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Abstract

Many classifiers are trained with massive training sets

only to be applied at test time on data from a different dis-

tribution. How can we rapidly and simply adapt a classifier

to a new test distribution, even when we do not have ac-

cess to the original training data? We present an on-line

approach for rapidly adapting a “black box” classifier to

a new test data set without retraining the classifier or ex-

amining the original optimization criterion. Assuming the

original classifier outputs a continuous number for which a

threshold gives the class, we reclassify points near the orig-

inal boundary using a Gaussian process regression scheme.

We show how this general procedure can be used in the

context of a classifier cascade, demonstrating performance

that far exceeds state-of-the-art results in face detection on

a standard data set. We also draw connections to work in

semi-supervised learning, domain adaptation, and informa-

tion regularization.

1. Introduction

Supervised learning relies on the assumption of similar-

ity between the distribution of training and test instances.

However in practice there are often significant differences

between these distributions. These differences arise due to

the cost of collecting large training data sets and also to the

difficulties in obtaining training instances from a particular

target test domain. In face detection, for example, where the

goal is to determine the position and size of all of the faces

appearing in a given image, it may be infeasible to collect

training data for the enormous variety of domains in which

face detection is useful. In realistic applications, then, we

expect to encounter domains at test time for which we have

seen little training data. Furthermore, even when doing face

detection in domains for which we do have significant train-

ing data, we may be able to perform significantly better

classification by adapting our classifier’s output for individ-

ual images from these domains. That is, the classification

boundary learned locally for each image may lead to better

performance than a global classification boundary for the

entire domain.

The main contribution of this paper is a method for

adapting pre-trained classifiers to a new test domain to im-

prove performance. We demonstrate a dramatic increase in

the state-of-the-art performance on a standard face detection

data set. While other work has addressed the case in which

a small number of labeled examples are available from the

target domain, we focus on the extreme case in which no

labeled data are available for the new domain. We also as-

sume, as described below, that we do not have access to the

training data from which the original classifier was derived.

Furthermore, we assume that there is no known relationship

among our test images. That is, we assume that each new

test image may represent a new domain for the face detec-

tion problem. This means that there is only limited infor-

mation to share across images. Hence our method re-adapts

a pre-existing classifier to each new image it encounters.

As shown below, there is a surprisingly large amount to be

gained by adapting a classifier, even using the information

in just a single image.

Our domain adaptation approach exploits the structure

in the appearance of the face regions in an image and the

image regions very unlikely to correspond to faces, to pre-

dict the detection label collectively for all the candidate re-

gions in an image. This differs from the typical approach

of applying a classifier to each of these regions indepen-

dently [12, 13, 15, 17].1 The independence assumption of

previous face detection systems is made for computational

and statistical reasons, facilitating simpler models for ap-

pearance distributions and avoiding the issue of a lack of

samples to learn complex dependencies. This assumption,

however, may limit the performance of such detectors in

complex scenes.

Consider the image shown in Figure 1. A detector is

likely to fail on the face of the person sitting in the bottom-

left corner because of a strong shadow on the left half of

the face. The shadow is weaker on the two faces in the

right half of the image, and a good face detector may de-

tect them successfully. Being part of a common scene, all

1The reader is referred to Zhang et al.’s survey [19] for a discussion of

different approaches to face detection.
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four faces appearing in this image share a common illumi-

nation source. The two easy-to-detect faces could subse-

quently be used to infer common structure in the appear-

ance of all the faces in this image, allowing us to normalize

the difficult-to-detect candidate face regions and ultimately

classify them correctly. This same reasoning can be applied

to background patches, reducing both false negatives and

false positives.

Figure 1. Easy-to-detect faces can help resolve difficult-to-detect

faces. There is a shadow in the left half of all four faces. The two

faces on the left are difficult to detect because each of them has

a strong shadow. Being part of the same scene, these faces share

the common illumination source with the other two weakly shad-

owed faces, which are easier to detect. A detector that can adapt

itself to a particular scene using such easy-to-detect faces can nor-

malize other co-occurring faces and thus reduce their difficulty of

detection.

One naı̈ve way to implement the above intuition is to

scan the image for high-confidence faces, and then retrain

the detection model according to the high-confidence face

and non-face regions. This two-stage process has two prob-

lems. First, the substantial increase in computation required

for re-training the detection model for each image makes

this approach infeasible in real-time environments. Second,

this approach may lead to overfitting to the first stage pre-

dictions. We address both of these issues by adapting our

model using Gaussian process regression (GPR). For GPR,

the parameters can be analytically computed in an efficient

manner. Also, a term for the prior probability of detection

parameters prevents overfitting to the new training exam-

ples.

In Section 2, we elaborate on this formulation of face de-

tection as a regression problem. In particular, we will use

GPR, the basics of which are explained in Section 3. In

Section 4, we present our method for online domain adap-

tation using GPR. In Section 5, we describe an algorithm to

incorporate this domain adaptation procedure in a cascade

of classifiers. This classification cascade is used to achieve

state-of-the-art performance in face detection. The details

of these experiments are included in Section 6. The pro-

posed work is similar to work in a variety of fields. We dis-

cuss these related approaches and distinguish our method

from the previous work in Section 7. Finally, we conclude

in Section 8.

2. Face Detection As Regression

The image quality of a face region depends on several

factors including the pose of the person, the distance of the

face from the camera, and the occlusion of the face by other

objects present in the scene. For instance, in Figure 2, the

resolution of the faces of people in the audience is much

lower than the resolution of the faces of the players. Thus,

there may be little common structure between these two

classes of faces. Furthermore, there may be more than two

such modes in the distribution of face appearances in a sin-

gle scene.

Figure 2. Multiple modes in appearance quality. The resolution

of the faces of people in the audience is much lower than the res-

olution of the faces of the players. Although the faces may be

similar in appearance within each of these two types of faces, it is

likely that there is little commonality in the structure of appearance

across different types within a single image.

As described in the previous section, our approach ex-

ploits the common appearance structure among the face re-

gions in an image. Due to the potential presence of mul-

tiple modes in a single image, we formulate face detection

as solving a regression problem rather than a classification

problem. In this formulation, our approach predicts similar

detection scores for image regions that are similar in appear-

ance. In other words, the detection scores for the faces in

the audience are encouraged to be similar to each other but

may be different from (or similar to) the detection scores for

the regions corresponding to the faces of players.

Having similar detection scores assigned to image re-

gions with similar appearance has an additional advantage.

A visual analysis of a collection of faces sorted by their de-

tection scores provides a natural way to select the threshold

value appropriate for the application domain at hand. For

instance, we may want to reject low-resolution faces while

organizing personal photo collections, but would want to

include them for surveillance applications.

In this work, we use Gaussian process regression with an

appropriate similarity kernel to update the detection scores
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Figure 3. Illustration of the proposed approach for online domain adaptation. Let f(x) denote the output of a classifier on a data point x.

Consider an ǫ margin (green dotted line) around the classification boundary (black solid line). For points lying in the margin the classifier

is not very certain about the predictive label. The proposed method updates the scores for the points in this margin based on their similarity

to the other points for which the classifier is relatively more confident about the classification label. The original classification output is

shown using ‘blue +’, whereas the updated output is shown using ‘red o’.

for candidate image regions. In the next section, the nota-

tion used in the rest of the paper is introduced, and the basics

of Gaussian process regression are briefly summarized.

3. Gaussian Process Regression

A Gaussian process refers to a stochastic process for

which every finite set of samples is jointly Gaussian. When

a Gaussian process prior is used in a Bayesian regression

model for inferring continuous valued output, the resulting

regression is called Gaussian process regression (GPR) (see

Rasmussen and Williams [11] for further details). Consider

the standard regression model with Gaussian noise:

y = xTw + η, (1)

where y is the target variable, x is the input vector, and η ∼
N (0, σ2

n). Let us assume a zero mean Gaussian prior on w,

i.e., w ∼ N (0,Σp). Using X to denote the collection of all

input vectors, the conditional likelihood and the posterior

distribution are respectively given by

p(y|X,w) = N (XTw, σ2I), (2)

p(w|X,y) = N (
1

σ2
n

A−1Xy, A−1), (3)

where A = σ−2

n XXT +Σ−1

p . Subsequently, the prediction

for a new example x∗ is given by

p(y∗|x∗,X,y) = N (
1

σ2
n

xT
∗ A

−1Xy,xT
∗ A

−1x∗). (4)

Instead of using the original representation for data x, a

function φ(·) can be used to project x into a (potentially)

higher-dimensional space. After rearranging a few terms in

the expression for the prediction for a new example x∗, we

have

p(y∗|x∗,X,y) = N (φT
∗ ΣpΦ(K + σ2

nI)
−1y, φT

∗ Σpφ∗

−φT
∗ ΣpΦ(K + σ2

nI)
−1ΦTΣpφ∗), (5)

where φ∗ = φ(x∗), Φ = Φ(X), and K = ΦTΣpΦ. Since

all the terms involving the projection function φ occur in

the form φ(x)Σpφ(x
′), an appropriate covariance function

or kernel Kx,x′ can be used to avoid an explicit represen-

tation of the feature space. Thus, the resulting predictive

distribution p(y∗|x∗,X,y) is a Gaussian distribution with

mean and covariance defined as

µ(x∗,X,y) = Kx∗,X(KX,X + σ2

nI)
−1y, (6)

σ2(x∗,X) = Kx∗,x∗
−

Kx∗,X(KX,X + σ2

nI)
−1KT

x∗,X
. (7)

These mean and covariance terms are used in the next

section to re-compute the predictions for instances near the

classification boundary.

4. Online Domain Adaptation

Let S denote a classifier based on the sign of the predic-

tion value from a function f(·), i.e.,

S(x|f) := sgn(f(x)). (8)

Let us assume that the probability of error of f is mono-

tonically non-increasing with |f(x)|. In other words, the

large prediction values (both positive and negative) are more

likely to be correct than the small prediction values. This

assumption further suggests that the classification label ob-

tained by the classifier S for the points near the classi-

fication boundary (i.e., 0) may not be reliable. For the

face detection problem, this assumption suggests that the

pre-trained classifier can confidently accept unoccluded, in-

focus, or “easy-to-detect” faces, and reject many non-face

regions from a given image. This classifier is assumed to

generate large prediction values for these easy acceptances

and rejections. Consequently, the decision for the faces with

low prediction values is assumed to be more difficult as

compared to the decision for the regions with high predic-

tion values.
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Here we propose to update the scores for the data in-

stances with low prediction values from the pre-trained clas-

sifier by encouraging the smoothness in the final prediction

values. In other words, if two data points x1 and x2 are sim-

ilar to each other, then the corresponding predictions f ′(x1)
and f ′(x2) are encouraged to be similar to each other. To

this end, we define a small margin around the classification

boundary. The data points with prediction values outside

this margin are used to learn a GPR model, which is used

to reclassify the data points with prediction values lying in-

side the margin. Figure 3 illustrates the intuition for this

classifier adaptation, and the formal description is included

below.

Given ǫ > 0, define the in-margin set Xm ⊆ X such

that |f(Xm)| < ǫ. Similarly, define the out-of-margin set

Xo = X \ Xm. For each element in the in-margin set,

we compute the expected mean and covariance terms for

the distribution of its prediction values using its similarity

with the elements of the out-of margin set. Under the GPR

model, this distribution of prediction values follow a Gaus-

sian distribution. Hence we can compute the probability of

the “true” function value being greater than a fixed value

(the acceptance threshold in the classification setting). For

instance, if the threshold is more than three standard devia-

tion away from the mean, the probability that the prediction

label is correct is greater than 99.7%. Therefore, we define

the score updating function f ′(x) as

f ′(x) =

{

f(x) if |f(x)| > ǫ

µ(x,Xo, f(Xo))− cσ(x,Xo) otherwise,

(9)

where c is a positive constant, and µ and σ are the mean

(Equation 6) and covariance (Equation 7) terms of the pre-

dictive distribution. Figure 4 illustrates the shape of the

predictive distribution f ′(x) for a toy example with one-

dimensional x. The value of c is set to 3 in our experiments.

In this formulation of the score updating function, in-

cluding the term µ − cσ prevents accepting image patches

with low confidence on the prediction labels. Similarly, we

can include a symmetric term µ + cσ to prevent rejecting

image patches with uncertain predictions. However, we ex-

clude this term in our formulation for the following reason.

The face detector implementation used in this work exam-

ines multiple overlapping image regions with small transla-

tions and scale changes. As a result, the rejection of some of

these regions with uncertain predictions has little effect on

the overall performance. On the positive side, the exclusion

of this terms helps keeping the size of the out-of-margin set

manageable for adaptation.

Finally, the classifier is defined as

S′(x|f, ǫ) := sgn(f ′(x)). (10)

In our face detection experiments, we use the noisy

squared-exponential function as the covariance function,

−8 −6 −4 −2 0 2 4 6 8
−5
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−2

−1
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1

2
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µ−σ
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Figure 4. Illustration of the score updating function (Equation 9).

The original scoring function f(x) is shown as ∗ and o for the

positive and negative examples respectively. Also shown are four

curves f ′(x) for different choices of c ∈ {0, 1, 2, 3}. Threshold-

ing these non-parametric curves with higher values of c results in

a stricter acceptance criterion based on a higher minimum for the

confidence in predictions.

i.e., Kθ
xi,x

= ν2 exp
(

−‖xi−x‖2

2l2

)

+ σ2

gpnδxi,x, where ν

and l refer to the weight and scale-length parameters of the

squared-exponential function, and σ2

gpn is the variance of

the added noise when xi and xj are identical. Also, δxi,x is

a Kronecker delta. Hereafter, we use θT = [ν, l, σ]T to refer

to the set of all of these three parameters of the covariance

function.

In the next section, we present the details of incorpo-

rating this domain adaptation into a pre-trained cascade of

classifiers. The resulting adaptive cascade of classifiers is

used in the face detection experiments described in Sec-

tion 6.

5. Adaptive Cascade of Classifiers

Viola and Jones [17] developed a cascade of AdaBoost

classifiers to efficiently detect faces in an image. Their sys-

tem examines image patches at different locations, sizes,

and scales as follows. Given an image patch P , a set of

features Φ are computed and fed into an AdaBoost-based

binary classifier. Their detector uses n such classifiers to

define a cascade that instantaneously rejects a patch that is

rejected by any of the n classifiers. As a result, an image re-

gion is classified as a face region if and only if it is accepted

by all of the classifiers in the cascade.

This detector has remained a top contender in face detec-

tion both in terms of accuracy and speed since its introduc-

tion in 2004. In this work, we use this system as the base
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face detector. We apply the domain adaptation algorithm

presented in the previous section to each of the classifiers in

the Viola-Jones cascade (see Algorithm 1 for details).

Algorithm 1 Cascade of adaptive classifiers

Require: input X , classifier cascade {S}1...n, margin ǫ ≥
0, covariance function k(·, ·)

1: for n = 1 to N do

2: Let the stage classifier Sn := sgn(fn(x))
3: Xm ← {x ∈ X| |fn(x)| < ǫ}
4: Xo ← X \Xm

5: Yo ← fn(Xo)
6: θ∗ ← argmax

θ

log p(Yo|Xo, θ, k), where θ are the

parameters of k

7: ∀x ∈ Xo, f ′
n(x)← fn(x)

8: ∀x ∈ Xm, compute f ′
n(x) using Equation 9

9: X ← {x ∈ X|f ′
n(x) > 0 }

10: end for

For each test image, the parameters θ of the covariance

function (Kθ
xi,x

) are estimated by minimizing the negative

log-likelihood of observing the data and prediction values

for elements in the out-of-margin set Xo (step 6 of Algo-

rithm 1). The minimization is performed using a conjugate

gradient approach. In our experiments, we observed little

dependency on the initialization of this minimization step.

The objective of the classifiers in the first few stages

of the Viola-Jones cascade is to weed out only the image

patches (e.g., regions with uniform intensity) that are highly

unlikely to be face regions. The acceptance criteria for these

stages are very relaxed, leading to large size of the out-of-

margin sets for these stages. Since the computational cost

of GPR varies as O(n3) with n being the size of the out-

of-margin set, performing the proposed adaptation for these

stages is expensive. Also, we found that the improvements

in performance of these initial stages has little effect on the

overall performance of the entire cascade. Therefore we

skipped the adaptation steps for the initial few (ten) stages

of the cascade in our experiments. For later stages of the

cascade, the size of the out-of-margin set was found to be

usually less than 50 (and less than 10 for the last few stages).

Our unoptimized code for GPR took only a couple of mil-

liseconds to process sets of such small size on a standard

desktop computer. As a result, the running times of our cas-

cade are similar to those of the original cascade.

6. Face Detection Experiments

Jain et al. [6] recently developed the FDDB bench-

mark2 for evaluating the performance of face detection al-

gorithms. This data set contains photographs from several

2http://vis-www.cs.umass.edu/fddb

news sources, and includes images of faces under very chal-

lenging, unconstrained environments. This collection has a

total of 5171 faces in 2845 images. Jain et al. also specified

an evaluation scheme based on computing two ROC curves

using: (a) discrete score, and (b) continuous score. The

discrete score is similar to the previous evaluations where

each detection gets a binary match/non-match label. The

continuous score associates a real-valued score with each

detection based on the overlap between the detected and the

annotated regions. As specified by Jain et al., we report

the results for 10-fold cross-validation experiments, and use

the FDDB evaluation software to generate the performance

curves.

We use the OpenCV implementation of the Viola-Jones

face detector as the base face detection algorithm, making

it the natural baseline in our comparisons. In our compar-

isons, we also include Mikolajczyk et al.’s [10] variant of

Schneiderman et al.’s method [13] for parts-based detec-

tion. These two systems have been considered the best-

performing public implementations of face detection algo-

rithms. We also include the curves for a recent approach by

Subburaman et al. [14] since they show improvement in per-

formance for a range of false positives. Kienzle et al.’s face

detector [8] is also included in our experiments, although

its performance was found to be very low. The performance

curves for all of these approaches are shown in Figure 5.

To further study the effect of the choice of margin width

ǫ, we compare the performance curves for different choices

of ǫ in Figure 6. We found the performance to be stable

around ǫ = 3. We also experimented with multiple itera-

tions of score updates for each of the classifiers in the cas-

cade, where the updated scores obtained using our method

are fed into the next iteration as the predictions from the

pre-trained classifiers. For these experiments, we observed

that the predictions converged within a few iterations.

We also identified the situations where VJGPR consis-

tently improves the detection results obtained by the Viola-

Jones detector. Some examples of these situations are

shown in Figure 7. Figure 8 shows some examples where

VJGPR failed to improve detection performance.

To summarize the results, we have shown that simply by

adapting a black-box classifier so that its outputs are smooth

with respect to a new test set, we can dramatically improve

its performance. Our proposal for adaptation is similar to

work in a variety of fields. Next, we discuss these related

approaches and distinguish our method from previous work.

7. Other Related Work

Semi-supervised learning refers to the problem of learn-

ing from both labeled and unlabeled data. One common

approach for handling unlabeled data is to construct a graph

using pairwise similarities between both labeled and unla-

beled training instances. The nodes corresponding to the
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Figure 5. Performance curves for different approaches. The ROC

curve for the proposed online adaptation approach (VJGPR) out-

performs the curves for all of the other methods for the entire range

of the choice of false positives. The improvement in performance

is greater than 50% for small (< 200) number of false positives

over the state-of-the-art on a very challenging data set. Note that

the improvement based on the continuous score also suggests that

the VJGPR detector is more accurate in determining the extent of

the face regions as well.

labeled instances are annotated with the original labels, and

label propagation [20] is performed to estimate the labels

for unlabeled instances. In Zhu’s self-training [20], a clas-

sifier is first trained using a small set of labeled examples

and then the predictions from this trained model are used to

re-train the classifier. However, in our approach, the orig-

inal classifier is treated as a black-box and is not trained

again.
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Figure 6. Effect of the choice of the margin parameter ǫ. As we

increase the margin width ǫ from zero, the scores are updated for

more data points resulting in an improvement in performance. Al-

though after reaching a certain width, the performance starts to

become worse since fewer instances are left in the confident set

Xo to learn an effective model for online adaptation.

Another related line of research uses the unlabeled data

to estimate the underlying data density and move the clas-

sification boundary out of regions with high data density.

For example, Lawrence and Jordan [9] presented a null-

category noise model to push the unlabeled data out of the

margin; and Szummer et al. [16] included a regularization

term based on a local estimate of the mutual information

between the data and the label distributions to move the

classification boundary out of the high density data regions.

The latter approach, also referred to as information regu-

larization, was extended by Corduneanu et al. [4] for semi-

supervised learning.

Our approach uses the similarity between the data points

to update the detection score of the data points for which

the predicted score from the pre-trained detector is near

the classification boundary. This update effectively spar-

sifies the distribution of data around the original classifica-

tion boundary. While the intuition behind this procedure

is similar to those of the above-mentioned methods, these

semi-supervised learning approaches assume that both of

the labeled and unlabeled data are sampled from an identi-

cal underlying distribution. As described in Section 1, this

assumption does not hold true for our problem setting.

The problem formulation used in this paper is similar to

the work in domain adaptation. In domain adaptation, la-

beled data from one or multiple “source” domains is used

to train models to perform well on a different yet related

“target” domain. Daumé and Marcu [5] approach this prob-

lem by modeling the data distribution for each of these do-

mains as a mixture of a global and a domain-specific com-

ponent. This global component is inferred from the data of
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Viola-Jones detector Our adaptive detector

Figure 7. Example images where our approach improves over the

base detection algorithm. (The detections are denoted by green

rectangles, whereas the matched ground truth face annotation is

denoted by red ellipses. These face detection results are obtained

using systems with identical false positive rate.) The proposed

algorithm adapts the base detector using the appearances of the

detected faces in a given image. Without increasing the false posi-

tive rate, the resulting detector is made more robust to: occlusions

on lips ( the face in the middle in row 1), facial hair and self oc-

clusions (the face on the right in row 2), and the presence of dark

glasses and thick mustache (the two faces on the left in row 3).

Note that due to the absence of similar easy-to-detect examples,

the boy on the right-bottom corner in row 3 remains undetected by

the adaptive detector as well. In the image shown in row 4, the

adaptive detector got rid of the spurious detection on the body of

the person on the right.

the source domain(s) and applied to the data of the target do-

main. Another approach to the domain adaptation problem

employs models trained on the data from the source domain

to label a subset of the unlabeled data from the unlabeled

target domain, and re-trains the classifier on the combined

labeled data set [18].

Viola-Jones detector Our adaptive detector

Figure 8. Challenging examples. (The detections are denoted by

green rectangles, whereas the matched ground truth face annota-

tion is denoted by red ellipses. These face detection results are ob-

tained using systems with identical false positive rate.) The faces

appearing in the image shown in the top row display extreme emo-

tions, occlusions, and large variation in the head pose. Thus, there

is little similarity in appearance among different faces in this im-

age. As a result, our adaptive detector failed to detect several faces

in this image. The middle row shows photographs of two different

people acquired separately, but placed together to form a single

image. Although our model is capable of handling multiple types

of face appearance in a single image, if one of these types has only

a few detections with low detection scores, the detections of this

type may be removed as spurious detections by our detector. The

bottom row shows an example image where there are no easy-to-

detect faces present in the image. Clearly, the adaptive detector

also fails to improve detection rate on these images.

Most of the work in domain adaptation (including the

above two) suggests minimizing a convex combination of

source and target empirical risk [3]. Thus the classifier

needs to be re-trained (repeatedly) from scratch for every

new domain. For face detection, we argue that the distribu-

tion of face appearances varies significantly from one im-

age to another. Hence, in the domain adaptation setting,

every image represents a new domain. Applying existing

techniques for domain adaptation would therefore be pro-

hibitively slow for our problem formulation.

Our work could also be interpreted as regularizing the

output of a face detection algorithm on the data manifold.

Belkin et al. [1] proposed smoothing a discriminative func-

tion by controlling the complexity of the learned classifier

through the norm of the desired function in the correspond-
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ing reproducing kernel Hilbert spaces. Although this mani-

fold regularization framework provides useful insights into

the relation between the hypotheses for the original detec-

tor and the adapted detector, the infeasibility of re-training

the classifier for a new test image prevents us from build-

ing on this work as well. A similar argument holds true for

the relevance of the previous work related to the analysis of

covariate shift [2].

In another related work, Jain et al. [7] proposed an al-

gorithm for query-dependent re-ranking of image search re-

sults using GPR. They used clicks associated with an image

as weak supervision for learning a regression model. A sim-

ilar kind of supervision is not available for face detection.

To the best of our knowledge, our work is the first to

approach domain adaptation in a completely unsupervised

and on-line setting. In other words, instead of training a new

classifier from scratch for a new target domain, we adapt a

classifier trained on a different source domain by encourag-

ing smoothness of the output function. We present a simple

yet effective method to perform this adaptation, and report

state-of-the-art results in face detection using this approach.

8. Conclusion

We have shown that simply by adapting a black-box clas-

sifier so that its outputs are smooth with respect to a new

test set, we can dramatically improve its performance. The

performance gain we have achieved on the FDDB face de-

tection benchmark is dramatic, especially in view of the

fact that the Viola-Jones classifier has remained a top con-

tender in face detection accuracy since its introduction in

2004. (We note that FDDB is particularly difficult, includ-

ing many profile views and other faces which the best de-

tectors currently miss.)

While it is certainly worth asking whether semi-

supervised methods, despite their greater computational

burden, could be applied in this scenario, several problems

have kept us from pursuing this question. First, the origi-

nal training data for the Viola-Jones classifier is proprietary

and unavailable for us to use. Thus, we must already ac-

cept an alternative training set than the one used to train the

original published classifier. Second, the details of training

the original Viola-Jones classifier are not completely speci-

fied in the literature. We have had difficulty reproducing the

original results on the classifier, even after contacting one of

the original authors of the paper.

Without the original training data and without a clearly

specified training algorithm, the task of applying a semi-

supervised method is especially daunting. This perhaps

makes our approach even more appealing, since there is no

need for either the original data or the original algorithms.

In future work, we hope to characterize the necessary and/or

sufficient conditions for our approach.
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