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Abstract. The correction of multiplicative bias in magnetic resonance images is
an important problem in medical image processing, especially as a preprocessing
step for quantitative measurements and other numerical procedures.Most previ-
ous approaches have used a maximum likelihood method to increase the prob-
ability of the pixels in a single image by adaptively estimating a correction to
the unknown image bias field. The pixel probabilities are defined either in terms
of a pre-existing tissue model, or nonparametrically in terms of the image’sown
pixel values. In both cases, the specific location of a pixel in the image does not
influence the probability calculation. Our approach, similar to methods of joint
registration, simultaneously eliminates the bias from a set of images of the same
anatomy, but from different patients. We use the statistics from the same loca-
tion across different patients’ images, rather than within an image, to eliminate
bias fields from all of the images simultaneously. Evaluating the likelihood of a
particular voxel in one patient’s scan with respect to voxels in the same location
in a set of other patients’ scans disambiguates effects that might be due toeither
bias fields or anatomy. We present a variety of “two-dimensional” experimental
results (working with one image from each patient) showing how our method
overcomes serious problems experienced by other methods. We also present pre-
liminary results on full three-dimensional volume correction across patients.

1 Introduction

The problem of bias fields in magnetic resonance (MR) images is an important problem
in medical imaging. We illustrate the problem in Figure 1 using a synthetic image from
BrainWeb [10] and an artificial bias field. When a patient is imaged in the MR scan-
ner, the goal is to obtain an image which is a function solely of the underlying tissue
(left of Figure 1). However, typically the desired anatomical image is corrupted by a
multiplicative bias field (second image) that is caused by engineering issues such as
imperfections in the radio frequency coils used to record the MR signal. The result is a
corrupted image (third image). (See [1] for background information on bias fields.) The
goal of bias correction is to estimate the uncorrupted imagefrom the corrupted image.



Fig. 1: On the left is an idealized mid-axial MR image of the human brain with little or no bias
field. The second image is a simulated low-frequency bias field. It has been exaggerated for ease
of viewing. The third image is the result of pixelwise multiplication of the image by the bias field.
On the right is the set of basis images used to parameterize smooth bias fields for the slice-based
algorithm

Radiologists appear to be remarkably immune to the effects of bias fields under
many circumstances.1 This is probably because radiologists seem to make mostlyrela-
tive intensityjudgments based upon local image information. They use so-called window-
level adjustments to optimize local contrast for discriminating various properties of the
tissues in a specific region. Bias fields, however, are a majorproblem for automated
computer applications like registration, segmentation orpre-screening which depend
upon similar tissues having consistent values across a scan. In these applications, the ac-
tual numeric brightness value assigned to a tissue is critical and directly affects whether
such algorithms will work.

A variety of statistical methods have been proposed to address this problem. Wells et
al. [9] developed a statistical model using a fixed number of tissues, with the brightness
distribution for each tissue type (in a bias-free image) represented by a one-dimensional
Gaussian distribution or by a nonparametric distribution.An expectation-maximization
(EM) procedure was then used to simultaneously estimate thebias field, the tissue type,
and the residual noise. While this method works well in many cases, it has several
drawbacks: (1) Models must be developeda priori for each type of acquisition (for each
different setting of the MR scanner), for each new area of thebody, and for different
patient populations (like infants and adults). (2) Models must be developed from “bias-
free” images, which may be difficult or impossible to obtain in many cases. (3) The
model assumes a fixed number of tissues, which may be inaccurate. For example, during
development of the human brain, there is continuous variability between gray matter
and white matter. In addition, a discrete tissue model does not handle so-called partial
volume effects in which a pixel represents a combination of several tissue types. This
occurs frequently since many pixels occur at tissue boundaries.

Tissue-free modeling approaches have also been suggested,as for example by Viola
[11]. In that work, a nonparametric model of brightness values was developed from a
single image. Using the observation that the entropy of the pixel brightness distribution

1 Anecdotally, moderate bias fields do not seem to significantly effect radiologists’ ability to
make diagnoses.
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Fig. 2: The infant brain image on the left shows a coronal MR image with a strong bias field.
The image is too bright at the top and too dark at the bottom. This is easy to seeand can be
corrected successfully by a variety of bias correction techniques. Theright image, however, is a
more difficult case. In particular, the subtle increase in intensity in the middleof the image is,
from an algorithmic point of view, difficult to categorize. Is it a subtle increase in intensity due to
a low frequency bias field, or is it a slight increase in intensity due to say, partial myelination of
white matter in a developing infant? Due to the location of the increased intensity,a radiologist
would usually guess that this is developing white matter in an infant brain, butalgorithms that do
not take into account spatial location and the appearance of other similar scans cannot make such
an assessment. It is exactly this sort of information which is leveraged byour algorithm.

for asingle imageis likely to increase when a bias field is added, Viola’s method postu-
lates a bias-correction field by minimizing the entropy of the resulting pixel brightness
distribution. This approach addresses several of the problems of fixed-tissue models,
but has its own drawbacks: (1) The statistical model may be weak, since it is based on
data from only a single image. (2) There is no mechanism for distinguishing between
certain low-frequency image components and a bias field. That is, the method may mis-
take signal for noise in certain cases when removal of the true signal reduces the entropy
of the brightness distriibution. We illustrate this problem in Figure 2.

The present method, first presented in [5] overcomes or improves upon problems as-
sociated with both of these methods and their many variations (see, e.g., [1] for recent
techniques). It models tissue brightness nonparametrically, but uses data from multiple
images to provide improved distribution estimates and alleviate the need for bias-free
images for making a model. Most importantly, it conditions the distributions on spa-
tial location, taking advantage of a rich information source ignored in other methods.
Experimental results demonstrate the effectiveness of ourmethod.

2 The Image Model and Problem Formulation

We assume we are given a setI of observed imagesIi with 1 ≤ i ≤ N, as shown on
the left side of Figure 3. Each of these images is assumed to bethe product of some
bias-free imageLi and a smooth bias fieldBi ∈ B . We shall refer to the bias-free images
as latent images(also calledintrinsic imagesby some authors). The set of all latent
images shall be denotedL and the set of unknown bias fieldsB. Then each observed
image can be written as the productIi(x,y) = Li(x,y) ∗Bi(x,y), where(x,y) gives the
pixel coordinates of each point, withP pixels per image.
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Fig. 3: Top left. A set of mid-coronal brain images from eight different infants, showing clear
signs of bias fields. Apixel-stack, a collection of pixels at the same point in each image, is
represented by the small square near the top of each image. The plot beneath the images shows
the values of the pixels in the pixel stack (plus points from an additional 13 images). Note the
wide distribution (high entropy) of brightness values in the stack. The estimated entropy of this
distribution was -0.4980.Top right. The same mid-coronal images after bias correction. Note the
uniformity of the images and the higher concentration (lower entropy) of brightness values from
the pixel stack. The estimated entropy for these samples was -0.8389.

Consider again Figure 3. Apixel-stackthrough each image set is shown as the set
of pixels corresponding to a particular location in each image (not necessarily the same
tissue type). Our method relies on the principle that the pixel-stack values are likely, on
average, to have lower empirical entropy when the bias fieldshave been removed. We
now explain what exactly this means and why it should be true.

2.1 Entropy, Nonparametric Distributions, and Maximum Likelihood

Consider some infinite set of images taken from a fixed population, such as mid-coronal
images of infants between zero and two years of age. Now pick aparticular location in
each image, such as the middle pixel. The distribution overtissue valuesat this loca-
tion, across the images, is a random variable (call itT). We might expect white matter,
cerebrospinal fluid, vasculature, or a handful of other tissue at this location, each with
some relative frequency. Theentropy(defined formally below) of this random variable
gives us a measure of the variability of tissues at this location.

In MR images with no bias fields, each tissue is mapped to a fairly consistent bright-
ness value, another random variable (call itL, for latent image brightness). Thus, the
entropy of the tissue types at a particular spatial locationis closely related to the en-
tropy of brightness values in bias-free MRs at that location. An empirical sample of
true brightness values from such a set of images is in the lower right of Figure 3.



Now consider what happens when random bias fields areintroducedinto each im-
age (going from right to left in Figure 3). If we consider the random variableB to be
the contribution of a random bias field to each image, then we will be perturbing the
original distribution of brightness valuesL to valuesL×B. This tends to spread out the
brightness values in the pixel stack, increasing their empirical entropy, as shown by the
set of samples on the lower left of Figure 3. In fact, in dealing with an infinite sam-
ple, it can be proven [3] that the entropy of a random variable(brightness) will always
increase (or remain the same) when an independent random variable is added to it.2

The idea that entropy increases when random variables are added together has an-
other interpretation in terms of probability theory. In particular, the average log prob-
ability density (which is just the negative entropy) of points in a distribution of one
random variable is guaranteed to behigher than the average log probability density
of another random variable which is the original random variable plus an independent
source of randomness. In other words, the probability density of our data under a bias-
free distribution should be higher than the probability of our data under distribution that
include bias. This is only guaranteed when we have an infiniteamount of data, but is
usually true even for the case of finite data. This is true irrespective of the form of the
distributions. That is, these ideas make no assumptions about theparametric formof
the distributions, and are thus completely nonparametric.It is these ideas upon which
our method is based. We now describe the specifics of our modeland method.

2.2 The Model

The latent image generation model assumes that each pixel isdrawn from a fixed distri-
bution px,y(·) which gives the probability of each gray value at the the location (x,y) in
the image. Furthermore, we assume that all pixels in the latent image are independent,
given the distributions from which they are drawn. It is alsoassumed that the bias fields
for each image are chosen independently from some fixed distribution over bias fields.
Unlike most models for this problem which rely on statistical regularities within an
image, we take a completely orthogonal approach by assumingthat pixel values are in-
dependent given their image locations, but that pixel-stacks in general have low entropy
when bias fields are removed.

We formulate the problem as a maximum a posteriori (MAP) problem, searching
for the most probable bias fields given the set of observed images. LettingB represent
the 25-dimensional product space of smooth bias fields (corresponding to the 25 basis
images of Figure 1), we wish to find

argmax
B∈B

P(B|I)
(a)
= argmax

B∈B

P(I|B)P(B) (1)

(b)
= argmax

B∈B

P(I|B) (2)

(c)
= argmax

B∈B

P(L(I,B)) (3)

2 Here we aremultiplying random variables rather than adding them, so this result does not
strictly apply. However, when one of the random variables is near 1 (as isthe bias random
variable) and we force its mean to be 1, this result will usually hold even formultiplication.



= argmax
B∈B

∏
x,y

N

∏
i=1

px,y(Li(x,y)) (4)

= argmax
B∈B

∑
x,y

N

∑
i=1

logpx,y(Li(x,y)) (5)

(d)
≈ argmin

B∈B

∑
x,y

H(px,y) (6)

(e)
≈ argmin

B∈B

∑
x,y

ĤVasicek(L1(x,y), ...,LN(x,y)) (7)

= argmin
B∈B

∑
x,y

ĤVasicek(
I1(x,y)
B1(x,y)

, ...,
IN(x,y)
BN(x,y)

). (8)

HereH is the Shannon entropy (−E(logP(x))) andĤVasicek is a sample-based en-
tropy estimator discussed below. (a) is just an applicationof Bayes rule. (b) assumes a
uniform prior over the allowed bias fields. The method can easily be altered to incor-
porate a non-uniform prior. (c) expresses the fact that the probability of the observed
image given a particular bias field is the same as the probability of the latent image
associated with that observed image and bias field. The approximation (d) replaces the
empirical mean of the log probability at each pixel with the negative entropy of the
underlying distribution at that pixel. This entropy is in turn estimated (e) using the en-
tropy estimator of Vasicek [8] directly from the samples in the pixel-stack, without ever
estimating the distributionspx,y explicitly.

The inequality (d) becomes an equality asN grows large by the law of large num-
bers, while the consistency of Vasicek’s entropy estimator[2] implies that (e) also goes
to equality with largeN. (See [2] for a review of entropy estimators.)

2.3 The Entropy Estimatior

The entropy estimator used is similar to Vasicek’s estimator [8], given (up to minor
details) by

ĤVasicek(Z
1, ...,ZN) =

1
N−m

N−m

∑
i=1

log

(

N
m

(Z(i+m) −Z(i))

)

, (9)

whereZi ’s represent the values in a pixel-stack,Z(i)’s represent those same values in
rank order,N is the number of values in the pixel-stack andm is a function ofN (like
N0.5) such thatm/N goes to 0 asm andN go to infinity. These entropy estimators are
discussed at length elsewhere [4].

To understand the intuition behind this estimator, consider the case whenm = 1.
In this caseZ(i+m) −Z(i) just represents the distance between two adjacent samples.
The result of Vasicek’s estimator is just proportional to the sum of the log of these
distances. Thus, if many points are clustered in one area, many of these values will be
small resulting in a low entropy. If points are spread out, then many of these values will
be large, resulting in a large entropy.



3 The Algorithm

Using these ideas, it is straightforward to construct algorithms for joint bias field re-
moval. As mentioned above, we chose to optimize Equation (8)over the set of band-
limited bias fields. To do this, we parameterize the set of bias fields using the sine/cosine
basis images shown on the right of Figure 1:

Bi =
25

∑
j=1

α jφ j(x,y).

We optimize Equation (8) bysimultaneouslyupdating the bias field estimates (tak-
ing a step along the numerical gradient) for each image to reduce the overall entropy.
That is, at time stept, the coefficientsα j for each bias field are updated using the latent
image estimates and entropy estimates from time stept −1. After all α’s have been up-
dated, a new set of latent images and pixel-stack entropies are calculated, and another
gradient step is taken. Though it is possible to do a full gradient descent to convergence
by optimizing one image at a time, the optimization landscape tends to have more local
minima for the last few images in the process. The appeal of our joint gradient descent
method, on the other hand, is that the ensemble of images provides a natural smoothing
of the optimization landscape in the joint process. It is in this sense that our method is
“multi-resolution”, proceeding from a smooth optimization in the beginning to a sharper
one near the end of the process.

We now summarize the algorithm:

1. Initialize the bias field coefficients for each image to 0, with the exception of the co-
efficient for the DC-offset (the constant bias field component), which is initialized
to 1. Initialize the gradient descent step sizeδ to some value.

2. Compute the summed pixelwise entropies for the set of images with initial “neutral”
bias field corrections. (See below for method of computation.)

3. Iterate the following loop until no further changes occurin the images.
(a) For each image:

i. Calculate the numerical gradient∇αHVasicekof (8) with respect to the bias
field coefficients (α j ’s) for the current image.

ii. Setα = α+δ∇αĤVasicek.
(b) Updateδ (reduce its value according to some schedule).

Upon convergence, it is assumed that the entropy has been reduced as much as
possible by changing the bias fields, unless one or more of thegradient descents is
stuck in a local minimum. Empirically, the likelihood of sticking in local minima is
reduced by increasing the number of images (N) in the optimization. In our experiments
described below with only 21 real infant brains, the algorithm appears to have found a
global minimum of all bias fields to the extent that this can bediscerned visually.

Note that for a set ofidenticalimages, the pixel-stack entropies are not increased by
multiplying each image by the same bias field (since all images will still be the same).
More generally, when images are approximately equivalent,their pixel-stack entropies
are not signficantly affected by a “common” bias field, i.e. one that occurs in all of the



images.3 This means that the algorithm cannot, in general, eliminateall bias fields from
a set of images, but can onlyset all of the bias fields to be equivalent.We refer to any
constant bias field remaining in all images after convergence as theresidual bias field.

Fortunately, there is an effect that tends to minimize the impact of the residual bias
field in many test cases. The residual bias field tends to consist of components for each
α j that approximate the mean of that component across images. For example, if half of
the observed images have a positive value for a particular component’s coefficient, and
half have a negative coefficient for that component, the residual bias field will tend to
have a coefficient near zero for that component. Hence, the algorithm naturally elimi-
nates bias field effects that are non-systematic, i.e. that are not shared across images.

If the same type of bias field component occurs in a majority ofthe images, then the
algorithm will not remove it, as the component is indistinguishable, under our model,
from the underlying anatomy. In such a case, one could resortto within-image methods
to further reduce the entropy. However, there is a risk that such methods will remove
components that actually represent smooth gradations in the anatomy. This can be seen
in the bottom third of Figure 5, and will be discussed in more detail below.

4 Slice-Based Experiments

To test our algorithm, we ran two sets of experiments, the first on images with simulated
bias fields, and the second on real brain images. In the first experiment, we started with a
single brain image and created a set of “different” brain images by first adding different
known bias fields to each image and then randomly translatingthe images from zero to
five pixels in a random direction. The random translation creates an image set in which
the pixel stacks have variability similar to a true set of images, but for which the latent
images are still known.

If our algorithm works as claimed, then the final recovered images should not neces-
sarily be equal to the original images (since shared bias components cannot be detected)
but should recover bias fields that, up to some shared bias field, are equivalent to the
originally introduced bias fields. Another way to say this isthat the differencêα−α
between the estimated biasfield coefficientsα̂ and the original bias field coefficients
α for each image should be constant across images. If this is true, than the variance
of these differences across images should go to zero as the algorithm runs. Figure 4
demonstrates that this is exactly what happens in our experiments. The plot shows that
as the algorithm runs, the difference between the estimatedbias field coefficients and
the true bias field coefficients becomes equal (its variance goes to zero).

More interesting are the results on real images, in which thelatent images come
from different patients. We obtained 21 pre-registered4 infant brain images (top of Fig-

3 Actually, multiplying each image by a bias field of small magnitude can artificiallyreduce the
entropy of a pixel-stack, but this is only the result of the brightness valuesshrinking towards
zero. Such artificial reductions in entropy can be avoided by normalizinga distribution to unit
variance between iterations of computing its entropy, as is done in this work.

4 It is interesting to note that registration is not strictly necessary for this algorithm to work.
The proposed MAP method works under very broad conditions, the maincondition being that
the bias fields do not span the same space as parts of the actual medical images. It is true,
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Fig. 4: Typical convergence of the variance of the difference between bias field coefficient esti-
mates and their true values, across images. This convergence implies that the true bias field is
recovered up to some “shared” component.

ure 5) from Brigham and Women’s Hospital in Boston. Large bias fields can be seen in
many of the images. Probably the most striking is a “ramp-like” bias field in the sixth
image of the second row. (The top of the brain is too bright, while the bottom is too
dark.) Because the brain’s white matter is not fully developed in these infant scans, it
is difficult to categorize tissues into a fixed number of classes as is typically done for
adult brain images; hence, these images are not amenable to methods based on specific
tissue models developed for adults (e.g. [9]).

The middle third of Figure 5 shows the results of our algorithm on the infant brain
images. (These results must be viewed in color on a good monitor to fully appreciate
the results.) While a trained technician can see small imperfections in these images, the
results are remarkably good. All major bias artifacts have been removed.

It is interesting to compare these results to a method that reduces the entropy of each
image individually, without using constraints between images. Using the results of our
algorithm as a starting point, we continued to reduce the entropy of the pixelswithin
each image (using a method akin to Viola’s [11]), rather thanacross images. These
results are shown in the bottom third of Figure 5. Carefully comparing the central brain
regions in the middle section of the figure and the bottom section of the figure, one
can see that the butterfly shaped region in the middle of the brain, which represents
developing white matter, has been suppressed in the lower images. This is most likely
because the entropy of the pixelswithin a particular imagecan be reduced by increasing
the bias field “correction” in the central part of the image. In other words, the algorithm
strives to make the image more uniform by removing the brightpart in the middle of
the image. However, our algorithm, which compares pixels across images, does not
suppress these real structures, since they occur across images. Hence coupling across
images can produce superior results.

however, that as the latent images become less registered or differ in other ways, that a much
larger number of images is needed to get good estimates of the pixel-stackdistributions.



Fig. 5: NOTE: This image must be viewed in color (preferably on a bright display) forfull ef-
fect. Top. Original infant brain images.Middle. The same images after bias removal with our
algorithm. Note that developing white matter (butterfly-like structures in middlebrain) is well-
preserved.Bottom. Bias removal using a single image based algorithm. Notice that white matter
structures are repressed.



Fig. 6: This figure shows the results of our volumetric joint bias removal algorithm. 15 patient
volumes were used, and the bias in each volume was reduced using the 27-component basis
volumes for smooth three-dimensional bias fields. The top half of the figure shows 3 images in
each column from 5 different patients (rows). The bottom shows the corrected images.

5 Volumetric Bias Removal

Extending this basic method to work with a full series of images from each patient,
rather than a single image from each patient, is straightforward and requires only minor
modifications to the source code. First, we must parameterize the set of smooth three-
dimensional bias fields, which means we need a three-dimensional Fourier basis of
volumes. In this work, we used 3-D bases consisting of either27 or 125 basis volumes,
representing bias fields limited, respectively, to either one Hertz or two Hertz in spatial
frequency. The 125-volume basis is analogous to the basis shown in Figure 1.

To understand the advantage of correcting bias across volumes rather than across
sets of slices one at a time, consider what happens when a set of patient scans are
corrected one slice at a time (still grouped across patientsof course). In this case, the
estimates of bias fields may change sharply from one image to the next within the same
patient, ignoring the fact that bias fields tend to be smooth in all three dimensions. This
can be avoided by forcing the volumetric bias fields to be parameterized by a smooth
three-dimensional basis that enforces smoothness of the bias fields in all directions, and
gives us another constraint with which to separate the patients’ true anatomical data
from smooth bias fields.

In Figure 6, we show the results of our volumetric bias removal algorithm. The bias
removal algorithm was done using the 27-volume basis on 15 patients simultaneously.



Results are shown for 3 slices from each of five patients. In future work, we plan to
make specific comparisons of volumetric joint bias removal techniques with sequential
slice-based joint bias removal to see if the former offers any significant advantage.

The idea of minimizing pixelwise entropies to remove nuisance variables from a set
of images is not new. In particular, Miller et al. [6, 7] presented an approach they call
congealingin which the sum of pixelwise entropies is minimized byseparate affine
transformsapplied to each image. Our method can thus be considered an extension of
the congealing process to non-spatial transformations. Weare currently combining such
approaches to do registration and bias removal simultaneously.

This work uses information unused in other methods, i.e. information across im-
ages. This suggests an iterative scheme in which both types of information, both within
and across images, are used. Local models could be based on weighted neighborhoods
of pixels,pixel cylinders, rather than single pixel-stacks, in sparse data scenarios. For
“easy” bias correction problems, such an approach may be overkill, but for difficult
problems in bias correction, where the bias field is difficultto separate from the under-
lying tissue, as discussed in [1], such an approach could produce critical extra leverage.

We thank Dr. Terrie Inder and Dr. Simon Warfield for graciously providing the infant
brain images for this work. The images were obtained under NIH grant P41 RR13218.
Also, we thank Neil Weisenfeld and Sandy Wells for helpful discussions. This work
was partially supported by Army Research Office grant DAAD 19-02-1-0383.
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