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Abstract

To compare spatial patterns of gene expression, one must
analyze a large number of images as current methods are
only able to measure a small number of genes at a time.
Bringing images of corresponding tissues into alignment
is a critical first step in making a meaningful comparative
analysis of these spatial patterns. Significant image noise
and variability in the shapes make it hard to pick a canon-
ical shape model. In this paper, we address these prob-
lems by combining segmentation and unsupervised shape
learning algorithms. We first segment images to acquire
structures of interest, then jointly align the shapes of these
acquired structures using an unsupervised nonparametric
maximum likelihood algorithm along the lines of ‘congeal-
ing’ [12], while simultaneously learning the underlying
shape model and associated transformations. The learned
transformations are applied to corresponding images to
bring them into alignment in one step. We demonstrate the
results for images of various classes of Drosophila imaginal
discs and discuss the methodology used for a quantitative
analysis of spatial gene expression patterns.

1. Introduction

Microarray technologies have enabled researchers to
measure levels of expression of large numbers of individual
genes in a single experiment, thereby providing a greatly
enhanced view of the genes that are active at a given time in
specific tissues [10, 1]. These techniques generally require
a large tissue sample and provide no information about the
spatial patterns of gene expression. In situ hybridization of
tissues with labeled probes for individual genes facilitates
the measurement of precise spatial patterns of gene expres-
sion at high resolution. However, in situ hybridization can
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Figure 1. A typical set of in situ stained Drosophila
imaginal disc images. Each row shows a different tissue
class. First row: wing discs, second row: haltere discs, third
row: leg discs, fourth row: eye discs. There is significant
inter-class and intra-class variability both in the shapes,
sizes and the stain patterns.

only be used to measure a limited number of genes at a
time, usually one. It is desirable to be able to measure
the spatial expression patterns of large numbers of genes
and to be able to compare, cluster, and classify patterns
of expression. Current experimental strategy entails setting
up a high-throughput production system for the generation
of large numbers of images which can then be processed
by either human or computer. Many dipteran organisms,
including the fruit fly Drosophila melanogaster, have a
three-stage life-cycle in which the insect begins as an em-
bryo, becomes a larva and metamorphoses into an adult,
also known as an imago. The primordial tissues that will
become the exoskeleton of the adult insect, or imago, called
imaginal discs, are segregated from the larval tissues in
embryogenesis and are maintained in sac-like structures that
have a morphology similar to that of a flattened balloon[3].



1.1. Previous Work

Large-scale studies of patterns of gene expression in
Drosophila have been performed using DNA microarrays
both on whole organisms [2] and individual tissues such
as imaginal discs. Klebes et al. compared differential gene
expression in different imaginal discs and between imaginal
discs and non-disc tissue [8]. Butler et al. manually dis-
sected imaginal discs and were able to identify transcripts
that were enriched in specific compartments of the wing
discs [5]. Recent studies of precise spatial patterns of
gene expression for large numbers of genes in developing
Drosophila embryos through in situ hybridization [14, 4]
require annotation, and suffer from the fact that the annota-
tion of spatial expression pattern requires manual curation.
Kumar et al. [9] applied machine vision techniques to low-
resolution images of in situ stained embryos and developed
an algorithm for searching a database of patterns of gene
expression in the embryos. Peng and Myers [13] have
performed automated embryo registration and stain classifi-
cation by using Gaussian mixture models. Yet, most of the
previous work makes some parametric assumptions on the
shape of the tissue, and the registration techniques used are
very simplistic (such as aligning the major and minor axes
for embryo images [13]). Shape learning and alignment is a
well studied problem in the computer vision community. In
our work, we chosecongealing[12] since we are interested
in aligning the binary shape masks that we obtain after
segmentation andcongealing is readily applicable. For
further discussion on relevant shape alignment algorithms,
reader is referred to [6, 15, 7, 12].
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Figure 2. Data flow for our proposed approach.

1.2. Motivation and Problem Definition

The tissue structures in typical Drosophila imaginal discs
have significant intra and inter-class variability in size,
shape and stain patterns. Thus, shape models learned from
one class cannot be used for another tissue class without
making significant changes in the processing pipeline if one
were to use model based alignment algorithms. Further-
more, there are far fewer identified and named morphologi-
cal parts or regions in Drosophila imaginal discs than in the
developing Drosophila embryo, for example. It is difficult
to make any parametric or model based assumptions for
tissue shapes given these limitations. Manual annotation
and curation are extremely time-consuming and costly in
high-throughput spatial gene expression analysis experi-
ments. It is highly desirable to have a processing pipeline
that can operate for various imaginal disc tissues such as
wings, halteres, legs, eyes, etc., (shown in Figure 1) with-
out significant re-structuring. In this paper, we propose a
simple yet effective computational methodology (Figure 2)
that addresses these demands of high-throughput systems
for the analysis of spatial gene expression by combining
segmentation and nonparametric alignment algorithms.

Given an input ensemble of noisy Drosophila imaginal
disc images of a given tissue class, our goal is to learn
the underlying shape model of the tissue nonparametrically
while bringing the given images into alignment. This align-
ment greatly facilitates quantitative stain scoring analysis
(Section 5) on the imaginal disc images.

2. Image Model

Imaginal disc has a morphology similar to that of a
flattened balloon. Imaginal discs do have substantial depth
to them, but we image a single plane from the discs and con-
sider an idealized 2-dimensional representation of a disc.

We denote the set of input imaginal disc images of a
given class asΦ .= {Ii}N

i=1 whereN is the cardinality of the
set. Each imageIi(·) can be represented as a map from the
imageR3(in homogeneous coordinates) to the color space
C ⊂ R3 with a small compact supportΩ ⊂ R2:

Ii(x) : : x ∈ Ω 7→ c = Ii(x) ∈ C; (1)

wherex = [x, y, 1]T ∈ R3 (in homogeneous coordinates),
c = [r, g, b]T ∈ R3 is a vector in the color space.

3. Extracting Tissue Shapes

Two salient features of our image dataset make the seg-
mentation task relatively simple. First, Nomarski images of
the discs [14] yield substantial highlights and lowlights at
the periphery of the discs. The background of the images



Figure 3. Example segmentation results for wing discs
(first row) and haltere discs (second row) using the com-
bined segmentation procedure.Left Column : Original
imageIi(x). Middle Column : Segmented tissue structure
of interestIi

f (x). Right Column: Extracted binary shape
Ii

s(x).

is generally uniform and one can use the significant con-
trast generated at the edge of the discs to identify border
regions. Second, compared to the background, the pixel
intensities of the imaginal disc tissues have much more
variability than background, even over a small window.
Using these insights, we implemented a simple filter-and-
threshold module for segmentation. It computes thelocal
varianceof the image in a small support region, estimates
the bimodal distribution of variance in the filtered image
and thresholds it appropriately to separate the disc region
from the background.

The extracted shape imageIi
s is then calculated as:

Ii
s(x) =

{
1, if var(Ii(x)) ≥ δ
0, otherwise

(2)

whereIi
s(x) is a binary image of the extracted shape,x ∈ Ω

andδ is a threshold value whereδ ∈ R. The segmented
structure of interest (or the foreground)Ii

f (x) can be com-
puted by point-wise multiplication ofIi(x) andIi

s(x):

Ii
f (x) = Ii(x) · Ii

s(x). (3)

Sometimes this simple filter-and-threshold process re-
sults in unsatisfactory performance. This can be addressed
by performing a template matching operation to identify
the disc. Given the rough shape template of the disc,
the template matching operation is quite simple but the
problem is that there is no such clean shape template to
begin with. We address this issue as follows: using manual
segmentation on a set of disc images, we obtain relatively
clean shapes of the tissue for each class. These relatively
clean structures are then fed to the nonparametric shape
learning algorithm to form a good canonical shape template.
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Figure 4. Mean images from optimization process dur-
ing Congealingfor wing discs (first column), haltere discs
(second column) leg discs (third column), eye discs (fourth
column). A: Mean image ofΦs beforecongealing.B: Mean
image of Φs after congealing to convergence with only
3 parameters (tx, ty and θ). C: Mean image ofΦs after
congealing to convergence with 7 parameters (Equation 8).

This learned shape template was used in conjunction with
the simple filter-and-threshold algorithm to obtain better
segmentation results automatically in cluttered images. The
manually segmented shapes were also used as truth data
for comparing the performance of our implementations of
segmentation algorithms. Our current implementation gives
satisfactory segmentation results (example: Figure 3).

4. Joint Nonparametric Shape Learning and
Alignment

Once the shapes of the relevant disc tissues,Ii
s(x) (Equa-

tion 2), are extracted in binary image format, we use this
set of binary shapes to learn the canonical underlying shape
model of the given class of disc tissues using a nonparamet-
ric learning algorithm called ‘Congealing’ [12]. We denote
the set of binary shape images asΦs

.= {Ii
s}N

i=1 whereN is
the cardinality of the set. For a thorough discussion of this
algorithm, the reader is referred to Miller et al. [12, 11].

Let us denote the latent binary shape of the given class
of disc tissues asIl. We model each shape image inΦs as
Il transformed through a geometric transformation. Given a
class, the latent shape and the transformation are condition-
ally independent [11]. We assume that the transformations
are affine and model the affine parameters as i.i.d. random
variables. We shall assume that the transformation is a one-
to-one and invertible mapping betweenIl andIi

s. We make
the further assumption that the probability distribution of
pixel values at each pixel location arei.i.d. Thus, for any
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Figure 5. Alignment Results for wing discs.A: Segmented wing discsIi
f beforecongealing.B: Segmented wing discsIi

a after
applying the transformations learned by congealing with only 3 parameters (tx, ty andθ). C: Segmented wing discsIi

a afterapplying
the transformations learned by congealing with 7 parameters (Equation 8). Note that the third image was taken with a 10x objective,
while the rest were taken with a 20x objective. However, the algorithm was able to properly align the image as shown inC.

given pixel locationx = x∗,

Ii
s(x

∗) = Il(g−1
i (x∗)). (4)

In our implementation, we parameterize the set of trans-
formationsgi using the following component transforma-
tions: x-translation (tx), y-translation (ty), rotation (θ),
x-log-scale (sx), y-log-scale (sy), x-shear (hx), and y-
shear (hy). Clearly, this is an over-complete parameter-
ization, but following the efficiency arguments presented
by Miller [11] it allows faster convergence during the op-
timization routine. We experimented with different choices
of parameterization, and we will show results based on the
parameterization as shown in Equation 8.

Fixing the order of composition to ensure unique map-
ping (since the matrix multiplication is not commutative),
this can be written as:

g = F (tx, ty, θ, sx, sy, hx, hy) (5)

gi = F ({vj}i) (6)

{vj}i = (tix, tiy, θi, si
x, si

y, hi
x, hi

y) (7)

where1 ≤ i ≤ N , (N is the cardinality of the setΦs),
1 ≤ j ≤ K, (K is the number of parameters chosen), and
v ∈ RN×K .

Writing g out explicitly, we get:

g=

 cos(θ)esx − sin(θ)esy hy cos(θ)esxhx − sin(θ)esy tx
sin(θ)esx + cos(θ)esy hy sin(θ)esxhx + cos(θ)esy ty

0 0 1


(8)

4.1. Shape Learning

The goal is to find the transformationgi that converts
a given Ii

s into the most likely form ofIl. Formulating
this as the maximum likelihood estimation problem, and
by searching through the affine parameter space as defined
above, we want to findgi that maximizes the probability
Θ̂ = arg maxgi

P (g−1
i |Ii

s). We can writeΘ̂ as:

Θ̂ = arg maxgi
P (Ii

l (I
i
s, g

−1
i )). (9)

Using ouri.i.d. assumptions and Equations 4, 6 and 7,

Θ̂ = arg maxv

∏
x∈Ω

∏
v∈RN×K

px(Is(gi(x))). (10)

Taking log-probabilities, Equation 10 becomes:

Θ̂ = arg maxv

∑
x∈Ω

∑
v∈RN×K

log px(Is(gi(x))). (11)

Ii
s is a binary image so the pixel stack atx would consist

of 1’s and 0’s. px(Is(gi(x))) is the empirical probability
of 1’s in the pixel stack atx Since we model the transfor-
mations as the random variables causingIi

s(x) to vary from
Il(x), we can see that these two will be the same when the
randomness due togi is removed. We take entropy as our
choice of estimator̂Θ for randomness caused bygi. This
allows us to write:

Θ̂ ≈ arg minv

∑
x∈Ω

H(x). (12)

This approximation becomes equality whenN is very large.
Here, H(x) is the Shannon entropy of the binary pixel
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Figure 6. Alignment Results for eye discs.A: Segmented eye discsIi
f beforecongealing.B: Segmented eye discsIi

a afterapplying
the transformations learned by congealing with only 3 parameters.C: Segmented eye discsIi

a after applying the transformations
learned by congealing with 7 parameters (Equation 8).

stack atx. This ML estimation can be seen as solving an
optimization problem with the objective functionΨ defined
as

Ψ .=
∑
x∈Ω

H(x) +
N∑

i=1

|vi| (13)

where vi are the vectors of transformation parameters
(Equation 7), and| · | is some norm (or penalty term or
regularization term) on these vectors to keep the shape
images from shrinking to zero or undergoing other extreme
transformations.Ψ is called the penalized pixel-wise en-
tropy [11].

The learning algorithm proceeds as follows:

1. Maintain a transform parameter vectorvi (Equation 7)
for each shape imageIi

s. Each parameter vector will
specify a transformation matrix̂gi = F (vi) according
to Equation 8. Initialize allvi to zero vectors. This
has the effect of initializing all of the transformation
matricesĝi to the identity matrix.

2. Compute the penalized pixel-wise entropyΨ for the
current set of images from Equation 13.

3. For each shape imageIi
s, repeat until convergence:

(a) Calculate the numerical gradient5viΨ of Equa-
tion 13 with respect to the transformation param-
etersvi

j ’s for the current image (1 ≤ j ≤ K).

(b) Updatevi as: vi = vi + γ 5vi Ψ(where the
scaling factorγ ∈ R).

(c) Updateγ (according to some reasonable update
rule such as the Armijo rule.

At convergence of this optimization procedure, the set of
shapesΦs = {Ii

s}N
i=1 are all aligned, and the associated

transformations{gi}N
i=1 are computed. To visualize the

entropy of the transformed image set for a class at each step
of the optimization, one can construct an image (Figure 4)
in which each pixel is the mean of its corresponding pixel
stack.

4.2. Joint Alignment

We apply the{vj}i learned from the congealing process
to the extracted structuresIi

f to bring all the images into
alignment in one step.

Ii
a(x) = Ii

f (gi(x)). (14)

where1 ≤ i ≤ N . We show our results in Figures 5 and 6.

5. Stain Scoring

Mass-isolated imaginal discs were placed in 96-well
plates and stained with digoxigenin-labeled RNA or DNA
complementary to genes of interest. Images were acquired
using a light microscope equipped with Nomarski optics
as described by Tomancak et al. [14]. The local presence
of stain results in the appearance of blue in the image;
darker blue suggests a greater local concentration of the
gene of interest. However, there is substantial probe-to-
probe variability and these intensities should not be relied
on as an accurate quantitative measure of gene concentra-
tion. Nevertheless, the different intensity values can be used
to suggest where local gene concentration is high.



Figure 7. (This figure is better viewed in color)Left : Un-
aligned stain-scored wing disc images.Right: Aligned
stain-scored wing disc images after congealing. Black pix-
els have been segmented as background, white indicates no
stain and shades of blue indicate stained pixels calculated
with the semi-quantitative stain scoring algorithm.

We developed a simple semi-quantitative metric that
ranges from 0 to 5 where 0 indicates no expression of the
gene of interest and 5 indicates high expression. Examples
of segmented, stain-scored wing discs, both unadjusted and
congealed, can be seen in Figure 7. Notice that the over-
all shape and size of the discs are more consistent in the
congealed images and that a pixel-wise comparison of stain
intensity of biologically similar patterns would appear more
similar when comparing the congealed, stain-scored images
than the unaligned stain-scored images.

6. Future Work

The proposed overall methodology shown in Figure 2
operates without making any assumptions about the under-
lying structure of a given tissue class. It is unsupervised and
is highly amenable to large scale spatial expression analy-
sis. It augments any model-based registration methods one
may choose to apply by supplying the nonparametrically
learned canonical structure model from the given ensemble
of images for a given tissue class. We implemented and
demonstrated the applicability of this methodology using
Drosophila imaginal discs. To make our approach more
general, we are currently investigating the possibility of
incorporating more refined segmentation algorithms into
our approach. We plan to perform detailed comparative
analysis of spatial patterns of gene expression in aligned
imaginal discs using pixel-wise comparisons. We also plan
to extend this approach to three-dimensional datasets.
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