a copter
drone. Image from DJI documentation [2].

4 MOTION PROGRAM
C-14 depends on the untrusted creator of the video not knowing the
sequence of motions, which we refer to as amotion program, before
time tb . There are many ways to create such a program, including
algorithmic methods and manual ones. We use a set of manual
programs taken from typical flight plans to represent the wide
variety of possible motion programs. We also present an example
algorithmic method which uses hotpoint angles derived from a
random seed.

In the manual programs, we use a hand-crafted sequence of
motions over a wide-area including any type of motion a drone is
capable of, such as yawing at different rates while changing the
gimbal pitch. These motion programs are flexible enough to rep-
resent various potential motion programs designed by the trusted
party or generated from different algorithms.

In contrast, our example algorithmic method uses constant mo-
tions, meaning the rate of translation and rotation does not vary
during the motion. For instance, if the drone translates forward, it
does so without changing direction and speed, or if it yaws, it does
so at a constant rate. This constant rate makes these algorithmic
programs more amenable to sampling because the drone’s rate of
rotation or translation can be verified by looking only at randomly
selected parts and assuming the motion is the same over that pe-
riod. Note, however, that this is one example algorithm to create
motion programs. One could conceive of many algorithmic ways of
creating a sequence of unique motions for a drone to follow, such as
incorporating altitude changes, gimbal motions, and other complex
maneuvers as represented in the manual programs.

4.1 Manual Programs
To represent a wide class of motion programs, we use manually
generated sequences that are sufficiently complicated such that

MobiCom ’20, September 21–25, 2020, London, United Kingdom Tang, et al.

guessing the program ahead of time tb would be improbable. As
long as C-14 only divulges the program to the video creator after
tb , we can assure that the video was created after that time.

By leveraging a popular drone flight planning system named
Litchi [4], we can assemble a varied collection of possible flight
plans, whichwe use asmotion programs. Figure 3 shows an example
flight plan—each plain numbered pin represents a waypoint for the
drone to fly to, and each numbered pin containing a camera icon
represents a point of interest for the drone to focus on. The point
of interest has an altitude as well, creating yaw and gimbal pitch
throughout the motion. The curves around waypoints represent
the actual flight path to be taken to smooth out the drone’s motion.
Recall that C-14 does not verify where the video was taken, only
the drone’s motions, so this flight plan could be applied anywhere
and the video will be accepted as valid.

Figure 3: A sample manual flight plan from the Litchi flight plan-
ning software.

Such hand-planned motions can be highly-complex, and thus
there are a very large number of distinct possible sequences. C-14
measures both the yaw between waypoints, as well as the average
translation vector to verify the video. As we show in Section 7.6,
even small deviations can be detected in the resulting video, ensur-
ing that the number of distinct motion sequences is very large.

A side benefit of using Litchi missions is that many users publicly
post their flight plans and the resulting video from the drone, giving
us a varied dataset to work with for our evaluation.

4.2 Example Algorithmic Programs
As an example method for automatically generating a motion pro-
gram, we propose an algorithm which generates sequences of a
common drone motion called a hotpoint. In a hotpoint motion, the
drone flies in a circle while remaining pointed at a center point.
This is a combination of a yaw rotation with translation to the side
of the drone.

We use a hotpoint as the key motion for several reasons: (i) it
keeps the camera centered on one subject of interest that may be
needed to be part of the verified video, (ii) it provides us with a
straightforward algorithmic way of creating the motion programs:
we use a random sequence of total rotation angles as the program,
(iii) it restricts the drone to a relatively small geographic area, which
makes it straightforward to ensure the drone is flying safely, and
(iv) in a hotpoint, the drone is translating and rotating at a constant

rate throughout the motion which allows C-14 to sample at a lower
rate in comparison to general programs.

In the motion program from our algorithm, the drone flies a
series of motions of two types: a motion to fly towards the point of
interest to an inner radius and then back out again (called a fly in
and out) followed by one hotpoint motion for a number of degrees
randomly chosen from 0 to 360 degrees along an outer radius, either
clockwise or counter-clockwise. The purpose of the fly in and out
is to provide a separation between hotpoint motions. If there is no
separation, the verifier cannot attribute the yaw to each required
hotpoint. During the fly in and out motion, we only need to know
that the drone did not appreciably yaw for some number of frames.
The motion program ends with a fly in and out to bookend the last
hotpoint.

All of the motions are done with the drone pointing it’s camera
at one point of interest at the center of a circle, but with constant
gimbal pitch. An example motion program is shown in Figure 4. The
angle and direction of the hotpoint motion is determined by using
a high-entropy number R to seed a random number generator that
produces a series of random numbers r0, r1, The motion program
is a series of hotpoint motions for a certain number of degrees,
as: hotpointi = (anдle = r2i%360, clockwise = (abs(r2i+1)%2) ==
1)?true : f alse).

This algorithm can generate the sequence from any single, high-
entropy number, R, that would only be known after tb . As an ex-
ample, we used the block hash from a block from the Ethereum
blockchain that occurs shortly after tb , but any distributed or cen-
tralized trust could produce such a number.

We make the motions time-independent and only measure mo-
tions based on sequence of motions that occurred. This makes the
system portable across drones with varying capabilities in speed
and frame rate.

Fly
In/Out

Fly
In/Out

Fly
In/Out

Start Point

Motion #2
Counter

Clockwise
165 degrees

Motion #3
Clockwise

235 degrees

Fly
In/Out

Motion #1
Counter

Clockwise
345 degrees

Figure 4: This figure shows the sequence of motions found in our
example algorithmic motion program. The motions are a sequence
of hotpoint motions and fly in/out motions, all centered on a point
of interest.

4.3 Probability of False Positives/Negatives
An attacker could perform a brute-force attack: producing videos
conforming to a random motion program with the same length and

C-14: Assured Timestamps for Drone Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

then submitting them as authentic. A false positive is defined as:
the probability a video with a random set of N motions is accepted
as valid. While other stop-gaps would prevent a large number of
videos being produced and submitted, it is valuable to know how
likely it is that a random video would be accepted. Assuming that
the number of motions N is known, an attack will pick N random
rotations in [-360, 360] degrees (-360 is a counter-clockwise full
circle, and 360 is the same, but clockwise). As we show later, some
tolerance (aka threshold) is needed to prevent false negatives. A
false negative is defined as: the probability that a video is rejected
even though it is based on a motion program known only after tb .

In our example algorithmic program, there is a series of N
rotations that the video must match. Given a true rotation θt ,
a random rotation θr is considered correct if it is in the range
[θt − rotThreshold , θt + rotThreshold]. For instance, consider a
motion program with only one hotpoint motion of 100 degrees, and
a threshold of 20 degrees, any video that shows a hotpoint motion
of 80 to 120 degrees would be accepted as correct. If we consider N
rotations, the probability pN for the N rotations to be correct is:

pN =

(
2 ∗ rotThreshold

720

)N
In a video with 4 rotations with a threshold of 20 degrees, that

is approximately one chance in one hundred thousand.
However, wemust also consider the reverse problem: if untrusted

video creators can find an old motion program that matches their
video they can claim the video is older than it is. For instance, if the
random seed, and thus motion program, comes from a blockchain,
an attacker could generate as many motion programs as there
are past blocks, and find one that matches the video. One simple
solution is to only accept videos within a small window after the
claimed tb , for instance, a few hours or days. This means that in
the worst case the attacker would be able to claim the video is from
tb minus that window if a matching program exists in that window.
Alternatively, the system can limit the number or granularity of
random seeds released to video contributors. It is also relatively easy
to increase the entropy of the motion in an algorithmic program.
For instance, if the hotpoint motion goes up or down in altitude and
moves in or out (a spiral), we decrease the probability by a factor
of four and the probability of the false positive decreases to one in
four hundred thousand for a program with four hotpoints.

In manual programs, the entropy of a motion program is higher
as the time to execute the program is larger and it contains more
motions. We also consider the direction during translations (see
Section 5.4) and apply a rotation and a translation threshold to
prevent false negatives. The probability for a video from a random
N -waypoint flight to match the motion program becomes:

pN =

(
2 ∗ rotThreshold

720

)N−1
×

(
2 ∗ transThreshold

360

)N−1

For a 10-waypoint program the probability for a random video
to match a given flight plan using a 30° rotation threshold and a
35° translation threshold is smaller than 1 in 1016.

4.4 Field of View Parameter
To measure rotations in the video, C-14 requires the field of view
(FOV) of the camera. However, as the untrusted video creator sup-
plies this parameter, it could attack the system by supplying a false
FOV. The false FOV would scale the total amount of rotation per-
ceived in the video. Intuitively, the attacker could choose a FOV
that makes our system misclassify the first hotpoint of the video as
valid. For the following hotpoints, the FOV will then be fixed, thus,
scaling these hotpoints simultaneously. That brings us back to the
case where there is no field of view attack with one less hotpoint.

5 VERIFIER
The goal of C-14 is to verify that the video is no older than time tb
by showing that the motion depicted in the video is consistent with
a set of flight instructions given after tb . We leverage recent results
from computer vision to estimate the camera motion, and thus
the motion of the drone, based on the video. Using this estimated
motion, we can verify that the drone has translated and rotated in
the sequence dictated by the motion program.

The C-14 verifier takes in an untrusted video, a timeline descrip-
tion of when each motion element occurred (the metadata) and
the timestamp claimed with the video. The verifier first ensures
that the timestamp claimed for the video, tb , is consistent with the
metadata. If that is true, then it must verify that the video matches
the metadata. The verifier then produces a pass/fail determination
based on the results of each test. We explain each step in detail here
and provide a more detailed, formal explanation in a companion
document [8].

5.1 Verifying the Metadata
The metadata provided with the video describes the motions that
should be contained in the video. The verifier checks that these
claimed motions are consistent with the timestamp claimed with
the video. For a manually planned motion, the process is straight-
forward: it must check that the motion program recorded in the
metadata is the one that was not revealed until after time tb . For
the algorithmically derived flights, the verifier uses the timestamp
to fetch the correct random number, R, from the trusted source
of timestamped random numbers. Given R, the verifier computes
the motion program using the same known algorithm used by the
video creator and ensures that it matches the motions contained in
the metadata for the video.

Additionally, the metadata describes where in the video each
motion starts and the next begins. The verifier operates on the
whole video with no gaps between motions. If gaps were allowed,
then part of a motion would be ignored by the verifier, allowing
the attacker to modify the motion without changing the video.

An alternative is to ignore the metadata entirely and use the com-
puted motion in the video to recreate the metadata. For instance,
the verifier can look for where the drone stopped executing a yaw
and started to go forward. This transition time would represent the
change from a hotpoint motion to a pure translation fly-in motion.
However, this requires computing all, or a large part, of the mo-
tion estimation from the video, something that is computationally
expensive.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Tang, et al.

(a) translation (b) rotation (c) translation + rotation

Figure 5: Optical flow due to camera motion of a static scene with
static objects located at different depths. Thehue of the background
shows the angle of flow, and the intensity (or saturation) of the
color shows the magnitude of motion.

5.2 Optical Flow and Motion Estimation
To compute the drone’s motion from the video, we draw on recent
results in camera motion estimation, which usually has two steps:
identifying correspondences among real-world points in different
video frames and inferring motion from those correspondences. We
chose optical flow to establish correspondences of points. Comput-
ing optical flow is the process of analyzing a video to show how
pixels move from one frame to the next. If the scene is largely static
(i.e., there are no moving objects) and the camera has no component
of forward or backward motion, then the pixels move in a direction
opposite that of the camera motion. For example, if the camera
moves to the right, then the pixels appear to move toward the left
(see Figure 5(a)). The output of an optical flow algorithm is a two
dimensional vector field that gives the magnitude and direction
of the movement of each pixel in the scene. The current best per-
forming optical flow algorithm is PWC-Net [41], which uses a deep
convolutional neural network to estimate the optical flow, which
we use in our implementation.

There are other techniques that could be used to establish point
correspondences instead of the optical flow technique we chose
for C-14. For instance, many solutions to SLAM (simultaneous
localization and mapping) use keypoint matching techniques [18,
28]. The key difference between keypoint matching and optical
flow techniques is the number of matches made between frames.
In keypoint methods, a subset of locations in the image (anywhere
from a few dozen to hundreds or thousands of points) are matched
from one frame to another. In optical flow, every point in the image
is mapped to the next frame (unless it is occluded in the next frame).
Thus, optical flow can be seen as a dense keypoint method.

There are trade-offs between keypoint matching and optical flow
techniques. Keypoint matching is faster and works very well in
many situations. But if there is motion in the image, such as waving
leaves on trees, these can cause significant errors in the analysis
of motion by keypoints, especially when there are relatively few
keypoints identified. Because optical flow uses a much large number
of correspondences, such motion in the image may be identified
and removed [14]. The disadvantage of optical flow is the extra
time required to compute the additional correspondences and the
additional time required to process the larger number of points.

Based on our knowledge of the performance of sparse keypoint
matching algorithms and dense keypoint (optical flow) methods,
we chose to start with optical flow methods. However, the debate
about the trade-offs between dense and sparse keypoint matching
is an active area of research in computer vision. Recent results in

computer vision have shown that techniques with no explicit corre-
spondences may outperform keypoint matching [19, 47], something
we plan to investigate in the future.

Once optical flow has been estimated, we use it to estimate the
motion of the camera. Camera motion is decomposed into two
components, rotation and translation, each of which has three
dimensions. Consider the relationship between translation and
rotation of the camera.When a camera rotates, it only changes what
it is looking at, but objects at different depths do not appear to move
in relation to each other. However, when translating, new parts of a
scene become visible (disocclusions) or become hidden (occlusions),
and objects that are closer appear tomove faster than objects further
away (see Figure 5). Results from photogrammetry and computer
vision have shown that it is possible to disambiguate translation
from rotation and thus discover how the pose of the camera is
changing from frame to frame [13, 14, 34, 47]. We use a recent
camera pose estimator [14] to output a six-valued vector of the
camera motion—the three rotation parameters, pitch, yaw and roll,
and a three-dimensional unit vector defining the 3D translational
motion direction. Note that this unit vector gives the direction, but
not the magnitude (speed) of the translation direction.

The verifier computes the optical flow and motion estimation
on the untrusted video which outputs an estimate of the camera
motion on three translation axes and three rotation axes. It then
matches the camera motion to the ideal motion the drone should
have followed according to the motion program.

5.3 Translating Frame of Reference
Before making that match, we must translate the estimate of the
camera motion into the correct frame of reference. Recall that we
describe everything from the ideal drone frame of reference de-
scribed in Section 3. In the ideal drone frame of reference, the only
rotation is yaw (no pitch or roll), but the drone is free to translate
on three axes. However, the video from the drone is taken from
a frame of reference of the camera, which may be pitched by θ
degrees (generally it is pointed down towards the ground) with
respect to the ideal drone. The camera does not roll with respect
to the horizon as it has a gimbal, and thus the camera and the
ideal drone have no roll. The camera is also set to yaw follow mode
which means that the yaw generally matches the ideal drone with
some elasticity. In the interests of space, we omit the details of this
translation here and include it in the companion document of the
source code [8]. In general (such as in the manual motion programs
we use from Litchi), θ is typically not constant, while in the motion
program from our example algorithm, we fix θ at one value.

5.4 Manual Motion Programs
Figure 6 shows an example of the output of the motion estimator
and its corresponding drone motion from a Litchi flight plan, which
we use to recover the metadata as shown in Section 6.1. Both are
expressed in the ideal drone frame of reference.

The verifier takes as input two sequences of motions: (i) the result
of motion estimation, i.e. the sequence of rotations and translations
between two adjacent video frames and (ii) a series of motions
claimed in the metadata, which should be the same as the flight
plan, i.e. the sequence of rotations and translations between two

C-14: Assured Timestamps for Drone Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

adjacent waypoints. C-14 translates both into the same, ideal drone
frame of reference. Before comparing them, we need to align the
sequence from the motion estimator with that from the metadata,
making correspondences, and interpolating between points. For
each pair of adjacent waypoints, the verifier then checks the error
between the two aligned sequences.

Figure 6: Comparison of the camera motion extracted from the
video (left) and the Litchi flight plan (right). The camera motion
has been computed froma 3-minute video at a resolution of 384*216
and a frame rate of 2 FPS.

First, the verifier sums the yaw in the metadata between each
pair of waypoints and compares it to the sum of the yaw between
two waypoints from motion estimation computed from the video.
If the difference of the two sums are within a threshold for all pairs
of waypoints, then the verifier is satisfied.

Second, to check the translation, the verifier averages the transla-
tion vectors in the metadata between two waypoints and compares
it to the average translation vectors between two waypoints from
the motion estimation and checks if the angle between the two
resulting vectors is smaller than a threshold. Note that the average
of the translations does not have any physical meaning because
each translation vector is just the direction of translation expressed
in the ideal drone frame of reference at their respective times.

5.5 Example Algorithmic Motion Program
Our example algorithmic motion program instructs the drone to
complete several hotpoints, each of which can be decomposed into
yaw and y-axis translation, if translated into the ideal drone frame
of reference.

The drone travels a certain amount of yaw during each hotpoint.
To compute the yaw, the verifier samples frames, chosen uniformly
randomly in the interval, fits a curve to the samples using piecewise
linear fit, and then integrates the curve. It then checks whether
the total yaw (i.e. the estimated area under the curve) is within a
threshold of the target value of the hotpoint, and whether a large
percentage of the yaw samples are the correct sign (for a clockwise
hotpoint, the yaw should be positive, while for counterclockwise,
negative). We discuss the thresholds we use in Section 6.

During this motion, the drone is also flying in a positive or nega-
tive y-axis direction, which corresponds to a counter-clockwise or
clockwise hotpoint respectively. Similar to yaw, a large percentage
of the samples must be the correct sign.

Recall that the fly in/out motion is only there to bookend the
hotpoint motions. To verify the fly in/out motion, the verifier checks
that there is no appreciable yaw for a certain number of frames.

5.6 Sampling
To verify a 133 second video (3993 frames) at 4K UHD resolution
(3840x2160) and 29.97 fps, the computation time required for optical
flow and camera motion is 26 hours on a high-end Xeon processor
and a GPU.

We use four techniques to reduce the amount of computation
time needed to approximately 1 minute: video frame compression,
frame skipping, spatial sampling, and temporal sampling. Video
frame compression (aka frame resizing) simply reduces the resolu-
tion of frames: verifying lower resolution videos is faster, but may
prevent optical flow from recognizing corresponding pixels across
subsequent frames. Frame skipping reduces the frames per second
(fps) of the video, reducing computation as well, but skipping too
many frames poses similar difficulties for optical flow. However,
we have found skipping some frames generally has a positive effect
as it has a smoothing effect on the estimated motion (up to a point
where optical flow breaks down). Further, the motion estimator
does not need the optical flow for every pixel to infer the motion.
Instead, it can sample as well. In spatial sampling, to guarantee
sample pixels are spread across the frame, the estimator divides
each frame into a grid and randomly chooses one pixel from each
grid square. A larger grid reduces the number of samples, thus
reducing computation, but with diminishing returns.

For temporal sampling, C-14 only examines the motion in short
sequences of video frames (see Section 5.5). This is similar to skip-
ping frames, and the verifier samples after reducing the frame rate,
but it does so using uniform random sampling to prevent an attacker
from exploiting the reduced sampling.

We show in the results that for both manual and algorithmic
motion videos we can reduce the resolution by a factor of 144, skip
up to 15 frames/sec, and sample the optical flow in a 7x7 pixel
grid. For algorithmic motion videos, we can process just 4% of the
frames (skip 15 frames/sec and sample 60% of those) over the whole
video. This combination of techniques significantly reduces the
computation time.

5.7 Limitations
The system has been built and tuned around largely static scenes,
such as buildings, forests, etc. Drone flights in the USA cannot easily
be done legally over live subjects, which makes quantifying this
limitation difficult. However, techniques to remove independent
object motion from scenes [13, 14, 20, 43] could be used to increase
the robustness of C-14.

We also assume that the subject of the video is not mono-tone
or mono-textured, such as a field of snow or a featureless desert.
Such scenes pose difficulties for the optical flow algorithms we use
in C-14.

MobiCom ’20, September 21–25, 2020, London, United Kingdom Tang, et al.

6 IMPLEMENTATION
Our implementation of C-14 consists of two parts: a method for
capturing videos and metadata from flights, and a system for verify-
ing that videos match the intended motion program. We gathered
videos from two sources: (i) public videos of drone flights with flight
plans that we use as motion programs and (ii) an implementation
of our example algorithmic motion program using the DJI SDK [2].
All of the source code for the drone control program, the verifier,
as well as links to all of the data sets we use in the evaluation are
publicly available [8].

6.1 Manual Motion Videos
To collect manual motion programs and videos, we take advantage
of a popular drone flight planning application (Litchi) which allows
users to publicly post their flight plans on the Litchi website and the
resulting video on YouTube. Using videos from third parties helps
eliminate potential bias in data collection and gives us access to a
large variety of scenes (rural, nature, cities, etc.), lighting conditions,
and DJI drone models.

A disadvantage of this data set is that we do not have the meta-
data (GPS, heading, speed, etc.), so we do not know when in the
video the drone executed each motion (such as flying around a
waypoint). In a deployed C-14 system, we would have access to the
metadata as it would be submitted to the verifier with the video.
However, by using the visual correspondence between the video
and the flight plan, we manually label when each motion starts.

The Litchi flight plan consists of waypoints. Each pair of way-
points has a series of drone poses generated by Virtual Litchi Mis-
sion [6] describing the instructions (including longitude, latitude,
altitude, heading, and tilt and roll of the camera) the drone has to
follow during the transition between these two waypoints. From
those poses, the motions in the ideal drone frame of reference can
be derived. By definition, there is no tilt and no roll in the ideal
drone frame of reference. The yaw corresponds to the difference of
heading between two consecutive timestamps.

yaw(t ,t+1) = headinд(t+1) − headinд(t)

The translation along the z-axis is the difference of the altitudes.

translationz(t ,t+1) = altitude(t+1) − altitude(t)

To compute the translations along the x-axis and the y-axis
we use the geodesic distance with the WGS-84 ellipsoid model.
The translation along the x-axis is given by the distance between
the point (latt , lonдt+1) and the point (latt , lonдt). The transla-
tion along the y-axis is given by the distance between the point
(latt+1, lonдt) and the point (latt , lonдt). To express the translation
vector in the ideal drone frame of reference, we rotate the trans-
lation vector by the heading of the drone. We then normalize the
translation vectors to match the normalized translation vectors
coming from the motion estimator.

6.2 Algorithmic Motion Videos
To collect videos based on our algorithmic motion program, we
implemented the C-14 drone control program using the DJI Mobile
SDK [2], which is compatible with many DJI drones. We imple-
mented the drone control program using DJI’s mission control API

that uses a mobile device to program the drone with a series of
mission elements (waypoint, hotpoint, etc.).

One disadvantage of using the mission control API is that transi-
tions between motions (such as a hotpoint to a fly in/out motion)
have a multi-second pause. Future systems could eliminate this
pause by more directly controlling the drone through the virtual
stick [3].

Our interface to the DJI SDK was built into a React Native ap-
plication using a wrapper for the DJI SDK [5]. We contributed a
number of changes to the library to implement capabilities required
for C-14. Our C-14 program runs on Android and connects to the
drone viaWiFi and the DJI remote controller. The app, shown in Fig-
ure 7, has functions to create new motion programs for a particular
location chosen on a map and run the program on the drone.

Figure 7: This figure shows a screen from the drone control appli-
cation for the algorithmic motion videos running on an Android
device.

While working on the system, we discovered two issues: the
hotpoint missions in the DJI SDK do not accurately fly the given
number of degrees, with errors of tens of degrees. As C-14 depends
on the flight to be accurate, we re-implemented the hotpoint mis-
sion to measure the GPS location of the drone and execute hotpoints
more accurately. Nonetheless, as we show in Section 7.4, our imple-
mentation cannot perfectly fly the target number of degrees, but is
typically within 20 degrees.

6.3 Verifier
The verifier consists of three stages: computation reduction, seg-
mentation, and motion estimation & verification. We implemented
the verifier in Python. It invokes an optical flow estimator, PWC-
Net, optimized for GPUs [31]. We use a Matlab implementation of
the motion estimator [14] obtained from the authors.

6.3.1 Computation Reduction. As described in Section 5.6, we com-
press the video frame resolution and reduce the frame rate to speed
up verification. For frame compression, we use the function re-
size() with INTER_AREA interpolation from OpenCV. To reduce

C-14: Assured Timestamps for Drone Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

the frame rate, we maintain one frame among every s frames. For
example, if the skip rate is 5, we only maintain the frames whose
indexes are the multiples of 5, i.e. frame #0, #5, #10, ...

6.3.2 Segmentation. Using the metadata, the verifier divides each
video into segments, one for each expected motion in the program.
For manual videos, this is the time between waypoints, and for
algorithmic videos, this is each fly in/out, hotpoint, etc.). We do not
allow gaps between the motions as it would allow an attacker to
possibly modify the results. For instance, an attacker could modify
the metadata to truncate a hotpoint, which could reduce the yaw
value to match a target.

6.3.3 Motion Estimation & Verification. After segmentation, the
verifier checks if each segment conforms to its corresponding mo-
tion as described in Section 5. For algorithmic videos, we only
sample parts of the motions (temporal sampling) as described in
Section 5.6. The evaluation section shows how many samples are
needed to achieve good results. The verifier computes the optical
flow with spatial sampling for all of the segments (or samples for
algorithmic videos) first and then computes the motion estimation.
If any of the segments fail, the verification fails.

As discussed in Section 4.2, the verifier requires knowing the
FOV of the drone camera to approximate the ratio of focal length
to the sensor width. The ratio can be used to derive the focal length
in pixels, an essential parameter for motion estimator. For all of
the videos, we use a ratio of 0.82 as derived in the companion
document [8]. We use the same value for the manual motion videos
as we do not know the model of the drone used—fortunately, most
drones have a similar FOV. Nonetheless, we believe using this
“typical” value for the FOV likely leads to some additional error,
leading to a slightly larger threshold for these videos.

Also, we must add some amount of tolerance to the verifier to
account for inaccuracies in the drone control program, camera
motion estimation process and sampling noise. The angle tolerance
is measured in the evaluation section.

7 EVALUATION
To evaluate C-14, we collected two data sets: manually planned
flight videos taken from Litchi and algorithmically planned flight
videos taken using our custom drone program. We downloaded 10
manual flight plans and videos from Litchi and YouTube respec-
tively. The videos with links to the flight plans are shown in Table 1
and were collected internationally with a variety of drones. We
also collected eight manually planned videos ourselves. For our
example algorithm, we collected videos from a number of different
settings, at different altitudes, and different radius and number of
motions, shown in Table 2. We collected the videos using a DJI
Mavic Air drone. This is a relatively inexpensive drone ($900 USD)
with a three-axis gimbal, a 4K UHD (3840x2160) 30 fps camera, and
capable of speeds of 30 km/h in obstacle avoidance mode.

The videos we used are either largely static or contain some
limited motion—the Ice Rink video contains hockey players and
many of the videos have trees with leaves moving due to wind.
However, the motion does not comprise a large portion of the video
frames, something that would complicate estimating cameramotion
from optical flow. Unfortunately, US FAA regulations prohibit flying

drones over people or crowds so we were unable to gather videos
with large amounts of motion.

Table 1: This table lists the 18 flights used in our manually planned
data set. We did not create these flights and videos (except the
House video). The flight plans can be obtained from http://flylitchi.
com/hub?m=FlightID. The videos can be obtained from the Litchi
links by double clicking on the yellow "eyeball" icon. We provide a
full data set in the project webpage [8].

Name FlightID Length/Motions

Church j6uTc0Qvha 3:27/13
Vegetation mQUaT4UHLA 3:01/16
Small town bNqRdjSFmo 3:44/10
Garden qBV1h0veQ2 3:46/15
Village bHg7fNYTSW 3:27/13
Ruins u6UgiEDrp5 4:54/10
School cSBHZth7L2 2:22/7

Ice hockey mVCQVhqy0c 1:47/6
Tree IFaQrqidsy 2:08/8

Ice rink k7e4Hmi9Gm 1:06/7
House(x8) withheld approx. 0:56/8

Table 2: This table lists 26 flights in our algorithmic motion data
set with their altitude, the radius of the inner and outer circles, the
length of the video in seconds, and number of individual motions
(fly in/out+hotpoint). Roadway and House B were at the same loca-
tion with the same program. The remaining multiple videos used
different programs.

Name Altitude(m) Radius Length(s)/Motions

Forest Road 55 15/30 88/2
Creek 55 15/30 86/2

House A 55 15/30 119/2
Roadway(x2) 40 15/30 94,102/2
House B(x2) 80 20/40 91,106/2

Barn 40 15/30 78/2
Soccer Field 30 15/30 95/2
Farm Field 30 15/30 100/2

Snow House(x2) 30 15/30 101,106/2
Library(x3) 40 15/30 93,190,184/4
School(x4) 40 15/30 171,196,189,173/4
River(x3) 55 15/30 176,156,157/4

RecCenter(x2) 30 15/30 177,176/4
Parking lot(x2) 30 15/30 216,212/4

We ran the experiments on a cluster with various CPUs and
GPUs. All of the timing experiments were completed on a machine
with Xeon E5-2620 v3 2.40 GHz CPU with 6 cores (only 2 cores are
used), 8G of RAM, and an NVIDIA TITAN X GPU.

7.1 Resizing and Spatial Sampling
Frame resizing, frame skipping, and spatial sampling create a trade-
off between (i) the accuracy of the camera motion estimator and
(ii) the run time of the system. To evaluate the accuracy of the
camera motion estimator, we use three algorithmic motion videos
and their associated metadata, which records the drone’s location

http://flylitchi.com/hub?m=FlightID
http://flylitchi.com/hub?m=FlightID

MobiCom ’20, September 21–25, 2020, London, United Kingdom Tang, et al.

via GPS, as well as it’s heading via an onboard compass, and speed.
We compute the yaw errors of the drone at each frame between the
camera motion estimate and the metadata. The results are shown
in Figure 8.

Figure 8: This figure compares the computational time and the
yaw errors between themetadata and the cameramotion estimator
for different video resolutions and different spatial sampling. Each
data point is the average of three runs on a set of three videos.

This figure shows that the computational time increases with
the resolution of the video, while the error decreases exponentially.
Using these results as a guide, we choose to resize the videos to
320x180 (a factor of 144 fewer pixels compared to 4K UHD videos)
for the rest of the results in the paper.

Similarly, we evaluate the impact of spatial sampling. As shown
in Figure 8, all the spatial sampling values give very similar accuracy
results. Based on measuring the impact on the runtime of camera
motion (not shown), we choose a spatial sampling of 7 as beyond
that the motion estimator does not run appreciably faster.

7.2 Frame Rate
We collected videos at 30 fps, however accurate optical flow does
not require all of the frames and fewer frames means less processing
time. Using the same set of videos as before, we compute the yaw
error between the the camera motion estimate and the metadata.
The results are shown in Figure 9.

Figure 9: This figure shows the comparison of the yaw errors and
the computational time for different frame rates. We used 320x180
resolution and a spatial sampling of 7. Eachdata point is the average
of three runs on a set of videos.

In addition to computational time benefits, skipping frames re-
duces the yaw errors up to a point. This is because skipping frames
smooths the motion between sample points by measuring a larger
motion. However, once the system skips too many frames, opti-
cal flow has a harder time making pixel correspondences between
frames and the yaw error increases. Based on these results, we
choose to use a frame rate of 2 fps.

7.3 Sampling Rate
In algorithmic planned videos, we additionally use temporal sam-
pling to reduce the amount of computation required. To find a
reasonable rate, we sample a portion of the frames (after reducing
the frame rate), and compute the error between the yaw estimate
from the camera motion estimator and the motion program target
angle. A histogram of the results is shown in Figure 10. The results
show that below 60% sampling the yaw error grows outside of the
bounds of [-20,20]. Thus we fix the sampling rate at 60%.

0.2 0.4 0.6 0.8 1
Sampling rate

60

40

20

0

20

40

Ya
w

er
ro

r i
n

de
gr

ee
s

Figure 10: This figure shows the yaw error for various sampling
rates. For a sampling rate larger than 60%, the yaw errors remain
in the same range of values. A smaller sampling rate increases the
yaw error.

7.4 Yaw Error
Akey component of verifying videos is checking the total yaw of the
drone during a hotpoint motion in our algorithmic flight videos, or
between waypoints in manually planned ones, matches the motion
program. Even for valid videos there will be a difference between
the estimate computed from the video and the target angles due to
three sources: (i) GPS/Compass errors in the drone, (ii) imperfect
control of the drone, and (iii) error introduced by optical flow and
camera motion estimator. We discount (i) as GPS/Compass units
typically used in drones have a clear view of the sky and give
location and heading accuracy of 1-3 meters and 0.3 degrees [7].
To measure (ii), we compare the target angles to the angle flown
by the drone according to GPS. We measure (iii) by comparing the
estimate from motion estimator to the GPS reading. We measure
the total error by comparing the estimate from camera motion to
the target angle. We use the hotpoint motions (except House) from
the dataset in Table 1 (104 motions) and Table 2 (38 motions) and
plot the error in Figure 11.

C-14: Assured Timestamps for Drone Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

40 30 20 10 0 10 20 30 40
Yaw error in degrees

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Estimate vs Target **
Estimate vs Target *
Estimate vs GPS *
GPS vs Target *

Figure 11: (*: algorithmic, **:manual) This figure shows the distribu-
tion of yaw error for algorithmic and manual flights. For the algo-
rithmic ones, we decompose the error into the themotion estimator
error (Estimate vs GPS) and the drone control error (GPS vs target).

The results show that the drone is able to fly to an angle within
20 degrees of the target as measured by GPS/Compass. Nonetheless,
the drone under-flies the target angle consistently, whichwe hope to
improve in future implementations. When comparing the estimate
of the angle from camera motion to the GPS angle, we see that it
overestimateswhat the drone flew—these two errors partially cancel
each other out when comparing the overall results to the target
angles. Overall, thresholds on the order of [-20, 20] for algorithmic
flight videos and [-30,30] for manual flight videos will ensure that
a high percentage of yaw angles will be classified as correct.

Looking further into the data (Figures 10 and 11), we find that
all of the errors that fall outside of a threshold of 20 degrees are
due to a single hotpoint in five different videos: Forest Road, two
River videos, one Rec-Center, and one School video. We believe that
optical flow has trouble making accurate pixel correspondences due
to the textures in those videos (leafless trees in the first three and
snow in the fourth and fifth). However, if we change the frame rate
of these videos to 3 frames per second and 80% sampling, the error
decreases dramatically (and well within 20 degrees). In a deployed
system, we can rerun any detected negatives with higher sampling
rates, frame rates, and lower compression to truly verify negatives
and eliminate such a case, and we apply this technique in the next
subsection.

7.5 False Negative Rate
We evaluate the false negative rate with different thresholds in
both the algorithmic and manually planned settings. As detailed in
Section 4.3, a false negative occurs when a video is created using
a legal motion program or flight plan but is still rejected by the
verifier. For algorithmic flight videos, we sample at various rates,
processing each video 10 times as temporal sampling is random. We
plot the resulting false negative rate in Figure 12 for various yaw
thresholds and sampling rates. The results show that for algorithmic
flight videos we can achieve a 0 false negative rate at a sampling rate
of 60%, a frame rate of 2fps (with the exception of the five videos
mentioned previously at 80% sampling and 3fps), and a threshold
of 20 degrees for the yaw error.

10 20 30 40
Rotation error threshold (in degrees)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sa
m

pl
in

g
ra

te

0.0000.0200.0500.100

Figure 12: This figure shows the false negative rate with respect to
the rotation error threshold and the sampling rate for algorithmic
flights.

Verifying manually planned flight videos does not use temporal
sampling and is therefore deterministic. We plot the false negative
rate in Figure 13 using various thresholds for both the yaw error and
the translation vector deviation. With a threshold of 30 degrees for
the yaw rotations and a threshold of 35 degrees for the translations,
the system achieves a 0 false negative rate.

20 25 30 35 40 45
Rotation error threshold in (degrees)

20

25

30

35

40

45

An
gl

e
be

tw
ee

n
tra

ns
la

tio
n

ve
ct

or
s

 th
re

sh
ol

d
(in

 d
eg

re
es

)

0.000

0.100

0.200

0.300

Figure 13: This figure shows the false negative rate at a particular
rotation threshold and translation threshold for manual flights.

7.6 False Positive Rate
For algorithmic flight videos, as detailed in Section 4.3, a false
positive occurs when a video matches the motion program derived
from some other seed R. We confirm that each motion programs
in the dataset in Table 2, only matches its corresponding video.
However, given the size of the dataset, the analytical evaluation of
the false positive rate for algorithmically planned videos is a better
measure (see Section 4.3).

For manually planned flight videos, a false positive will only
occur if the motions found in a video from one flight plan matches
the motions in a different flight plan. We evaluate the chance of
this happening in Section 4.3 as well. However, the entity who
provides the challenge to the untrusted drone operator might not
want to create a completely random flight plan, but rather modify
an existing one by “enough” such that previous videos will not
match the new plan. We evaluate what “enough” is by modifying

MobiCom ’20, September 21–25, 2020, London, United Kingdom Tang, et al.

one waypoint in the flight plan. We use the chosen thresholds for
manually planned flight video, i.e. 30 degrees for the rotation angle
and 35 degrees for the translation angle. In Figure 14, we show
the false positive data points in terms of how large the maximum
rotation and translation difference between the computed angle
from the motion estimator and the target angle from the flight plan
are. This demonstrates that modifying a single waypoint in the
flight plan to either change the rotation or translation direction by
30 and 35 degrees or more respectively will eliminate false positives.

0 25 50 75 100 125 150
Yaw rotation angle error (in degrees)

20
40
60
80

100
120
140
160
180

Tr
an

sla
tio

n
ve

ct
or

 a
ng

le
 e

rro
r

 (i
n

de
gr

ee
s)

True negative
False positive

Figure 14: This figure demonstrates how much a flight plan must
change to eliminate false positives. If a single waypoint is changed
to produce 30 degrees more or less yaw and 35 degrees of average
translation vector direction deviation, no false positives occur.

We also confirm that subtle changes in a flight plan creates a
distinguishable video. We programmed our drone with four Litchi
flight plans, approximately 340 meters of flight, and took two videos
from each plan. The second flight plan differed from the first by
moving just one of the waypoints by 17.5 meters. The third moved
the same waypoint by 56 meters and the fourth by 63.5 meters. The
second flight plan produces a video that is a false positive with
the first flight plan, but the other two flight plans verify as true
negatives. This shows that moving waypoint by just 50 meters was
sufficient to prevent false positives.

7.7 Computational Time
We evaluate computational time using two cores of a Xeon CPU
and a TITAN X GPU. Processing a 59 second manually planned
flight video takes 91 seconds and a 190 second algorithmic planned
video (with sampling 60%) takes 158 seconds. 60% of the time is cam-
era motion estimation, 35% is optical flow and 5% for compression.
Verifying the motion is within the tolerance takes negligible time.
We did use a high-end machine with an expensive GPU for bench-
marking, but the computational resources needed for verification
will continue to decline in price. While cameras are increasing in
resolution, C-14 can operate on a relatively low resolution version
of the video, thus we expect verification to become less expensive
over time.

7.8 Overhead
One concern is how long it takes the drone to complete the motion
program. An assumption with manually planned flight programs is

that the motion program is part of the flight plan that would have
been used anyway, so there is no overhead for incorporating C-14.

For the algorithmically planned flights, there is an assumption
that the motion sequence’s center point is a subject of interest, thus
the motions are not pure overhead. However if we conservatively
take the entire motion sequence as overhead, the overhead is N ∗

(180/R + 2 ∗D/V), where there are N motions, the average rotation
is 180 degrees, the copter completes the hotpoint at R degrees/sec
and a fly in/out motion covers D meters between the outer and
inner radius atV m/s. Our copter can hotpoint at approximately R =
10 degrees/sec at a radius of 30m and can fly at V = 8.3meters/s.
So a flight with 4 motions at an outer and inner radius of 30m and
15m, will take 4 ∗ (180/10 + 2 ∗ 15m/8.3) = 86 seconds. However,
the drone must accelerate to full speed, does not stop on a dime,
and due to limitations of the DJI SDK pauses for many seconds
between motions. Thus, a 4 motion sequence takes approximately
3 minutes (see Table 2), which is 15% of the Mavic Air’s flight time.

8 RELATEDWORK
Drones have inspired a great deal of work in mobile systems, in-
cluding testbeds [9], control algorithms [16, 26], and detecting the
presence of a drone [30]. However, we are unaware of any system
that attempts to place a timestamp on a drone video.

A different property is that of “liveness”: the provider of a video
is the original creator of a video. In two systems, Vamos [35] and
Movee [36], Rahman et. al. verify a user’s claim they created a
video. When providing proof to a trusted third party, the user
provides acceleration measurements, which can be matched to
the movements in the video. In contrast, we show that a video was
taken in a particular time window, instead of proving ownership.

Providing assurance for videos does depend on the videos being
unaltered, specifically not spliced together from multiple videos.
The more dynamic the pattern is, the more difficult it is to create a
convincing fake. Much has beenmade recently of “deep fake” videos
that change what a person is saying, such as in Face2Face [42]. New
techniques can detect such alterations [27, 29, 44, 46]. Work has also
been conducted on detecting computer graphics [37]. We are not
aware of systems applied to drone videos, but once fakes emerge,
we believe researchers will combat them with similar techniques.

9 CONCLUSIONS
We consider C-14 to be an important first step in opening up the
problem to defenses, forensics, and anti-forensics research [15].
While it significantly raises the bar for assuring the age of drone
videos, the basic technique can be used for other purposes, such
as ensuring the quality of videos resulting from drone flights, or
reconstructing a flight plan from videos with no other information.

ACKNOWLEDGMENTS
The authors would like to thank to the anonymous Shepherd and
reviewers, who provided numerous suggestions on this paper. The
authors also would like to thank to Massachusetts Technology
Collaborative, which funds the cluster C-14 used for computation.

C-14: Assured Timestamps for Drone Videos MobiCom ’20, September 21–25, 2020, London, United Kingdom

REFERENCES
[1] 2018. Using Drones to Shoot War Zones. https://petapixel.com/2018/02/20/using-

drones-shoot-war-zones/.
[2] 2019. DJI Mobile SDK. https://developer.dji.com/mobile-sdk/documentation/

introduction/flightController_concepts.html.
[3] 2019. DJI Mobile SDK. https://developer.dji.com/mobile-sdk/documentation/

introduction/component-guide-flightController.html#virtual-sticks.
[4] 2019. Litchi. https://flylitchi.com/.
[5] 2019. React Native Wrapper Library For DJI Mobile SDK. https://github.com/

Aerobotics/react-native-dji-mobile.
[6] 2019. Virtual Litchi Mission. https://mavicpilots.com/threads/virtual-litchi-

mission.31109/.
[7] 2020. NEO-M8 u-blox M8 concurrent GNSS modules Data Sheet. https:

//www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_%28UBX-
15031086%29.pdf.

[8] 2020. Project website. https://github.com/zptang1210/C-14.
[9] Mikhail Afanasov, Alessandro Djordjevic, Feng Lui, and Luca Mottola. 2019. Fly-

Zone: A Testbed for Experimenting with Aerial Drone Applications. In Proceed-
ings of the 17th Annual International Conference on Mobile Systems, Applications,
and Services. ACM, 67–78.

[10] Javad Abbasi Aghamaleki and Alireza Behrad. 2016. Inter-frame video forgery
detection and localization using intrinsic effects of double compression on quan-
tization errors of video coding. Signal Processing: Image Communication 47 (2016),
289–302.

[11] Jamimamul Bakas and Ruchira Naskar. 2018. A Digital Forensic Technique
for Inter–Frame Video Forgery Detection Based on 3D CNN. In International
Conference on Information Systems Security. Springer, 304–317.

[12] Jamimamul Bakas, Ruchira Naskar, and Rahul Dixit. 2019. Detection and lo-
calization of inter-frame video forgeries based on inconsistency in correlation
distribution between Haralick coded frames. Multimedia Tools and Applications
78, 4 (2019), 4905–4935.

[13] Pia Bideau and Erik Learned-Miller. 2016. It’s Moving! A Probabilistic Model for
Causal Motion Segmentation in Moving Camera Videos. In European Conference
on Computer Vision (ECCV).

[14] Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, and Erik Learned-Miller.
2018. The best of both worlds: Combining cnns and geometric constraints
for hierarchical motion segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 508–517.

[15] Rainer Böhme and Matthias Kirchner. 2013. Counter-forensics: Attacking image
forensics. In Digital Image Forensics. Springer, 327–366.

[16] Endri Bregu, Nicola Casamassima, Daniel Cantoni, Luca Mottola, and Kamin
Whitehouse. 2016. Reactive control of autonomous drones. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications, and Services.
ACM, 207–219.

[17] Sintayehu Dehnie, Taha Sencar, and Nasir Memon. 2006. Digital image forensics
for identifying computer generated and digital camera images. In Image Processing,
2006 IEEE International Conference on. IEEE, 2313–2316.

[18] Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD-SLAM: Large-scale
direct monocular SLAM. In European conference on computer vision. Springer,
834–849.

[19] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. 2019. Depth
from videos in the wild: Unsupervised monocular depth learning from unknown
cameras. In Proceedings of the IEEE International Conference on Computer Vision.
8977–8986.

[20] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. 2017. Fusionseg: Learning to
combine motion and appearance for fully automatic segmentation of generic ob-
jects in videos. In 2017 IEEE conference on computer vision and pattern recognition
(CVPR). IEEE, 2117–2126.

[21] Shan Jia, Zhengquan Xu, Hao Wang, Chunhui Feng, and Tao Wang. 2018. Coarse-
to-fine copy-move forgery detection for video forensics. IEEE Access 6 (2018),
25323–25335.

[22] Rong Jin, Yanjun Qi, and Alexander Hauptmann. 2002. A probabilistic model
for camera zoom detection. In Object recognition supported by user interaction for
service robots, Vol. 3. IEEE, 859–862.

[23] Staffy Kingra, Naveen Aggarwal, and Raahat Devender Singh. 2017. Inter-frame
forgery detection in H. 264 videos using motion and brightness gradients. Multi-
media Tools and Applications 76, 24 (2017), 25767–25786.

[24] Vincent Lenders, Emmanouil Koukoumidis, Pei Zhang, and Margaret Martonosi.
2008. Location-based trust for mobile user-generated content: applications,
challenges and implementations. In Proceedings of the 9th workshop on Mobile
computing systems and applications. ACM, 60–64.

[25] Vishnu Vardhan Makkapati. 2007. Robust Camera Pan and Zoom Change Detec-
tion Using Optical Flow.

[26] Wenguang Mao, Zaiwei Zhang, Lili Qiu, Jian He, Yuchen Cui, and Sangki Yun.
2017. Indoor follow me drone. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 345–358.

[27] Falko Matern, Christian Riess, and Marc Stamminger. 2019. Exploiting visual
artifacts to expose deepfakes and face manipulations. In 2019 IEEE Winter Appli-
cations of Computer Vision Workshops (WACVW). IEEE, 83–92.

[28] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015. ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE transactions on
robotics 31, 5 (2015), 1147–1163.

[29] Huy H Nguyen, Junichi Yamagishi, and Isao Echizen. 2019. Capsule-forensics:
Using capsule networks to detect forged images and videos. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2307–2311.

[30] Phuc Nguyen, Hoang Truong, Mahesh Ravindranathan, Anh Nguyen, Richard
Han, and Tam Vu. 2017. Matthan: Drone presence detection by identifying
physical signatures in the drone’s rf communication. In Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and Services.
ACM, 211–224.

[31] Simon Niklaus. 2018. A Reimplementation of PWC-Net Using PyTorch. https:
//github.com/sniklaus/pytorch-pwc.

[32] Feng Pan, JiongBin Chen, and JiWu Huang. 2009. Discriminating between pho-
torealistic computer graphics and natural images using fractal geometry. Science
in China Series F: Information Sciences 52, 2 (2009), 329–337.

[33] Fei Peng, Jiao-ting Li, and Min Long. 2015. Identification of Natural Images
and Computer-Generated Graphics Based on Statistical and Textural Features.
Journal of forensic sciences 60, 2 (2015), 435–443.

[34] Clement Pinard, Laure Chevalley, Antoine Manzanera, and David Filliat. 2018.
Learning structure-from-motion from motion. In The European Conference on
Computer Vision (ECCV) Workshops.

[35] Mahmudur Rahman, Mozhgan Azimpourkivi, Umut Topkara, and Bogdan Car-
bunar. 2017. Video Liveness for Citizen Journalism: Attacks and Defenses. IEEE
Transactions on Mobile Computing 16, 11 (2017), 3250–3263.

[36] Mahmudur Rahman, Umut Topkara, and Bogdan Carbunar. 2013. Seeing is not
believing: Visual verifications through liveness analysis using mobile devices. In
Proceedings of the 29th Annual Computer Security Applications Conference. ACM,
239–248.

[37] Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. 2017.
Distinguishing computer graphics from natural images using convolution neural
networks. In 2017 IEEE Workshop on Information Forensics and Security (WIFS).
IEEE, 1–6.

[38] Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J. Black. 2019. Attacking
Optical Flow. arXiv:1910.10053 [cs.CV]

[39] Stefan Saroiu and Alec Wolman. 2009. Enabling new mobile applications with
location proofs. In Proceedings of the 10th workshop on Mobile Computing Systems
and Applications. ACM, 3.

[40] Raahat Devender Singh and Naveen Aggarwal. 2017. Detection of upscale-crop
and splicing for digital video authentication. Digital Investigation 21 (2017),
31–52.

[41] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. 2018. PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume. In CVPR.

[42] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and
Matthias Nießner. 2016. Face2face: Real-time face capture and reenactment
of rgb videos. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2387–2395.

[43] P. Tokmakov, K. Alahari, and C. Schmid. 2017. Learning Motion Patterns in
Videos. In CVPR.

[44] Weihong Wang and Hany Farid. 2009. Exposing digital forgeries in video by
detecting double quantization. In Proceedings of the 11th ACM workshop on Multi-
media and security. ACM, 39–48.

[45] John Wihbey. 2017. The Drone Revolution - UAV-Generated Geodata Drives
Policy Innovation. Land Lines Magazine (October 2017), 14–21.

[46] Xin Yang, Yuezun Li, and Siwei Lyu. 2019. Exposing deep fakes using inconsistent
head poses. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 8261–8265.

[47] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. 2017. Unsu-
pervised learning of depth and ego-motion from video. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1851–1858.

[48] Zhichao Zhu and Guohong Cao. 2011. Applaus: A privacy-preserving location
proof updating system for location-based services. In 2011 Proceedings IEEE
INFOCOM. IEEE, 1889–1897.

https://petapixel.com/2018/02/20/using-drones-shoot-war-zones/
https://petapixel.com/2018/02/20/using-drones-shoot-war-zones/
https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html
https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html
https://developer.dji.com/mobile-sdk/documentation/introduction/component-guide-flightController.html#virtual-sticks
https://developer.dji.com/mobile-sdk/documentation/introduction/component-guide-flightController.html#virtual-sticks
https://flylitchi.com/
https://github.com/Aerobotics/react-native-dji-mobile
https://github.com/Aerobotics/react-native-dji-mobile
https://mavicpilots.com/threads/virtual-litchi-mission.31109/
https://mavicpilots.com/threads/virtual-litchi-mission.31109/
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_%28UBX-15031086%29.pdf
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_%28UBX-15031086%29.pdf
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_%28UBX-15031086%29.pdf
https://github.com/zptang1210/C-14
https://github.com/sniklaus/pytorch-pwc
https://github.com/sniklaus/pytorch-pwc
https://arxiv.org/abs/1910.10053

	Abstract
	1 Introduction
	2 Trust and Threat Model
	3 Drone Background
	4 Motion Program
	4.1 Manual Programs
	4.2 Example Algorithmic Programs
	4.3 Probability of False Positives/Negatives
	4.4 Field of View Parameter

	5 Verifier
	5.1 Verifying the Metadata
	5.2 Optical Flow and Motion Estimation
	5.3 Translating Frame of Reference
	5.4 Manual Motion Programs
	5.5 Example Algorithmic Motion Program
	5.6 Sampling
	5.7 Limitations

	6 Implementation
	6.1 Manual Motion Videos
	6.2 Algorithmic Motion Videos
	6.3 Verifier

	7 Evaluation
	7.1 Resizing and Spatial Sampling
	7.2 Frame Rate
	7.3 Sampling Rate
	7.4 Yaw Error
	7.5 False Negative Rate
	7.6 False Positive Rate
	7.7 Computational Time
	7.8 Overhead

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

