
Fast Lexicon-Based Scene Text Recognition with Sparse Belief Propagation

Jerod J. Weinman, Erik Learned-Miller, and Allen Hanson
Department of Computer Science

University of Massachusetts, Amherst, MA 01003
{weinman,elm,hanson}@cs.umass.edu

Abstract

Using a lexicon can often improve character recognition
under challenging conditions, such as poor image quality or
unusual fonts. We propose a flexible probabilistic model for
character recognition that integrates local language prop-
erties, such as bigrams, with lexical decision, having open
and closed vocabulary modes that operate simultaneously.
Lexical processing is accelerated by performing inference
with sparse belief propagation, a bottom-up method for hy-
pothesis pruning. We give experimental results on recogniz-
ing text from images of signs in outdoor scenes. Incorpo-
rating the lexicon reduces word recognition error by 42%
and sparse belief propagation reduces the number of lexi-
con words considered by 97%.

1 Introduction

To appear in A. Belaïd, D. Doermann, and H. Fujisawa, editors, Proc. Intl. Conf.
on Document Analysis and Recognition, Curitiba, Brazil, September 2007.

Recognizing text from scenes presents many challenges,
including unusual fonts, variable lighting, and perspective
distortion. Many sources of information can be applied
to solve the problem, such as robust character recognizers,
n-gram modeling, lexicon filtering, and font consistency.
However, these are often segregated and used in different
stages of the text recognition process. To remedy this, we
propose a flexible and robust probabilistic model for recog-
nition that integrates such features. Recognition can be ac-
celerated by a theoretically motivated technique for bottom-
up hypothesis pruning.

Related work on specialized models for scene text recog-
nition either ignores some helpful contextual information,
such as language, or incorporates it in an ad hoc fashion.
For instance, after isolated character recognition, Thillou et
al. [8] post-process results by applying an n-gram model
to the n-best list of characters. Linguistic processing is di-
vorced from recognition by ignoring the relative probability
of characters based on their appearance. For low-resolution
document images, Jacobs et al. [1] can improve accuracy by
forcing results to be drawn from a lexicon, but this will not

be able to correctly recognize non-lexicon words. Zhang
and Chang [10] have handled this by explicitly including a
lexical decision variable in a probabilistic model. However,
their model does not include local language properties, such
as bigrams, for the case when a word is not in the lexicon.
We find both are important for recognition accuracy.

One practical issue with using a lexicon is the time it
takes to examine candidate words in a large lexicon. Lu-
cas [4] addresses this issue by reusing computation in a
trie-formatted lexicon. Another approach, taken by Scham-
bach [6], is to eliminate words from consideration based on
the low probability of their constituent characters.

In this paper, we present a probabilistic approach to
recognition using a discriminatively trained, undirected
graphical model that integrates character appearance, n-
gram properties, and a lexicon. This includes modeling the
lexical decision process, which allows word predictions to
come from outside the lexicon, based on the evidence and a
prior bias for (or against) lexicon words. Furthermore, we
demonstrate how approximate inference can be accelerated
by using sparse belief propagation, a pruning method for
eliminating hypotheses.

In the following section we discuss the particulars of
our model, including training and inference procedures.
Then, we briefly review some typical information sources
for recognition and introduce a method for integrating a lex-
icon with the model. After discussing the specifics of sparse
belief propagation and how it is applied in our model, we
present experimental results on a database of signs in out-
door scenes. We then conclude that integrating the lexi-
con and lexical decision with other information sources im-
proves recognition results.

2 Recognition Model

We employ a discriminative, undirected graphical
model [3] for predicting character identities. Such a
Bayesian model of probability is a powerful tool for de-
scribing and modeling the logical dependence of various
information sources and unknowns.

1



�� ��
���� ��

�� ��		 
�

�
�� 
��

wBAw

y y y y y1 3 4 5 6 7y2y

x

Figure 1. Factor graph for recognizing text
with a lexicon. The solid black factors capture
relationships between the image and charac-
ter identity. Hatched blue factors capture lan-
guage information, such as bigrams. Cross-
hatched magenta factors relate the string to
the lexicon, and the shaded cyan factors con-
trol the bias for lexicon words.

Let x represent the image features and y = y1y2 . . . yn

represent the corresponding character string, where each yi

is drawn from an alphabet A. Let C contain some subset of
the {1, . . . , n} positions of y, so that yC gives the values of
the subset. The conditional probability model is expressed
as a product of local factors,

p (y | x) =
1

Z

∏

C∈C

fC (yC ,x) , (1)

where Z is the observation-dependent normalizing factor
ensuring the expression is a proper probability distribu-
tion, and C is a collection of the subsets for indexing the
non-negative factors fC that express the local compatibility
among the unknowns in yC and the observation x. Typi-
cally there are several classes of factors that are instantiated
several times in the product (1). Each of these instantiations
involves the same function, but accepts a different set of ar-
guments C. For example, the same character recognition
function is applied at many locations in the image.

2.1 Inference

The index sets C induce a bipartite graph between the
factors fC and the unknowns y, as illustrated in Figure
1. When this graph (not including x and edges connected
to it) is a tree, exact inference may be performed effi-
ciently via the sum-product algorithm [2], also known as
belief propagation (BP). Local information stored in the
factors influences the global interpretation by passing mes-
sages between the factor and variable nodes. Factors neigh-
boring i in the graph are indexed by members of the set

N (i) = {C ∈ C | i ∈ C}. The variable-to-factor messages
have the form

mi→C (yi) ∝
∏

C′∈N (i)\C

mC′→i (yi) , (2)

the product of all the incoming messages to a variable from
other neighboring factors. The resulting functional message
is normalized (sums to 1 over yi) for numerical stability.
The factor-to-variable messages combine the local informa-
tion expressed in the factor and the current messages from
its other arguments,

mC→i (yi) =
∑

yC\{i}

fC (yC ,x)
∏

j∈C\{i}

mj→C (yj) . (3)

Note that the summation is taken over all values of the vari-
ables in the set C \ {i}.

If the graph has cycles, these messages are iteratively
passed until convergence, which is not guaranteed, but em-
pirically tends to give reasonable results in many applica-
tions. Greater detail about factor graphs and inference may
be found in an article by Kschischang et al. [2].

2.2 Training

To learn from training data, the probability distribution
(1) is parameterized by θ, with each factor fC having ar-
guments θC . Given a set of independent, labeled examples
D =

{

y
(k),x(k)

}

k
, the parameters may be estimated by

maximizing the log posterior probability p (θ | D),

L (θ;D) = log p (θ | α) +
∑

k

∑

C∈C(k) log fC

(

y
(k)
C ,x(k);θC

)

− log Z,(k)

(4)
where p (θ | α) is a prior on the parameters with condition-
ing information α. The set of factors C depends on how
many characters there are in the observation and is thus in-
dexed by the particular example k. When fC is linear in θC

(as all of the factors we employ are) and the log prior is con-
vex, the objective L (θ;D) is convex, and a global optimum
can easily be found.

Because it is a combinatorial sum, the normalization
term Z is generally intractable. To simplify training, we
use a piecewise approximation [7], which changes Z from
a sum over all y to a product of local sums over the terms
for each factor. Thus, the log Z term in (4) is replaced by
the upper bound

∑

C∈C log ZC where

ZC =
∑

yC

fC (yC ,x) . (5)

Since the factors are local and typically include only a small
set of variables, sums over the set of the values for yC are
practical to compute. Replacing log Z with an upper bound
means we are optimizing a tractable lower bound on the log
posterior probability L (θ;D).

2



3 Recognition Features

In this section, we explain the specific factors used in
our model, including an appearance-based factor for char-
acter recognition, factors for local language properties such
as n-grams and letter case, and a new factor type for in-
corporating a lexicon. The specifics for inference with this
factor are detailed, since a naïve implementation would re-
sult in an intractable sum.

To facilitate character recognition, it is important to re-
late the identity of a character to its appearance. For this, we
employ a set of quadrature-matched Gabor filter responses
over three scales (center frequencies related by a factor of 2)
and six orientations [9]. The magnitude of filter responses
are used as features in a log-linear factor. Neither the choice
of features or parameterization is critical. A different set
of image features could be used to train such an appear-
ance factor. Furthermore, any character classifier with real-
valued outputs indicating the magnitude of the compatibil-
ity between the image and each label could be substituted.

Local properties of the language, such as n-grams, are
also useful. In another log-linear factor type, the feature
vector is a set of binary tests on adjacent characters that rep-
resent bigrams and indicate transitions between upper and
lower case characters at the beginning and middle of words.
For greater detail on the image feature and local language
factor types, refer to earlier work [9].

Functions representing new relationships and sources of
information are easily incorporated into factor graph mod-
els. To integrate a lexicon with our model, we add one fac-
tor that can force the interpretation to be a lexicon word and
another controlling the bias for this interpretation. To rep-
resent the lexical decision, we introduce auxiliary variables
w = wAwBwC . . . that, for each word wj in the string y,
indicates whether it is present in the lexicon. For notational
clarity, we use numerical indices for the character variables
y and alphabetical indices for the word variables w.

The new lexicon factor is simply a function that becomes
zero when wj indicates the word is from a lexicon, L, but
the corresponding string is not actually present. This results
in a probability of zero, which eliminates such a hypothesis
from possibility. For a three letter word, this lexicon factor
takes the form

fC (y1, y2, y3, wA) =

{

0 wA = 1 ∧ y1y2y3 6∈ L

1 otherwise (6)

where y1y2y3 is the word under consideration and wA indi-
cates whether it is a lexicon word.

Direct implementation of this factor is theoretically
straightforward for words of any length. However, perform-
ing inference in a model using the factor might be a problem
with longer words. In the equation for the message from the
factor to constituent variables (3), all but one of the argu-

ments must be marginalized from a product. The combina-
torial sum over arguments to (6) quickly becomes unwieldy
as words grow longer. Fortunately, the special form of the
factor allows a better implementation of the message pass-
ing equations.

To calculate the message from a lexicon factor to the
character y1, we may split the marginalization (the sum-
mation of all variables except y1) into two cases, one where
the string is a lexicon word and another when it is not: the
two values for wA. For the factor (6), the general form (3)
may thus be specialized to

mC→1 (y1) =
∑

{y1y2y3∈L|y1}

(

fC (y1, y2, y3, wA = 1) ∗

m2→C (y2) m3→C (y3) mA→C (wA = 1)
)

+

mA→C (wA = 0) .
(7)

The same form holds for longer words and character vari-
ables other than y1.

Only two values need to be computed for messages from
the factor to the word indicator variable wA. When the
string is not a lexicon word (wA = 0), the value of the factor
is always 1, and the sums over the remaining variables in (3)
may be pushed inside the product against their correspond-
ing message terms. This results in a product of variable-to-
factor message sums. Since the messages are normalized,
the product, and thus the message value, is simply 1.

When the string is a lexicon word (wA = 1), the prod-
uct of messages must only be evaluated at lexicon strings
because fC is zero when the string is not in the lexicon:

mC→A (wA = 1) =
∑

y1y2y3∈L fC (y1, y2, y3, wA = 1) ∗
m1→C (y1) m2→C (y2) m3→C (y3) .

(8)
The final factor we introduce biases the preference for

strings to be composed of lexicon words. This factor con-
sists of a single log-linear weight for each wj in w.

4 Sparse Belief Propagation

Even though we only need to compute sums over lexicon
words for inference, rather than all possible strings, this pro-
cess is still time consuming when the lexicon is large. Pal
et al. [5] have introduced an approximation method called
sparse belief propagation that simplifies message passing
calculations. The core idea is to reduce the number of sum-
mands in the factor to variable messages (3) by creating ze-
ros in the variable to factor messages (2).

At any step in the belief propagation algorithm, the cur-
rent belief (approximate marginal probability) at a variable
is represented by the normalized product of messages to that
variable from its neighboring factors

bi (yi) ∝
∏

C∈N (i)

mC→i (yi) . (9)

3



Image No Lexicon Lexicon Forced Lexicon Aspell
USED BOOKI USED BOOKS USED BOOKS USED BIOKO

31 BOLTWOOD 31 BOLTWOOD SI BENTWOOD 31 BELLWOOD

RELAmo3 RELAmo3 DELANOS Reclaim
HTOR UP5 HOOK UPS HOOK UPS THOR UPI

MAOUGRY ARAIN MAOUGRY ANTIN LATHERY ANTIN MARGERY AARON
RERTTRE RERTTRE RESTORE RETRIER

Figure 2. Example recognition results on difficult data. Correct words indicated in bold.

To prune values of yi from consideration, some beliefs are
set to zero. Rather than establishing an arbitrary thresh-
old, the maximum number of states are eliminated, subject
to a constraint on the Kullback-Leibler divergence from the
original belief. Beliefs are compressed by calculating a new
sparse belief b′i maintaining KL (b′i ‖ bi) ≤ ε. Messages to
the factors (2) are then compressed to respect the sparsity
of b′i and renormalized. This method outperforms belief
thresholding and eliminating a fixed number of states [5].

The practical effect of sparse belief propagation is that
certain characters are eliminated from consideration. For
instance, the visual and contextual evidence for y2 to be a t
may be so low that it can be assigned a zero belief without
greatly changing the local marginal. When this happens,
we may eliminate summands for any word whose second
character is t in the messages (7) and (8). Taken together,
pruning possible characters reduces the lexicon under con-
sideration from tens of thousands of words to just a few,
dramatically accelerating message passing-based inference.

Sparse BP was designed for inference in factor graphs
that form a tree, where exact inference is accomplished by
a sweep from the root to the leaves and back, passing mes-
sages once in each direction along every edge. Our graph
has cycles and requires the loopy message passing approxi-
mation. To accommodate this, we first omit the lexicon fac-
tor and run belief propagation until convergence. The vari-
able to factor messages are then compressed, eliminating
characters and thus lexicon words from further considera-
tion. The same sparsity is then enforced on the full model
for every subsequent iteration of belief propagation.

5 Experiments

For evaluation, we use images of signs captured out-
doors.1 There are 95 text regions totaling 215 words with
1,209 characters, which are normalized to approximately a
12.5 pixel x-height. Our alphabet A consists of 26 lower-
case, 26 uppercase, and the 10 digit characters (62 total).
The character recognition factor is trained on 200 example
fonts. The local language (i.e., bigram and letter case) fac-

1Available for public download, http://vis-www.cs.umass.edu.

Table 1. Character accuracy results.
Image Image + Language

No Lexicon 84.04 91.65
Lexicon 93.63 93.88

Forced Lexicon 91.56 92.39
Aspell 73.78 88.92

Table 2. Word accuracy results.
Image Image + Language

No Lexicon 46.05 75.35
Lexicon 72.56 85.58

Forced Lexicon 68.84 81.40
Aspell 53.49 76.28

tor is trained on a corpus of English 84 books containing
11 million words and 49 million characters. The lexicon2

contains 187,000 words including proper names, abbrevia-
tions, and contractions; we use the word list up to the 70th
percentile of frequency.

A Laplace `1 prior p (θ | α) ∝ exp (−α ‖θ‖1) is used
for training the image and local language factors, where α is
chosen by cross-validation. The weight for the lexical bias
is chosen by ten fold cross-validation. Tests are run on the
size-normalized grayscale images, but the word boundaries
and character locations are given. The maximum posterior
marginal (MPM) criterion is used to classify each character.

We test the effect of the lexicon by comparing character
and word accuracy (Tables 1 and 2) for our model with and
without the language factor. We can also force the model to
always predict words from the lexicon. For comparison, the
output of our model sans lexicon factor is passed through
the spell-checker Aspell, keeping the top suggestion.

Figure 2 shows results on example data of varying dif-
ficulty, including where corrections were made and errors
introduced. 31 and BOLTWOOD are not in the lexicon,
so errors arise with the forced lexicon and Aspell models.
DELANOS is in the lexicon, but the image evidence over-
powers the bias in this case; forced to be a lexicon word,

2SCOWL, http://wordlist.sourceforge.net.

4



10 20 30 40 50 60
0

200

400

600

800
Image

Median = 11

10 20 30 40 50 60
0

200

400

600

800
Image + Language

Median = 4

Figure 3. Histograms of character state space
cardinality after belief compression.

it is correctly interpreted. The last two images exemplify
some of the more difficult text in our data set.

Incorporating the lexicon factor boosts the character ac-
curacy, but adding the language model (i.e., bigrams) after
the lexicon seems to have little impact. However, the word
accuracy reveals a 41.5% error reduction with the inclusion
of the lexicon. Results do improve when words are forced to
be from the lexicon, but some proper nouns and numbers in
the data are not lexicon words and thus are misinterpreted.
Using Aspell fixes some simple errors, but most errors are
more complex. Ignoring the character image for poorly rec-
ognized words tends to reduce overall character accuracy
(since poor suggestions are made). We experimented with
trigrams, font consistency [9], and word frequencies, but
found no improvement in word accuracy.

We used the threshold value ε = 10−7 for sparse BP. The
runtime was sensitive to this, since it controls the amount of
pruning, but accuracy was not. Using sparse BP did not
alter the eventual predictions of the integrated model.

Sparse BP speeds the lexicon integration by eliminating
characters from consideration after belief compression (Fig-
ure 3). This results in a 97% reduction of candidate lexicon
words overall. We must consider different lexicon words for
strings of different lengths. The median elimination of can-
didate words for each string was 99.93% (Figure 4), or just
16 remaining candidates when not normalized for the dif-
fering size of the original candidate lists. Adding language
information makes character beliefs more certain, allowing
more characters and lexicon words to be pruned.

In conclusion, we have proposed a probabilistic model
for recognizing scene text that smoothly integrates a lexicon
with several other sources of information to improve recog-
nition. A principal advantage is that it does not force words
to be drawn from the lexicon, but evaluates the evidence for
words in and out of the lexicon in light of the evidence and
a prior bias. The drawbacks of using a large lexicon are
eliminated by using sparse belief propagation for approxi-
mate inference. This bottom-up hypothesis pruning has the
effect of drastically reducing the number of lexicon words
that must be considered.

20 40 60 80 100
0

50

100

150

200

Median = 0.2039%

Median Number = 45

Image

20 40 60 80 100
0

50

100

150

200

Median = 0.0698%

Median Number = 16

Image + Language

Figure 4. Histograms of the percentage of lex-
icon words considered after belief compres-
sion.

Acknowledgements

The authors thank Chris Pal and Charles Sutton for helpful discus-
sions on sparse BP and approximate inference. This work was
supported in part by The Central Intelligence Agency, the Na-
tional Security Agency, and National Science Foundation under
NSF grants IIS-0100851, IIS-0326249 and IIS-0546666.

References

[1] C. Jacobs, P. Y. Simard, P. Viola, and J. Rinker. Text recog-
nition of low-resolution document images. In Proc. ICDAR,
pages 695–699, 2005.

[2] F. Kschischang, B. Frey, and H.-A.Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. on Information
Theory, 47(2):498–519, Feb. 2001.

[3] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and label-
ing sequence data. In Proc. Intl. Conf. on Machine Learning,
pages 282–289, 2001.

[4] S. M. Lucas, G. Patoulas, and A. C. Downton. Fast lexicon-
based word recognition in noisy index card images. In Proc.
ICDAR, volume 1, pages 462–466, 2003.

[5] C. Pal, C. Sutton, and A. McCallum. Sparse forward-
backward using minimum divergence beams for fast training
of conditional random fields. In Proc. Intl. Conf. on Acous-
tics, Speech, and Signal Processing, volume 5, pages 581–
584, 2006.

[6] M.-P. Schambach. Fast script word recognition with very
large vocabulary. In Proc. ICDAR, pages 9–13, 2005.

[7] C. Sutton and A. McCallum. Piecewise training of undi-
rected models. In Proc. Conf. on Uncertainty in Artificial
Intelligence, 2005.

[8] C. Thillou, S. Ferreira, and B. Gosselin. An embedded ap-
plication for degraded text recognition. Eurasip Journal on
Applied Signal Processing, 13:2127–2135, 2005.

[9] J. J. Weinman and E. Learned-Miller. Improving recogni-
tion of novel input with similarity. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, pages 308–315,
June 2006.

[10] D. Zhang and S.-F. Chang. A Bayesian framework for fus-
ing multiple word knowledge models in videotext recogni-
tion. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, volume 2, pages 528–533, 2003.

5


