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Abstract. Mitral regurgitation (MR) is a heart valve disease with po-
tentially fatal consequences that can only be forestalled through timely
diagnosis and treatment. Traditional diagnosis methods are expensive,
labor-intensive and require clinical expertise, posing a barrier to screen-
ing for MR. To overcome this impediment, we propose a new semi-
supervised model for MR classification called CUSSP. CUSSP operates
on cardiac magnetic resonance (CMR) imaging slices of the 4-chamber
view of the heart. It uses standard computer vision techniques and con-
trastive models to learn from large amounts of unlabeled data, in con-
junction with specialized classifiers to establish the first ever automated
MR classification system using CMR imaging sequences. Evaluated on a
test set of 179 labeled – 154 non-MR and 25 MR – sequences, CUSSP
attains an F1 score of 0.69 and a ROC-AUC score of 0.88, setting the
first benchmark result for detecting MR from CMR imaging sequences.

1 Introduction

Mitral regurgitation. Mitral regurgitation (MR) [7] is a valvular heart disease in
which the mitral valve does not close completely during systole when the left
ventricle contracts, causing regurgitation – leaking of blood backwards – from the
left ventricle (LV), through the mitral valve, into the left atrium (LA) – Figure 1.
MR can be caused by either organic or functional mechanisms [6], with organic
MR leading to atrial and annular enlargement and functional MR increasing
atrial pressure. As MR progresses, it may cause arrhythmia, shortness of breath,
heart palpitations and pulmonary hypertension [14]. Left undiagnosed and un-
treated, MR may cause significant hemodynamic instability and congestive heart
failure which can lead to death [17], while acute MR usually necessitates imme-
diate medical intervention [22]. Thus, early detection and assessment of MR are
crucial for optimal treatment outcomes, with the best short-term and long-term
results obtained in asymptomatic patients operated on in advanced repair centers
with low operative mortality (< 1%) and high repair rates (≥ 80− 90%) [7].
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Fig. 1. Three cardiovascular magnetic resonance (CMR) images showing the long-axis
four-chamber view of the heart. Left: a heart with normal mitral valve. Middle: a heart
with normal mitral valve when the valve leaflets are open. Right: a heart with mitral
regurgitation. The (red) dotted line denotes the mitral valve.

MR diagnosis. MR is often only detected following symptom onset. Among pa-
tients with asymptomatic MR, quantitative grading of mitral regurgitation is a
powerful indicator for clinical treatment such as immediate cardiac surgery [8].
Clinically, MR is usually diagnosed with doppler echocardiography, with car-
diovascular magnetic resonance (CMR) subsequently used to assess the MR
severity and to accurately quantify the regurgitant volume, one of the indicators
of severity [20]. Most studies that have evaluated CMR for assessing the mi-
tral regurgitant volume use the difference between left ventricular stroke volume
(LVSV) and forward stroke volume (FSV). LVSV is usually estimated with the
short-axis (SA) view CMR – a 4-D tensor – while FSV is most commonly de-
termined by aortic phase-contrast velocity-encoding images [20]. This diagnosis
and assessment process requires continuous involvement from expert clinicians
along with specific order and post-processing for the phase-contrast images of
the proximal aorta or main pulmonary artery during the acquisition of the CMR
data. The associated expense with this standard diagnostic procedure thus poses
an obstacle to the large-scale screening for MR in the general population.

Towards machine learning for MR diagnosis. Although quantitatively assessing
mitral regurgitant volume requires specific CMR imaging sequences and expert
analysis, four-chamber (4CH) CMR images provide a comprehensive view of all
four heart chambers, including the mitral valve as it opens and closes, as shown
in Figure 1. Thus, we propose to train a model that uses 4CH CMR to automati-
cally diagnose MR, making wide screening possible. As training data, we use the
long axis 4CH CMR imaging data from the UK Biobank [1], from over 30,000
subjects, out of which N=704 were labeled by an expert cardiologist. While the
4CH view has the potential to identify MR when the regurgitant jet is visible,
the imaging is not accompanied by comprehensive annotations or diagnoses of
diseases/conditions for individual patients. This is in contrast to Zhang et al.
[27], where tens of thousands of annotated color doppler echocardiography im-
ages are available for MR assessments. To overcome this difficulty, we rely on
weakly supervised and unsupervised methods. Weakly supervised deep learning
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Fig. 2. Example of the segmentation outputs of the long axis 4CH (left), 2CH (middle)
CMR view imaging data and the short axis (right) CMR imaging data.

has proved successful in detecting other heart pathologies. Specifically, Fries et
al. [9] proposed a weakly supervised deep learning method (CNN-LSTM) to clas-
sify aortic valve malformation from the aortic valve cross section CMR present in
the UK Biobank, wherein the critical feature of the aortic valve opening shape
was easily extracted from the aortic valve cross section CMR imaging data.
Meanwhile, Vimalesvaran et al. [21] proposed a deep learning based pipeline for
detecting aortic valve pathology using 3CH CMR imaging from three hospitals.
The data set was fully annotated with landmarks, stenotic jets and regurgitant
jets. Unlike these prior two studies, we faced the challenge of extracting complex
mitral valve regurgitant features from 4CH CMR images with no annotations
for landmarks, regurgitant jets or easily extractable features, and only a small
amount of binary MR labels. To the best of our knowledge, this is the first study
on identifying MR using the 4CH CMR imaging data in an automated pipeline.

Our approach. We propose an automated five stage pipeline named Cardio-
vascular magnetic resonance U-Net localized Self-Supervised Predictor (CUSSP).
Our approach incorporates several different preexisting neural network architec-
tures in the pipeline, discussed in Section 2.3, to address the challenges inherent
to the MR classification task. Specifically, we use a U-Net [18] to perform seg-
mentation of the heart chambers, which we then use to localize the area around
the mitral valve. We apply histogram equalization to enhance the appearance
of the valve. We then use a Barlow Twins [26] network to learn, without su-
pervision, representations of the blood flow around the valve, and a Siamese
network [25] to learn differences between instances of MR and non-MR. During
training, CUSSP leverages a large amount of unlabeled CMR images, and mini-
mal supervision, in the form of a comparatively small set of MR labels manually
annotated by cardiologist. However, at test time CUSSP is fully automated.

Contribution. Our work is the first study on automated detection of mitral regur-
gitation (MR) from CMR, providing a benchmark for the classification of MR
in an automated pipeline from long axis 4CH CMR images. As a screening tool,
it has the potential to support hospital diagnostics and improve patient care.
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Fig. 3. Overview of the CNN-LSTM method pipeline for MR classification.

2 Methods

2.1 Segmentation of the cardiac magnetic resonance images

The CMR imaging data from the UK Biobank that is relevant to MR detection
includes long-axis 2-chamber (2CH) view and long-axis 4-chamber (4CH) view,
which are all shown in Figure 2. In addition, the short-axis view CMR provides
accurate description of the left ventricle. Both long-axis views and short-axis
view are used to estimate heart measurements relevant to the MR detection
task, while only the long-axis 4CH view is used for the deep learning models.

As a pre-processing step, we performed semantic segmentation on the CMR
imaging data, using masks (Figure 2) generated by a U-Net [18] segmentation
model to highlight regions of interest to MR classification. U-Net is currently
the leading model architecture for medical imaging segmentation, with various
U-Net variants developed for different applications. TernausNet [12] is a U-Net
variant that reshapes the U-Net encoder to match the VGG11 architecture, al-
lowing it to use pre-trained VGG11 [19] model weights for faster convergence
and improved segmentation results. While most medical imaging segmentation
models are trained using supervised learning, weakly supervised segmentation
methods such as VoxelMorph augmented segmentation [28], ACNN [16], CCNN
[13], graph-based unsupervised segmentation [15], and GAN-based unsupervised
segmentation [23,24] also produce comparable segmentation results. For the seg-
mentation of the 4CH, 2CH, SA, and aorta view CMR imaging dataset from the
UK Biobank, Bai et al. [2] offer a supervised segmentation model.

We manually labeled 100 CMR images for each view and trained a supervised
segmentation model with the TernausNet [12] architecture. Then, segmentation
outputs, shown in Figure 2, are used to compute measurements of cardiac struc-
ture and function for the four chambers of the heart, as summarized in Table 1.
The short-axis view CMR segmentation output is used to estimate the left ven-
tricle and right ventricle measurements, while the long-axis 4CH view and 2CH
view outputs are used to estimate the left atrium and right atrium measure-
ments. Specifically, the left atrial volume is estimated using the biplane method
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with segmentation of both the 2CH and 4CH view, while the right atrial volume
is estimated using single plane method with segmentation of the 4CH view.

2.2 Baseline models

We first considered a random forest (RF) classifier [3] trained for MR classifica-
tion on the tabular heart measurements in Table 1. We divided the 18 features
by body surface area (BSA) prior to training the RF.

Next, we developed a deep learning baseline model for MR classification, a
weakly supervised CNN-LSTM, following the principles in Fries et al. [9] and
operating on the 4CH CMR imaging data. Fries et al. [9] used CMR imaging
sequences from the UK Biobank, however, the objective of their work was the
identification of aortic valve malformations. Their proposed deep learning ar-
chitecture – CNN-LSTM – used DenseNet [11] as the CNN of choice to encode
CMR imaging frames and the LSTM to encode embeddings of all frames within
each sequence for a final classification of aortic valves into tricuspid (normal)
and bicuspid (pathological). We point out that our MR classification problem is
considerably more challenging due to the lack of direct view of the mitral valve
in the CMR imaging data. Moreover, the flow information provided from the
4CH view CMR imaging data is difficult to learn and encode in the model, an
issue which we alleviated in the CUSSP framework.

The CNN-LSTM pipeline, shown in Figure 3, includes an image segmen-
tation model, and an image classification model. It uses the 4CH CMR from
the UK Biobank. The CMR data is center-cropped using the center of mass of
the CMR imaging frames. The resulting sequence provided to the CNN-LSTM,
which generates probabilistic labels of MR for the sample.

In the CNN-LSTM model architecture, the CNN serves as the frame encoder,
which encodes each frame of each sequence into a representation vector. The
model uses DenseNet-121 pre-trained on ImageNet as the CNN. To better learn
the attention span of the frame encoder, we added an attention layer to the
DenseNet-121 after the first convolutional layer. After the bi-directional LSTM,
a multi-layer perceptron (MLP) performs the final classification.

Left Atrium Right Atrium Left Ventricle Right Ventricle
Vol Max (mL) Vol Max (mL) End Systolic Vol (mL) End Systolic Vol (mL)
Vol Min (mL) Vol Min (mL) End Diastolic Vol (mL) End Diastolic Vol (mL)

Stroke Vol (mL) Stroke Vol (mL) Stroke Vol (mL) Stroke Vol (mL)
Eject. fraction (%) Eject. fraction (%) Eject. fraction (%) Eject. fraction (%)

Cardiac Output (L/min)
Mass (g)

Table 1. Cardiac measurements derived from the semantic segmentation of the CMR.



6 K. Xiao et al.

Segmentation 
Model

Localization 
algorithm Cropping Histogram 

Equalization

embedding

Empirical cross-corr

projector

embedding

Barlow Twins 
Network

Contrastive loss

representation

Siamese 
Network

MLP

ResNet
18

prediction

MLP 
Classifier

4CH CMR Images

representation

ResNet
18

ResNet
18

ResNet
18

ResNet
18

projector

32 x 32 32 x 32

Fig. 4. Overview of the CUSSP pipeline for MR classification, with its 5 steps: (1)
segmentation, (2) localization, (3) cropping, (4) equalization, and (5) prediction. In
particular, the prediction stage of the CUSSP method contains three stages: (i) the
feature encoder is trained in the Barlow-Twins network with unlabeled imaging data
set, (ii) the feature encoder is fine-tuned in a siamese network with labeled imaging
data set, and (iii) the feature encoder is assembled with a MLP, then trained with
labeled imaging data set for the classification task of MR.

2.3 The CUSSP framework

Conceptualization. To better encode the blood flow information relevant to
MR classification from the 4CH CMR view, we investigated self-supervised repre-
sentation learning methods which can leverage all the unlabeled CMR sequences
present in the UK Biobank. Typically, self-supervised representation learning for
visual data involves maximizing the similarity between representations of various
distorted versions of a sample. Among the many self-supervised architectures,
SimCLR [5], SwAV [4], and BYOL [10], we chose Barlow Twins [26], since it does
not require large batches. With the labeled data, our siamese network compares
the representation differences between classes by sampling two inputs from dif-
ferent classes as performed in [25]. Thus, our CUSSP MR classification pipeline
takes advantage of both self-supervised and supervised representation learning.
Test-time pipeline. Our CUSSP method consists of five main steps, shown in
Figure 4, the first four for pre-processing, and the last one for prediction, with
three stages using network components trained for MR classification. The pre-
processing of the CMR imaging sequence is shown in Figure 8 in the Appendix.
We used the segmentation model in 2.1 to locate the mitral valve and determine
the orientation of the left ventricle using the contours and centers of the heart
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chambers derived from the segmentation output. We then cropped a square
patch with the mitral valve at its center positioned horizontally. After cropping,
we applied histogram equalization to the patch with the pixel intensity range of
the left atrium. The resulting patches are used by the downstream networks.

Training process. The first step involves training a representation encoder
in a Barlow Twins network using over 30,000 unlabeled pre-processed sequences.
We chose Barlow Twins for its versatility and robustness to distortions such as
blurring, different sizes of the relevant areas and intensity variations, which are
common in CMR images. We used a ResNet-18 model pretrained on ImageNet as
an encoder. Its output vector is 512-dimensional. We selected ResNet-18 because
we found that more complex encoders would easily memorize the limited labeled
dataset, reducing the effectiveness of the embeddings. The projector network
has three fully connected layers, all with 2048 output units. After training the
encoder with the unlabeled dataset, it is fine-tuned in a siamese network using a
comparatively smaller labeled set, as indicated in Section 3. During training, two
sequences are sampled from the labeled dataset, with the first being non-MR and
the second being either MR or non-MR. The two sequences are passed through
the representation encoder to obtain embeddings, which are then used to calcu-
late the contrastive loss. The model is trained to maximize contrastive loss when
the two samples are non-MR and MR and to minimize it when both are non-MR.
Contrastive learning helps because it uses the very limited labels in our posses-
sion to obtain representations focused on encoding differences between classes.
Once the representation encoder is fine-tuned in the siamese network, it is com-
bined with a 3-layer multi-layer perceptron (MLP) network to form a classifier,
which is trained on the same labeled dataset. To improve computation efficiency
and training accuracy, we also tested the framework using a smaller window of
25 frames, since MR occurs between diastole and systole. The code is available
at https://github.com/Information-Fusion-Lab-Umass/CUSSP_UKB_MR.

3 Experiments and Discussion

Experimental setup. 4CH CMR images were used to conduct experiments
with both the CNN-LSTM method and the CUSSP method. We used a total of
704 labeled sequences, with 525 sequences selected for the training set, including
452 labeled as non-MR and 73 labeled as MR. The remaining 179 sequences were
used for testing, with 154 labeled as non-MR and 25 labeled as MR. Consider-
ing the substantial class imbalance, we opted to use F1 score as our primary
evaluation metric, along with precision and recall.
Random Forest Classification Results. The random forest model is trained
with 10-fold cross validation, with a random search over a parameter grid of
10-100 estimators, 2-16 depth, 2-8 min samples. The optimal hyper-parameter
setting found is: 20 estimators, log2 max features, max depth of 9 and a minimum
of 2 samples per leaf node. The best results obtained are presented in Table 2.
CNN-LSTM Classification Results. We conducted experiments on the Dense-
Net-LSTM classification model using various input image sizes, attention layer

https://github.com/Information-Fusion-Lab-Umass/CUSSP_UKB_MR
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Model Pos. Acc Neg. Acc Precision Recall F1 AUC
RF 0.09 0.99 0.43 0.09 0.14 0.58
CNN-LSTM 0.53 0.86 0.45 0.53 0.44 0.72
CUSSP-1 0.38 0.87 0.29 0.38 0.32 0.65
CUSSP-2 0.29 0.87 0.25 0.29 0.27 0.63
CUSSP-3 0.38 0.90 0.35 0.38 0.36 0.66
CUSSP-SIAM 0.55 0.96 0.66 0.55 0.60 0.80
CUSSP-SIAM-25 0.62 0.96 0.8 0.62 0.69 0.88

Table 2. Experimental results for Random Forest (RF) baseline, CNN-LSTM and
CUSSP. CUSSP-1, CUSSP-2 and CUSSP-3 are trained with the BarlowTwins-MLP
model without fine-tuning with the Siamese network. CUSSP-SIAM and CUSSP-
SIAM-25 are trained with the BarlowTwins-Siamese-MLP model.

configurations, and masks. The best CNN-LSTM model attains a F1-score of
0.44, shown in Table 2, with further information on the performance under other
settings summarized in the Appendix.

CUSSP Classification Results

Fig. 5. The ROC AUC curve and the precision-
recall curve of CUSSP-SIAM-25 from Table 2.
The annotated coordinates on the precision-recall
curve plot are (recall, precision, F1-score, threshold).

We evaluated various con-
figurations of the CUSSP
model, to determine the rela-
tive benefits of different com-
ponents. In the first config-
uration, the ResNet18 model
was combined with a 3-layer
MLP to train a classifier us-
ing the labeled training set
after being trained in the
Barlow-Twins network with
the unlabeled dataset. Dur-
ing the classifier training, the
cross-correlation loss from the
Barlow-Twins network and
the cross-entropy loss from
the binary classification were
weighted using three different

configurations. For CUSSP-1 the cross-correlation loss has a weight of 0.9, while
the cross-entropy loss has a weight of 0.1. For CUSSP-2, the weights are 0.5 and
0.5, while for CUSSP-3 they are 0.1 and 0.9, respectively. Both CUSSP-1 and
CUSSP-3 outperform CUSSP-2, though the performance is low, indicating the
importance of fine-tuning, described below.

In the second scenario, we fine-tuned the encoder with a siamese network
to enhance the quality of the encoded representations after training the Barlow
Twins network. To prevent overfitting of the model and to limit its capacity,
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we froze the parameters of all layers except the last block of the ResNet18 en-
coder when training the siamese network and the classifier. The resulting model,
CUSSP-SIAM, showed a significant improvement in performance. In the final
configuration CUSSP-SIAM-25, the number of frames in the training sequences
was truncated from 50 frames to the 25 frames that correspond to the interval
when mitral regurgitation occurs. The results are summarized in Table 2, while
the ROC-AUC curve for CUSSP-SIAM-25 are shown in Figure 5.

CUSSP attains an F1 score of 0.69, and an ROC AUC of 0.88, outperforming
the CNN-LSTM approach. This is dues to CUSSP’s focus on the area around
the valve to capture the blood flow through the valve, combining the advantages
of Barlow Twins and contrastive learning. Meanwhile, the CNN-LSTM relies
on attention, which does not seem to work as well. Additionally, using only
the frames relevant to the task reduces the number of parameters and makes the
model sample-efficient. This is essential for attaining high performance in the low
label setting. In the future, we aim to use the pipeline on the large unlabeled
dataset to scan for and adjudicate more MR cases.

In conclusion, we present the first automated mitral regurgitation classifica-
tion system using CMR imaging sequences. The CUSSP model we developed,
trained with limited supervision, operates on 4CH CMR imaging sequences and
attains an F1 score of 0.69 and an ROC AUC of 0.88, opening up the opportunity
for large-scale screening for MR.
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Appendix

Fig. 6. Overview of the dataset. Top: Example of the long axis 4CH (left), 2CH (mid-
dle) CMR view imaging data and the short axis (right) CMR imaging data. Bottom:
Example of the segmentation outputs of the long axis 4CH (left), 2CH (middle) CMR
view imaging data and the short axis (right) CMR imaging data.
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Fig. 8. Detailed overview of the pre-processing steps for CUSSP. Top: Example of the
4CH CMR images in the original contrast (left), the left atrium histogram equalized
contrast (middle), and the cropped patch histogram equalized contrast (right), with
blue contours outline the left atrium, and the red square boxes outline the patch to
crop. Bottom: Example of the cropped mitral valve patch as outlined in the red square
boxes in the top row.
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