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Abstract. The correction of multiplicative bias in magnetic resonance images is
an important problem in medical image processing, especially as aopessing
step for quantitative measurements and other numerical procetwssprevi-

ous approaches have used a maximum likelihood method to increaseothre pr
ability of the pixels in a single image by adaptively estimating a correction to
the unknown image bias field. The pixel probabilities are defined eitherrimster
of a pre-existing tissue model, or nonparametrically in terms of the imageis
pixel values. In both cases, the specific location of a pixel in the image mimte
influence the probability calculation. Our approach, similar to methods df join
registration, simultaneously eliminates the bias from a set of images ofrte sa
anatomy, but from different patients. We use the statistics from the sarae lo
tion across different patients’ images, rather than within an image, to elienina
bias fields from all of the images simultaneously. Evaluating the likelihood of a
particular voxel in one patient’s scan with respect to voxels in the sam#doca

in a set of other patients’ scans disambiguates effects that might be ditbep
bias fields or anatomy. We present a variety of “two-dimensional” éxjstal
results (working with one image from each patient) showing how our method
overcomes serious problems experienced by other methods. Waedsmppre-
liminary results on full three-dimensional volume correction across patie

1 Introduction

The problem of bias fields in magnetic resonance (MR) imagas important problem
in medical imaging. We illustrate the problem in Figure Ingsa synthetic image from
BrainWeb [10] and an atrtificial bias field. When a patient isgex in the MR scan-
ner, the goal is to obtain an image which is a function solélthe underlying tissue
(left of Figure 1). However, typically the desired anatoatiomage is corrupted by a
multiplicative bias field (second image) that is caused bgireering issues such as
imperfections in the radio frequency coils used to recoedMiR signal. The result is a
corrupted image (third image). (See [1] for backgroundiimfation on bias fields.) The
goal of bias correction is to estimate the uncorrupted infea the corrupted image.
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Fig. 1: On the left is an idealized mid-axial MR image of the human brain with littlecobias
field. The second image is a simulated low-frequency bias field. It hers éeaggerated for ease
of viewing. The third image is the result of pixelwise multiplication of the imagéhie bias field.
On the right is the set of basis images used to parameterize smooth biagdidlik slice-based
algorithm

Radiologists appear to be remarkably immune to the effectsias fields under
many circumstance’sThis is probably because radiologists seem to make masty
tive intensityjudgments based upon local image information. They usefeeowindow-
level adjustments to optimize local contrast for discriating various properties of the
tissues in a specific region. Bias fields, however, are a n@amslem for automated
computer applications like registration, segmentatioprer-screening which depend
upon similar tissues having consistent values across alscdrese applications, the ac-
tual numeric brightness value assigned to a tissue isarditd directly affects whether
such algorithms will work.

A variety of statistical methods have been proposed to addhés problem. Wells et
al. [9] developed a statistical model using a fixed numbeissties, with the brightness
distribution for each tissue type (in a bias-free imagejeepnted by a one-dimensional
Gaussian distribution or by a nonparametric distributimexpectation-maximization
(EM) procedure was then used to simultaneously estimateifisdield, the tissue type,
and the residual noise. While this method works well in marsesait has several
drawbacks: (1) Models must be develoegriori for each type of acquisition (for each
different setting of the MR scanner), for each new area ofbibdy, and for different
patient populations (like infants and adults). (2) Modelsstrbe developed from “bias-
free” images, which may be difficult or impossible to obtainmhany cases. (3) The
model assumes a fixed number of tissues, which may be indeckm example, during
development of the human brain, there is continuous vditialbietween gray matter
and white matter. In addition, a discrete tissue model doésiandle so-called partial
volume effects in which a pixel represents a combinationevEral tissue types. This
occurs frequently since many pixels occur at tissue boueslar

Tissue-free modeling approaches have also been suggasted example by Viola
[11]. In that work, a nonparametric model of brightness galwas developed from a
single image. Using the observation that the entropy of tkel prightness distribution

1 Anecdotally, moderate bias fields do not seem to significantly effect loai$ts’ ability to
make diagnoses.



Fig. 2: The infant brain image on the left shows a coronal MR image wittiamg bias field.
The image is too bright at the top and too dark at the bottom. This is easy tnsgeean be
corrected successfully by a variety of bias correction techniquestigheimage, however, is a
more difficult case. In particular, the subtle increase in intensity in the mufdiee image is,
from an algorithmic point of view, difficult to categorize. Is it a subtle ire in intensity due to
a low frequency bias field, or is it a slight increase in intensity due to saiapayelination of
white matter in a developing infant? Due to the location of the increased intemséyiologist
would usually guess that this is developing white matter in an infant braimlgatithms that do
not take into account spatial location and the appearance of other siogites sannot make such
an assessment. It is exactly this sort of information which is leveragedibglgorithm.

for asingle imagas likely to increase when a bias field is added, Viola’s mdthostu-
lates a bias-correction field by minimizing the entropy & tesulting pixel brightness
distribution. This approach addresses several of the nablof fixed-tissue models,
but has its own drawbacks: (1) The statistical model may bekw&ince it is based on
data from only a single image. (2) There is no mechanism fatirdjuishing between
certain low-frequency image components and a bias field i$hdne method may mis-
take signal for noise in certain cases when removal of theesignal reduces the entropy
of the brightness distriibution. We illustrate this pramblén Figure 2.

The present method, first presented in [5] overcomes or imggropon problems as-
sociated with both of these methods and their many variaifsee, e.g., [1] for recent
techniques). It models tissue brightness nonparamdyitait uses data from multiple
images to provide improved distribution estimates andvite the need for bias-free
images for making a model. Most importantly, it conditiohe distributions on spa-
tial location, taking advantage of a rich information sauignored in other methods.
Experimental results demonstrate the effectiveness ofnatinod.

2 ThelmageMode and Problem Formulation

We assume we are given a s$edf observed imagek with 1 <i < N, as shown on
the left side of Figure 3. Each of these images is assumed thebproduct of some
bias-free imagé; and a smooth bias fiel8 € B. We shall refer to the bias-free images
aslatent imagedqalso calledintrinsic imagesby some authors). The set of all latent
images shall be denotdd and the set of unknown bias fielés Then each observed
image can be written as the produigk,y) = Li(x,y) * Bi(x,y), where(x,y) gives the
pixel coordinates of each point, withpixels per image.
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Fig. 3: Top left. A set of mid-coronal brain images from eight different infants, singwclear
signs of bias fields. Apixel-stack a collection of pixels at the same point in each image, is
represented by the small square near the top of each image. The mpéattb¢he images shows
the values of the pixels in the pixel stack (plus points from an additional 18es)aNote the
wide distribution (high entropy) of brightness values in the stack. The estihentropy of this
distribution was -0.4980op right. The same mid-coronal images after bias correction. Note the
uniformity of the images and the higher concentration (lower entropyjightness values from
the pixel stack. The estimated entropy for these samples was -0.8389.

Consider again Figure 3. pixel-stackthrough each image set is shown as the set
of pixels corresponding to a particular location in eachdménot necessarily the same
tissue type). Our method relies on the principle that thelpsxack values are likely, on
average, to have lower empirical entropy when the bias fiedd®e been removed. We
now explain what exactly this means and why it should be true.

2.1 Entropy, Nonparametric Distributions, and Maximum Likelihood

Consider some infinite set of images taken from a fixed pojanasuch as mid-coronal
images of infants between zero and two years of age. Now piektécular location in
each image, such as the middle pixel. The distribution tigeue valuest this loca-
tion, across the images, is a random variable (cdl)itWe might expect white matter,
cerebrospinal fluid, vasculature, or a handful of otheugsat this location, each with
some relative frequency. Thentropy(defined formally below) of this random variable
gives us a measure of the variability of tissues at this lonat

In MR images with no bias fields, each tissue is mapped tolg fasnsistent bright-
ness value, another random variable (call,ifor latent image brightness). Thus, the
entropy of the tissue types at a particular spatial locaiiotlosely related to the en-
tropy of brightness values in bias-free MRs at that locatiam empirical sample of
true brightness values from such a set of images is in therldglet of Figure 3.



Now consider what happens when random bias fieldsreireducedinto each im-
age (going from right to left in Figure 3). If we consider ttendom variableB to be
the contribution of a random bias field to each image, then Wleba perturbing the
original distribution of brightness valuésto valuesL x B. This tends to spread out the
brightness values in the pixel stack, increasing their eécglientropy, as shown by the
set of samples on the lower left of Figure 3. In fact, in dealvith an infinite sam-
ple, it can be proven [3] that the entropy of a random variébifeghtness) will always
increase (or remain the same) when an independent randéebleais added to if.

The idea that entropy increases when random variables dexlddgether has an-
other interpretation in terms of probability theory. In fiawlar, the average log prob-
ability density (which is just the negative entropy) of gsiin a distribution of one
random variable is guaranteed to higher than the average log probability density
of another random variable which is the original randomalalg plus an independent
source of randomness. In other words, the probability dgw$iour data under a bias-
free distribution should be higher than the probability of data under distribution that
include bias. This is only guaranteed when we have an infariteunt of data, but is
usually true even for the case of finite data. This is truespeetive of the form of the
distributions. That is, these ideas make no assumptionstdbeparametric formof
the distributions, and are thus completely nonparamdtris.these ideas upon which
our method is based. We now describe the specifics of our namdietnethod.

2.2 TheModel

The latent image generation model assumes that each ptkahis) from a fixed distri-
bution pxy(-) which gives the probability of each gray value at the thetioca(x,y) in
the image. Furthermore, we assume that all pixels in thet@t@age are independent,
given the distributions from which they are drawn. It is edssumed that the bias fields
for each image are chosen independently from some fixeddigtm over bias fields.
Unlike most models for this problem which rely on statisticegularities within an
image, we take a completely orthogonal approach by assutimitigpixel values are in-
dependent given their image locations, but that pixelkst@Tgeneral have low entropy
when bias fields are removed.

We formulate the problem as a maximum a posteriori (MAP) [enob) searching
for the most probable bias fields given the set of observedésd_ettingB represent
the 25-dimensional product space of smooth bias fields€sponding to the 25 basis
images of Figure 1), we wish to find

argma¥(B|l) @ argmak(1|B)P(B) (1)
BeB BeB
(b)
= argmak(l|B) 2
BeB
© argma®(L (1,B)) 3)
BeB

2 Here we aremultiplying random variables rather than adding them, so this result does not
strictly apply. However, when one of the random variables is near 1 (g ibias random
variable) and we force its mean to be 1, this result will usually hold evemf{dtiplication.
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HereH is the Shannon entropy-E(logP(x))) and Fvasicek iS & sample-based en-
tropy estimator discussed below. (a) is just an applicatfdBayes rule. (b) assumes a
uniform prior over the allowed bias fields. The method carilgég altered to incor-
porate a non-uniform prior. (c) expresses the fact that tbbability of the observed
image given a particular bias field is the same as the prababfi the latent image
associated with that observed image and bias field. The rippaton (d) replaces the
empirical mean of the log probability at each pixel with thegative entropy of the
underlying distribution at that pixel. This entropy is iniuestimated (e) using the en-
tropy estimator of Vasicek [8] directly from the sampleshie pixel-stack, without ever
estimating the distributiongy y explicitly.

The inequality (d) becomes an equalitydgrows large by the law of large num-
bers, while the consistency of Vasicek’s entropy estimgXpimplies that (e) also goes
to equality with largeN. (See [2] for a review of entropy estimators.)

2.3 TheEntropy Estimatior

The entropy estimator used is similar to Vasicek’s estimff given (up to minor
details) by
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whereZ'’s represent the values in a pixel-stagk)’s represent those same values in
rank orderN is the number of values in the pixel-stack ands a function ofN (like
N®5) such thatm/N goes to 0 asn andN go to infinity. These entropy estimators are
discussed at length elsewhere [4].

To understand the intuition behind this estimator, cornrside case whem = 1.
In this casez(+™ — z() just represents the distance between two adjacent samples.
The result of Vasicek’s estimator is just proportional te sum of the log of these
distances. Thus, if many points are clustered in one areay wiahese values will be
small resulting in a low entropy. If points are spread owtntmany of these values will
be large, resulting in a large entropy.



3 TheAlgorithm

Using these ideas, it is straightforward to construct algors for joint bias field re-
moval. As mentioned above, we chose to optimize Equationy8) the set of band-
limited bias fields. To do this, we parameterize the set of fidds using the sine/cosine
basis images shown on the right of Figure 1:

25
Bi=> aj¢i(xy).
=1

We optimize Equation (8) bgimultaneouslyipdating the bias field estimates (tak-
ing a step along the numerical gradient) for each image toaethe overall entropy.
That is, at time step the coefficientst; for each bias field are updated using the latent
image estimates and entropy estimates from timetsteh. After all a’s have been up-
dated, a new set of latent images and pixel-stack entropéesadculated, and another
gradient step is taken. Though it is possible to do a full gnaicdescent to convergence
by optimizing one image at a time, the optimization landsd&nds to have more local
minima for the last few images in the process. The appeal ojodnt gradient descent
method, on the other hand, is that the ensemble of image&lpoa natural smoothing
of the optimization landscape in the joint process. It ishiis sense that our method is
“multi-resolution”, proceeding from a smooth optimizatiim the beginning to a sharper
one near the end of the process.

We now summarize the algorithm:

1. Initialize the bias field coefficients for each image to @hvhe exception of the co-
efficient for the DC-offset (the constant bias field compdhemhich is initialized
to 1. Initialize the gradient descent step Sizi® some value.

2. Compute the summed pixelwise entropies for the set of@magth initial “neutral”
bias field corrections. (See below for method of computation

3. lterate the following loop until no further changes ocituthe images.

(a) For each image:
i. Calculate the numerical gradiet Hyasicek Of (8) with respect to the bias
field coefficients @;’s) for the current image.
ii. Seta = a+ d0yHvasicek
(b) Updated (reduce its value according to some schedule).

Upon convergence, it is assumed that the entropy has beewme@dis much as
possible by changing the bias fields, unless one or more ofjthdient descents is
stuck in a local minimum. Empirically, the likelihood of sking in local minima is
reduced by increasing the number of imagesi( the optimization. In our experiments
described below with only 21 real infant brains, the aldoritappears to have found a
global minimum of all bias fields to the extent that this cardiszerned visually.

Note that for a set aflenticalimages, the pixel-stack entropies are not increased by
multiplying each image by the same bias field (since all irsagdl still be the same).
More generally, when images are approximately equivatbetr pixel-stack entropies
are not signficantly affected by a “common” bias field, i.ee dimat occurs in all of the



images® This means that the algorithm cannot, in general, elimiatitsias fields from
a set of images, but can ondgt all of the bias fields to be equivaleife refer to any
constant bias field remaining in all images after convergexscthaesidual bias field

Fortunately, there is an effect that tends to minimize thesdaot of the residual bias
field in many test cases. The residual bias field tends to sbofstomponents for each
a; that approximate the mean of that component across imagesx&mple, if half of
the observed images have a positive value for a particutapooent’s coefficient, and
half have a negative coefficient for that component, theduesibias field will tend to
have a coefficient near zero for that component. Hence, gwitim naturally elimi-
nates bias field effects that are non-systematic, i.e. teat@t shared across images.

If the same type of bias field component occurs in a majorithefimages, then the
algorithm will not remove it, as the component is indistirgiable, under our model,
from the underlying anatomy. In such a case, one could résarthin-image methods
to further reduce the entropy. However, there is a risk thahsnethods will remove
components that actually represent smooth gradationgiarthtomy. This can be seen
in the bottom third of Figure 5, and will be discussed in moz&ad below.

4 Slice-Based Experiments

To test our algorithm, we ran two sets of experiments, thedirsmages with simulated
bias fields, and the second on real brain images. In the fipgtranent, we started with a
single brain image and created a set of “different” braingesaby first adding different
known bias fields to each image and then randomly translgtimgnages from zero to
five pixels in a random direction. The random translatiorat@e an image set in which
the pixel stacks have variability similar to a true set of ges, but for which the latent
images are still known.

If our algorithm works as claimed, then the final recovereddes should not neces-
sarily be equal to the original images (since shared biagpooents cannot be detected)
but should recover bias fields that, up to some shared biaks st equivalent to the
originally introduced bias fields. Another way to say thighat the differencél — a
between the estimated biasfield coefficiefitand the original bias field coefficients
a for each image should be constant across images. If thisiés than the variance
of these differences across images should go to zero asgbsdthin runs. Figure 4
demonstrates that this is exactly what happens in our expets. The plot shows that
as the algorithm runs, the difference between the estimztedfield coefficients and
the true bias field coefficients becomes equal (its varianes tp zero).

More interesting are the results on real images, in whichldtent images come
from different patients. We obtained 21 pre-registéiaant brain images (top of Fig-

3 Actually, multiplying each image by a bias field of small magnitude can artificietiyice the
entropy of a pixel-stack, but this is only the result of the brightness valesking towards
zero. Such artificial reductions in entropy can be avoided by normalitigtribution to unit
variance between iterations of computing its entropy, as is done in this work.

4t is interesting to note that registration is not strictly necessary for this ittigorto work.
The proposed MAP method works under very broad conditions, the coaidition being that
the bias fields do not span the same space as parts of the actual medigesirtt is true,



Fig. 4: Typical convergence of the variance of the difference betvbéas field coefficient esti-
mates and their true values, across images. This convergence impti¢isetiieue bias field is
recovered up to some “shared” component.

ure 5) from Brigham and Women'’s Hospital in Boston. Largeslfields can be seen in
many of the images. Probably the most striking is a “ramp*liias field in the sixth
image of the second row. (The top of the brain is too brightilevthe bottom is too
dark.) Because the brain’s white matter is not fully devetbm these infant scans, it
is difficult to categorize tissues into a fixed number of aasas is typically done for
adult brain images; hence, these images are not amenabkthoas based on specific
tissue models developed for adults (e.qg. [9]).

The middle third of Figure 5 shows the results of our algonitbn the infant brain
images. (These results must be viewed in color on a good orawitfully appreciate
the results.) While a trained technician can see small inepgdns in these images, the
results are remarkably good. All major bias artifacts haaerbremoved.

Itis interesting to compare these results to a method tatces the entropy of each
image individually, without using constraints between ges. Using the results of our
algorithm as a starting point, we continued to reduce theopptof the pixelswithin
each image (using a method akin to Viola’s [11]), rather thaross images. These
results are shown in the bottom third of Figure 5. Carefullgnparing the central brain
regions in the middle section of the figure and the bottomiseaif the figure, one
can see that the butterfly shaped region in the middle of thapwhich represents
developing white matter, has been suppressed in the lowageam This is most likely
because the entropy of the pixelghin a particular imagecan be reduced by increasing
the bias field “correction” in the central part of the imageother words, the algorithm
strives to make the image more uniform by removing the brgtt in the middle of
the image. However, our algorithm, which compares pixetessimages, does not
suppress these real structures, since they occur acrogesmdence coupling across
images can produce superior results.

however, that as the latent images become less registered or diffeeinvadlgs, that a much
larger number of images is needed to get good estimates of the pixeldssadbutions.



Fig.5: NOTE: This image must be viewed in color (preferably on a bright display¥dthref-

fect. Top. Original infant brain imagesMiddle. The same images after bias removal with our
algorithm. Note that developing white matter (butterfly-like structures in middén) is well-
preservedBottom. Bias removal using a single image based algorithm. Notice that white matter
structures are repressed.



Fig. 6: This figure shows the results of our volumetric joint bias remolgariahm. 15 patient
volumes were used, and the bias in each volume was reduced using-toenpdnent basis
volumes for smooth three-dimensional bias fields. The top half of theefigiiows 3 images in
each column from 5 different patients (rows). The bottom shows thea®d images.

5 Volumetric Bias Removal

Extending this basic method to work with a full series of iregrom each patient,
rather than a single image from each patient, is straightod and requires only minor
modifications to the source code. First, we must parameténiz set of smooth three-
dimensional bias fields, which means we need a three-dimesisFourier basis of
volumes. In this work, we used 3-D bases consisting of eRfesr 125 basis volumes,
representing bias fields limited, respectively, to eithe blertz or two Hertz in spatial
frequency. The 125-volume basis is analogous to the bagigrsim Figure 1.

To understand the advantage of correcting bias across esluather than across
sets of slices one at a time, consider what happens when & patient scans are
corrected one slice at a time (still grouped across pati@ntsurse). In this case, the
estimates of bias fields may change sharply from one imadetodxt within the same
patient, ignoring the fact that bias fields tend to be smao#ilithree dimensions. This
can be avoided by forcing the volumetric bias fields to be ipatarized by a smooth
three-dimensional basis that enforces smoothness ofalsdiblds in all directions, and
gives us another constraint with which to separate the matierue anatomical data
from smooth bias fields.

In Figure 6, we show the results of our volumetric bias rerhalgorithm. The bias
removal algorithm was done using the 27-volume basis on fiBrjia simultaneously.



Results are shown for 3 slices from each of five patients. taréuwork, we plan to
make specific comparisons of volumetric joint bias remosehhiques with sequential
slice-based joint bias removal to see if the former offegssignificant advantage.

The idea of minimizing pixelwise entropies to remove nuggavariables from a set
of images is not new. In particular, Miller et al. [6, 7] praesed an approach they call
congealingin which the sum of pixelwise entropies is minimized ggparate affine
transformsapplied to each image. Our method can thus be considered@ms@®n of
the congealing process to non-spatial transformationsand/eurrently combining such
approaches to do registration and bias removal simultahgou

This work uses information unused in other methods, i.@rinftion across im-
ages. This suggests an iterative scheme in which both tyfpefamation, both within
and across images, are used. Local models could be basedgitedeneighborhoods
of pixels, pixel cylinders rather than single pixel-stacks, in sparse data scen&iws
“easy” bias correction problems, such an approach may bekityéut for difficult
problems in bias correction, where the bias field is diffitolseparate from the under-
lying tissue, as discussed in [1], such an approach couliljpecritical extra leverage.
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brain images for this work. The images were obtained underdgthnt P41 RR13218.
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