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Abstract. The correction of multiplicative bias in magnetic resonance images is
an important problem in medical image processing, especially as aopesysing
step for quantitative measurements and other numerical procetwssprevi-

ous approaches have used a maximum likelihood method to increaseothe pr
ability of the pixels in a single image by adaptively estimating a correction to
the unknown image bias eld. The pixel probabilities are de ned either imger

of a pre-existing tissue model, or nonparametrically in terms of the imageis
pixel values. In both cases, the speci ¢ location of a pixel in the image doe

in uence the probability calculation. Our approach, similar to methods ot join
registration, simultaneously eliminates the bias from a set of images ofrie sa
anatomy, but from different patients. We use the statistics from the sarae lo
tion across different patients' images, rather than within an image, to elieina
bias elds from all of the images simultaneously. Evaluating the likelihood of a
particular voxel in one patient's scan with respect to voxels in the samédoca

in a set of other patients' scans disambiguates effects that might be ditbeo
bias elds or anatomy. We present a variety of “two-dimensional” expental
results (working with one image from each patient) showing how our method
overcomes serious problems experienced by other methods. Waedemppre-
liminary results on full three-dimensional volume correction across patie

1 Introduction

The problem of bias elds in magnetic resonance (MR) imagesiimportant problem
in medical imaging. We illustrate the problem in Figure Ingsa synthetic image from
BrainWeb [10] and an arti cial bias eld. When a patient is iged in the MR scan-
ner, the goal is to obtain an image which is a function solélthe underlying tissue
(left of Figure 1). However, typically the desired anatoatiomage is corrupted by a
multiplicative bias eld (second image) that is caused bgiarering issues such as
imperfections in the radio frequency coils used to recoedMiR signal. The result is a
corrupted image (third image). (See [1] for backgroundrimfation on bias elds.) The
goal of bias correction is to estimate the uncorrupted infega the corrupted image.
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Fig. 1: On the left is an idealized mid-axial MR image of the human brain with littlecobias
eld. The second image is a simulated low-frequency bias eld. It haanbexaggerated for ease
of viewing. The third image is the result of pixelwise multiplication of the imagéne bias eld.
On the right is the set of basis images used to parameterize smooth biagoettie slice-based
algorithm

Radiologists appear to be remarkably immune to the effectias elds under
many circumstance’sThis is probably because radiologists seem to make masty
tive intensityjudgments based upon local image information. They useleeowindow-
level adjustments to optimize local contrast for discriating various properties of the
tissues in a speci c region. Bias elds, however, are a mgjosblem for automated
computer applications like registration, segmentatioprer-screening which depend
upon similar tissues having consistent values across alscdrese applications, the ac-
tual numeric brightness value assigned to a tissue isarditd directly affects whether
such algorithms will work.

A variety of statistical methods have been proposed to addhés problem. Wells et
al. [9] developed a statistical model using a xed numbeiriggues, with the brightness
distribution for each tissue type (in a bias-free imagejeepnted by a one-dimensional
Gaussian distribution or by a nonparametric distributiom expectation-maximization
(EM) procedure was then used to simultaneously estimatei#iseeld, the tissue type,
and the residual noise. While this method works well in mangesait has several
drawbacks: (1) Models must be develoegriori for each type of acquisition (for each
different setting of the MR scanner), for each new area ofbibdy, and for different
patient populations (like infants and adults). (2) Modelsstrbe developed from “bias-
free” images, which may be dif cult or impossible to obtaim inany cases. (3) The
model assumes a xed number of tissues, which may be inateufar example, during
development of the human brain, there is continuous vditialbietween gray matter
and white matter. In addition, a discrete tissue model doésandle so-called partial
volume effects in which a pixel represents a combinationevEral tissue types. This
occurs frequently since many pixels occur at tissue boueslar

Tissue-free modeling approaches have also been suggasted example by Viola
[11]. In that work, a nonparametric model of brightness galwas developed from a
single image. Using the observation that the entropy of tkel prightness distribution

1 Anecdotally, moderate bias elds do not seem to signi cantly effect radjists' ability to
make diagnoses.



Fig. 2: The infant brain image on the left shows a coronal MR image witliaag bias eld.
The image is too bright at the top and too dark at the bottom. This is easy tnsgeean be
corrected successfully by a variety of bias correction techniquesrigheimage, however, is a
more dif cult case. In particular, the subtle increase in intensity in the midéligne image is,
from an algorithmic point of view, dif cult to categorize. Is it a subtle inase in intensity due to
a low frequency bias eld, or is it a slight increase in intensity due to sayighanyelination of
white matter in a developing infant? Due to the location of the increased intemséyiologist
would usually guess that this is developing white matter in an infant braimlgatithms that do
not take into account spatial location and the appearance of other siogiles sannot make such
an assessment. It is exactly this sort of information which is leveragedibglgorithm.

for asingle imagas likely to increase when a bias eld is added, Viola's methamstu-
lates a bias-correction eld by minimizing the entropy oéttesulting pixel brightness
distribution. This approach addresses several of the gnablof xed-tissue models,
but has its own drawbacks: (1) The statistical model may bekw&ince it is based on
data from only a single image. (2) There is no mechanism fatirdjuishing between
certain low-frequency image components and a bias eldti&ahe method may mis-
take signal for noise in certain cases when removal of theesignal reduces the entropy
of the brightness distriibution. We illustrate this prablén Figure 2.

The present method, rst presented in [5] overcomes or ivgsaipon problems as-
sociated with both of these methods and their many variat{see, e.g., [1] for recent
techniques). It models tissue brightness nonparamdyitait uses data from multiple
images to provide improved distribution estimates andvite the need for bias-free
images for making a model. Most importantly, it conditiohe distributions on spa-
tial location, taking advantage of a rich information sauignored in other methods.
Experimental results demonstrate the effectiveness ofnatinod.

2 The Image Model and Problem Formulation

We assume we are given a s$edf observed imagek with 1 i N, as shown on
the left side of Figure 3. Each of these images is assumed thebproduct of some
bias-free imagé; and a smooth bias el@®; 2 B. We shall refer to the bias-free images
aslatent imagedqalso calledintrinsic imagesby some authors). The set of all latent
images shall be denotdd and the set of unknown bias eld3. Then each observed
image can be written as the produgi;y) = Li(X;y) Bi(x;y), where(x;y) gives the
pixel coordinates of each point, withpixels per image.
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Fig. 3: Top left. A set of mid-coronal brain images from eight different infants, singwclear
signs of bias elds. Apixel-stack a collection of pixels at the same point in each image, is
represented by the small square near the top of each image. The mpéatthe¢he images shows
the values of the pixels in the pixel stack (plus points from an additional 1§es)aNote the
wide distribution (high entropy) of brightness values in the stack. The estihentropy of this
distribution was -0.49800op right. The same mid-coronal images after bias correction. Note the
uniformity of the images and the higher concentration (lower entropyjightness values from
the pixel stack. The estimated entropy for these samples was -0.8389.

Consider again Figure 3. pixel-stackthrough each image set is shown as the set
of pixels corresponding to a particular location in eachdménot necessarily the same
tissue type). Our method relies on the principle that thelpstack values are likely, on
average, to have lower empirical entropy when the bias &élaée been removed. We
now explain what exactly this means and why it should be true.

2.1 Entropy, Nonparametric Distributions, and Maximum Like lihood

Consider some in nite set of images taken from a xed popiolatsuch as mid-coronal
images of infants between zero and two years of age. Now petécular location in
each image, such as the middle pixel. The distribution tigeue valuest this loca-
tion, across the images, is a random variable (cdl)itWe might expect white matter,
cerebrospinal uid, vasculature, or a handful of otherdisat this location, each with
some relative frequency. Trentropy(de ned formally below) of this random variable
gives us a measure of the variability of tissues at this lonat

In MR images with no bias elds, each tissue is mapped to &faonsistent bright-
ness value, another random variable (call,ifor latent image brightness). Thus, the
entropy of the tissue types at a particular spatial locaiotlosely related to the en-
tropy of brightness values in bias-free MRs at that locatitm empirical sample of
true brightness values from such a set of images is in therldglet of Figure 3.



Now consider what happens when random bias eldsi@reducedinto each im-
age (going from right to left in Figure 3). If we consider ttendom variableB to be
the contribution of a random bias eld to each image, then vilklve perturbing the
original distribution of brightness valuésto values.  B. This tends to spread out the
brightness values in the pixel stack, increasing their eécglientropy, as shown by the
set of samples on the lower left of Figure 3. In fact, in deghlvith an in nite sam-
ple, it can be proven [3] that the entropy of a random variébieghtness) will always
increase (or remain the same) when an independent randéebleais added to if.

The idea that entropy increases when random variables dexlddgether has an-
other interpretation in terms of probability theory. In fawlar, the average log prob-
ability density (which is just the negative entropy) of gsiin a distribution of one
random variable is guaranteed to higher than the average log probability density
of another random variable which is the original randomalalg plus an independent
source of randomness. In other words, the probability dgws$iour data under a bias-
free distribution should be higher than the probability of data under distribution that
include bias. This is only guaranteed when we have an in aiteount of data, but is
usually true even for the case of nite data. This is truegpective of the form of the
distributions. That is, these ideas make no assumptionstdbeparametric formof
the distributions, and are thus completely nonparamdtris.these ideas upon which
our method is based. We now describe the speci cs of our manigimethod.

2.2 The Model

The latent image generation model assumes that each ptkalis) from a xed distri-
bution pyy( ) which gives the probability of each gray value at the thetiocg(x;y) in
the image. Furthermore, we assume that all pixels in theta@t@age are independent,
given the distributions from which they are drawn. It is aédssumed that the bias elds
for each image are chosen independently from some xedilligion over bias elds.
Unlike most models for this problem which rely on statisticegularities within an
image, we take a completely orthogonal approach by assutimitigpixel values are in-
dependent given their image locations, but that pixelkst@ general have low entropy
when bias elds are removed.

We formulate the problem as a maximum a posteriori (MAP) [enob) searching
for the most probable bias elds given the set of observedyesal ettingB represent
the 25-dimensional product space of smooth bias elds ésponding to the 25 basis
images of Figure 1), we wish to nd

arg max(Bjl) @ arg max(1jB)P(B) (1)
B2B B2B
© argma¥(1jB) (2)
B2B
© .
= argmar®(L(l;B)) 3
B2B

2 Here we aremultiplying random variables rather than adding them, so this result does not
strictly apply. However, when one of the random variables is near 1 (g ibias random
variable) and we force its mean to be 1, this result will usually hold evemftdtiplication.
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HereH is the Shannon entropy E(logP(x))) andHyasicekis @ sample-based en-
tropy estimator discussed below. (a) is just an applicadfdBayes rule. (b) assumes a
uniform prior over the allowed bias elds. The method canilgdse altered to incor-
porate a non-uniform prior. (c) expresses the fact that tbbeability of the observed
image given a particular bias eld is the same as the proltghof the latent image
associated with that observed image and bias eld. The aqpition (d) replaces the
empirical mean of the log probability at each pixel with thegative entropy of the
underlying distribution at that pixel. This entropy is iniuestimated (e) using the en-
tropy estimator of Vasicek [8] directly from the sampleshie pixel-stack, without ever
estimating the distributionpy.y explicitly.

The inequality (d) becomes an equalitydgrows large by the law of large num-
bers, while the consistency of Vasicek's entropy estimgpimplies that (e) also goes
to equality with largeN. (See [2] for a review of entropy estimators.)

2.3 The Entropy Estimatior

The entropy estimator used is similar to Vasicek's estimf&h given (up to minor
details) by

No m N . .

& log ("™ z0) ; ©)
i1 m

A 1
Fvasice 24152y = ——
VaSICek( ’ ’ ) N m

whereZ''s represent the values in a pixel-stagk)'s represent those same values in
rank orderN is the number of values in the pixel-stack ands a function ofN (like
N%3) such thaim=N goes to 0 asn andN go to in nity. These entropy estimators are
discussed at length elsewhere [4].

To understand the intuition behind this estimator, corrside case whem = 1.
In this casez(*™  z() just represents the distance between two adjacent samples.
The result of Vasicek's estimator is just proportional te tum of the log of these
distances. Thus, if many points are clustered in one areay wiahese values will be
small resulting in a low entropy. If points are spread owtntmany of these values will
be large, resulting in a large entropy.



3 The Algorithm

Using these ideas, it is straightforward to construct atgors for joint bias eld re-
moval. As mentioned above, we chose to optimize Equatiooy8) the set of band-
limited bias elds. To do this, we parameterize the set osbéds using the sine/cosine
basis images shown on the right of Figure 1:

ajf j(xy):

oy

Bi:
j=1

We optimize Equation (8) bgimultaneouslypdating the bias eld estimates (tak-
ing a step along the numerical gradient) for each image toaethe overall entropy.
That is, at time step the coef cientsaj for each bias eld are updated using the latent
image estimates and entropy estimates from timetstep. After alla's have been up-
dated, a new set of latent images and pixel-stack entropéesadculated, and another
gradient step is taken. Though it is possible to do a full gnaicdescent to convergence
by optimizing one image at a time, the optimization landsd&nds to have more local
minima for the last few images in the process. The appeal ojoint gradient descent
method, on the other hand, is that the ensemble of image&lpoa natural smoothing
of the optimization landscape in the joint process. It ishiis sense that our method is
“multi-resolution”, proceeding from a smooth optimizatiim the beginning to a sharper
one near the end of the process.

We now summarize the algorithm:

1. Initialize the bias eld coef cients for each image to Oittvthe exception of the co-
ef cient for the DC-offset (the constant bias eld comporgmwhich is initialized
to 1. Initialize the gradient descent step sid® some value.

2. Compute the summed pixelwise entropies for the set of@magth initial “neutral”
bias eld corrections. (See below for method of computafion

3. lterate the following loop until no further changes ocituthe images.

(a) For each image:
i. Calculate the numerical gradieRt Hyasicek Of (8) with respect to the bias
eld coef cient~s (aj's) for the current image.
ii. Seta = a+ dNzHvasicek
(b) Updated (reduce its value according to some schedule).

Upon convergence, it is assumed that the entropy has beewe@dis much as
possible by changing the bias elds, unless one or more ofgtlaglient descents is
stuck in a local minimum. Empirically, the likelihood of sking in local minima is
reduced by increasing the number of imagé}si( the optimization. In our experiments
described below with only 21 real infant brains, the aldoritappears to have found a
global minimum of all bias elds to the extent that this candiecerned visually.

Note that for a set aflenticalimages, the pixel-stack entropies are not increased by
multiplying each image by the same bias eld (since all inmgal still be the same).
More generally, when images are approximately equivatbetr pixel-stack entropies
are not sign cantly affected by a “common” bias eld, i.e. ®that occurs in all of the



images® This means that the algorithm cannot, in general, elimialifsias elds from
a set of images, but can ondgt all of the bias elds to be equivale/e refer to any
constant bias eld remaining in all images after convergeas theesidual bias eld

Fortunately, there is an effect that tends to minimize thedot of the residual bias
eld in many test cases. The residual bias eld tends to ceingi components for each
a; that approximate the mean of that component across imagesx&mple, if half of
the observed images have a positive value for a particulapooent's coef cient, and
half have a negative coef cient for that component, thedeal bias eld will tend to
have a coef cient near zero for that component. Hence, therdahm naturally elimi-
nates bias eld effects that are non-systematic, i.e. thehat shared across images.

If the same type of bias eld component occurs in a majorityhafimages, then the
algorithm will not remove it, as the component is indistirgiable, under our model,
from the underlying anatomy. In such a case, one could résarithin-image methods
to further reduce the entropy. However, there is a risk thahsnethods will remove
components that actually represent smooth gradationgiarthtomy. This can be seen
in the bottom third of Figure 5, and will be discussed in moz&ad below.

4 Slice-Based Experiments

To test our algorithm, we ran two sets of experiments, theorsimages with simulated
bias elds, and the second on real brain images. In the rgigiment, we started with a
single brain image and created a set of “different” braingesby rst adding different
known bias elds to each image and then randomly translatiegmages from zero to
ve pixels in a random direction. The random translationates an image set in which
the pixel stacks have variability similar to a true set of gag, but for which the latent
images are still known.

If our algorithm works as claimed, then the nal recoveredies should not neces-
sarily be equal to the original images (since shared biagponents cannot be detected)
but should recover bias elds that, up to some shared biad, ate equivalent to the
originally introduced bias elds. Another way to say thistigt the differencé& a
between the estimated bias eld coef cienfisand the original bias eld coef cients
a for each image should be constant across images. If thisiés than the variance
of these differences across images should go to zero asgbsdthin runs. Figure 4
demonstrates that this is exactly what happens in our expets. The plot shows that
as the algorithm runs, the difference between the estimaited eld coef cients and
the true bias eld coef cients becomes equal (its varianoegto zero).

More interesting are the results on real images, in whichldtent images come
from different patients. We obtained 21 pre-registéiiatant brain images (top of Fig-

3 Actually, multiplying each image by a bias eld of small magnitude can arti ciatiguce the
entropy of a pixel-stack, but this is only the result of the brightness valesking towards
zero. Such arti cial reductions in entropy can be avoided by normaliaidgstribution to unit
variance between iterations of computing its entropy, as is done in this work.

4t is interesting to note that registration is not strictly necessary for this ittigorto work.
The proposed MAP method works under very broad conditions, the coaidition being that
the bias elds do not span the same space as parts of the actual medagcgsimt is true,



Fig. 4: Typical convergence of the variance of the difference betvbégs eld coef cient esti-
mates and their true values, across images. This convergence impti¢isethieue bias eld is
recovered up to some “shared” component.

ure 5) from Brigham and Women's Hospital in Boston. Largesbédds can be seen in
many of the images. Probably the most striking is a “ramp*litias eld in the sixth
image of the second row. (The top of the brain is too brightilevthe bottom is too
dark.) Because the brain's white matter is not fully develbjn these infant scans, it
is dif cult to categorize tissues into a xed number of classas is typically done for
adult brain images; hence, these images are not amenabkthods based on speci ¢
tissue models developed for adults (e.g. [9]).

The middle third of Figure 5 shows the results of our alganitbn the infant brain
images. (These results must be viewed in color on a good orawitfully appreciate
the results.) While a trained technician can see small inepgdns in these images, the
results are remarkably good. All major bias artifacts haaerbremoved.

Itis interesting to compare these results to a method tatces the entropy of each
image individually, without using constraints between gas. Using the results of our
algorithm as a starting point, we continued to reduce theopgtof the pixelswithin
each image (using a method akin to Viola's [11]), rather thaross images. These
results are shown in the bottom third of Figure 5. Carefutlynparing the central brain
regions in the middle section of the gure and the bottom isecof the gure, one
can see that the butter y shaped region in the middle of tre@nbmwhich represents
developing white matter, has been suppressed in the lowagam This is most likely
because the entropy of the pixelghin a particular imagecan be reduced by increasing
the bias eld “correction” in the central part of the image.dther words, the algorithm
strives to make the image more uniform by removing the brjgit in the middle of
the image. However, our algorithm, which compares pixetessimages, does not
suppress these real structures, since they occur acrogesmdence coupling across
images can produce superior results.

however, that as the latent images become less registered or diffeeinvadlgs, that a much
larger number of images is needed to get good estimates of the pixeldssadutions.



Fig.5: NOTE: This image must be viewed in color (preferably on a bright display¥dtref-

fect. Top. Original infant brain imagesMiddle. The same images after bias removal with our
algorithm. Note that developing white matter (butter y-like structures in midukgn) is well-
preservedBottom. Bias removal using a single image based algorithm. Notice that white matter
structures are repressed.



Fig. 6: This gure shows the results of our volumetric joint bias removgbathm. 15 patient
volumes were used, and the bias in each volume was reduced using-twenpdnent basis
volumes for smooth three-dimensional bias elds. The top half of theegshows 3 images in
each column from 5 different patients (rows). The bottom shows thea®d images.

5 Volumetric Bias Removal

Extending this basic method to work with a full series of irmedrom each patient,
rather than a single image from each patient, is straightod and requires only minor
modi cations to the source code. First, we must parametdtie set of smooth three-
dimensional bias elds, which means we need a three-dino@asiFourier basis of
volumes. In this work, we used 3-D bases consisting of eRfiesr 125 basis volumes,
representing bias elds limited, respectively, to eitheeddertz or two Hertz in spatial
frequency. The 125-volume basis is analogous to the bagigrsim Figure 1.

To understand the advantage of correcting bias across esluather than across
sets of slices one at a time, consider what happens when & patient scans are
corrected one slice at a time (still grouped across patignteurse). In this case, the
estimates of bias elds may change sharply from one imagkdmext within the same
patient, ignoring the fact that bias elds tend to be smoathll three dimensions. This
can be avoided by forcing the volumetric bias elds to be paeterized by a smooth
three-dimensional basis that enforces smoothness ofdisedids in all directions, and
gives us another constraint with which to separate the miatierue anatomical data
from smooth bias elds.

In Figure 6, we show the results of our volumetric bias rerhalgorithm. The bias
removal algorithm was done using the 27-volume basis on ima simultaneously.



Results are shown for 3 slices from each of ve patients. lurfe work, we plan to
make speci c comparisons of volumetric joint bias remoealhniques with sequential
slice-based joint bias removal to see if the former offegssigni cant advantage.

The idea of minimizing pixelwise entropies to remove nuggavariables from a set
of images is not new. In particular, Miller et al. [6, 7] presed an approach they call
congealingin which the sum of pixelwise entropies is minimized dgparate af ne
transformsapplied to each image. Our method can thus be considered@msen of
the congealing process to non-spatial transformationsanéd/eurrently combining such
approaches to do registration and bias removal simultahzou

This work uses information unused in other methods, i.@rinftion across im-
ages. This suggests an iterative scheme in which both tyfpefamation, both within
and across images, are used. Local models could be basedghtadeneighborhoods
of pixels, pixel cylinders rather than single pixel-stacks, in sparse data scendiws
“easy” bias correction problems, such an approach may bekitlyéut for dif cult
problems in bias correction, where the bias eld is dif ctit separate from the under-
lying tissue, as discussed in [1], such an approach couliljpecritical extra leverage.

We thank Dr. Terrie Inder and Dr. Simon War eld for graciopproviding the infant
brain images for this work. The images were obtained underdtant P41 RR13218.
Also, we thank Neil Weisenfeld and Sandy Wells for helpfidadissions. This work
was partially supported by Army Research Of ce grant DAAD-@®-1-0383.
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