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Abstract

In this paper, we first review local counting methods for perimeter estimation of piecewise

smooth binary figures on square, hexagonal, and triangular grids. We verify that better

perimeter estimates, using local counting algorithms, can be obtained using hexagonal or

triangular grids. We then compare surface area estimates using local counting techniques for

binary three-dimensional volumes under the three semi-regular polyhedral tilings: the cubic,

truncated octahedral, and rhombic dodecahedral tilings. It is shown that for surfaces of ran-

dom orientation with a uniform distribution, the expected error of surface area estimates is

smaller for the truncated octahedral and rhombic dodecahedral tilings than for the standard

cubic or rectangular prism tilings of space. Additional properties of these tessellations are

reviewed and potential applications of better surface area estimates are discussed.
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Math Symbols

Less than <

Prime marking ′

Square Root
√
2

Approximately Equal ≈
Integral Sign

∫
For All ∀
Equals =

Membership ∈
Division /

Summation
∑

Greek Letters

Lowercase Pi π

Lowercase Phi φ

Lowercase Theta θ

Lowercase Epsilon ε
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1. Introduction

To represent images or volumes in a digital computer, they must be discretized. This dis-

cretization leads to errors in the computation of such fundamental properties of objects as

perimeter, area, volume, and surface area. Not surprisingly, the magnitudes of these errors

depend upon the particular discretization used. There are an infinite variety of discrete ap-

proximations for any planar figure, from the spatial frequency decompositions used in signal

processing to parameterized NURB surfaces used in the CAD/CAM world. In this paper,

we focus on a particular class of discretizations: the tessellation of planar figures and solid

volumes. Tessellations are approximate representations particularly convenient in computer

vision and graphics.

1.1. Some Definitions

We define the tessellation of a figure (in either two or three dimensions) as the discretization

of the figure into a finite number of continuous regions, each having a constant value (See

Figure 1). The value of each region is some measure of the original figure in that vicinity,

such as a point sample of the figure at the centroid of the region or a spatial average over the

region. In two dimensions, these regions are typically dubbed pixels, for picture elements,

and in three dimensions voxels, for volume elements. In this paper, a pixel in a tessellated

figure will be labelled black if some non-zero measure portion of its interior is black in the

original image. Otherwise, it will be labelled white.

We use the term tiling synonymously with tessellation, and each element of a tessellation

is sometimes referred to as a tile, especially if the dimension is unspecified. The term grid

shall be used to denote the specific arrangement of tiles used to cover a space. For example,

squares can be placed in the common Cartesian grid (like ordinary graph paper), or can be

arranged so that each row is offset by some distance from the previous row (as in a brick

wall). When discussing a square grid, a Cartesian grid will be assumed unless otherwise

stated.

In the following analyses, we restrict our focus to binary images and volumes, i.e. data

sets in which each pixel or voxel has one of two values (black or white, 0 or 1, etc.). Much
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Figure 1: The tessellation of a circle on a square grid. Here, the original figure was sampled
at the center of each tile, and this value was copied across the whole tile. The figure on the
left is a continuous binary image. The figure on the right is a discrete binary image.

of the previous work on properties of tessellations does the same: [2, 5, 6, 8]. Prior to

tessellation we call a binary image continuous. After tessellation, it becomes a discrete

binary image. The same terminology applies to volumes.

1.2. Local Counting Algorithms

Much of the work in discrete binary image processing has focused on local counting algo-

rithms [6, 9]. These techniques involve computing functions of figures when only local image

information is available for computations, and local results are reported to a global accumu-

lator. For example, in a black and white image, the perimeter of a tessellated figure can be

computed using a local counting scheme as follows: a processor at each black pixel reports

to the global accumulator the length of its border with neighboring white pixels. The sum

of the results from each processor is the exact perimeter of the tessellated figure. It is also a

perimeter estimate (not always a good one) of the originally imaged object from which the

tessellated figure was derived. Local counting algorithms have been motivated in part by

their inherent parallelism and simplicity of implementation, making them suitable for use on

fine grain, highly parallel computers.

1.3. LCAP and ALCAP

While there are many local counting algorithms for computing perimeter, we restrict our

attention here to the method described above, which we shall refer to as Local Counting

Algorithm for Perimeter computation, or LCAP. The analyses which follow could be applied
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to other local counting algorithms in a similar manner. To focus on the issue of pixel shape

rather than size, we introduce the notion of the Asymptotic LCAP estimate of perimeter

(ALCAP), which we define to be the limit of the LCAP estimate as the diameter of the grid

pixels approaches zero. This is a simple way to enforce the condition that the grid pixels are

“small enough” so that a particular grid shape is providing the best estimate it can.

One might assume that LCAP would produce zero-error perimeter estimates as the pixel

size of the grid approaches zero. However, as is easily seen in Figure 2, it is not always true

that increasing the resolution of the pixel grid improves our perimeter estimate. It is this

fact which motivates us to try alternative grid pixel shapes in an effort to improve our LCAP

perimeter estimates.
            

Figure 2: Coarse and fine tessellations of a figure. On the left, the dotted square has been
tessellated at low resolution. On the right, the same square has been tessellated at a higher
resolution. The LCAP perimeter estimates of the squares on the grids are numerically equal.

1.4. Pixel and Voxel Shapes

In Sections 2 and 3, we explore the performance of ALCAP using various shapes for the

pixels and voxels in the tessellating grids. In two dimensions, we explore grids composed

of the regular polygons which can tile the plane: the square, the regular hexagon, and the

equilateral triangle. In three dimensions we explore grids composed of regular and semi-

regular polyhedra and their duals. But how should we compare the performance of the

different grids?
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For a particular edge of a plane figure, LCAP produces results of differing accuracy

depending upon the orientation of that edge. Hence, the performance of LCAP on a whole

figure is dependent upon the distribution of orientations of edges in all of the sides of the

figure. For example, on a square grid, the ALCAP estimate for an axis-aligned rectangle is

perfect, for a rectangle at 45 degrees it is off by a factor of
√
2, and for a circle it is somewhere

in between with an error factor of 4/π. To get an expectation of the relative ALCAP error,

one could specify a distribution over shapes S from which samples were drawn and then

compute the expected error factor as

ES(error) =
∑
S∈S

p(S) ∗ ALCAP (S)

L(S)
(1)

where p(S) is the probability of drawing a particular sample S from S and L(S) is the

true Euclidean perimeter of S.

The problem with this approach is that it is difficult in most cases to come up with a

reasonable approximation to S, since it is rare that one can fully characterize the distribution
of shapes in which one is interested. As an alternative we decided to examine the behavior

of ALCAP in estimating lengths of straight border segments, since this gives a good measure

of how sensitive each tiling is to the orientations of the sides of figures.

1.5. Random Line Segment Processes

In order to compare the performance of ALCAP using different tile shapes, we introduce a

random process P whose samples are line segments of unit length and which form random

angles θ (with uniform distribution) with the x-axis. We shall examine the expectation of

various functions of ALCAP taken over P. (Technically, ALCAP produces the perimeter of

a line segment and not its length. When we refer to the “length” of a line segment, we are

using this as a shorthand for the “length of a border defined by the line segment,” which

can be computed by ALCAP.)
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1.6. Caveats

Before proceeding with our analyses of various grid pixel shapes on infinitely fine grids, we

examine limitations of our analysis. Since we will be analysing the behavior of LCAP on

an infinitely fine grid, we would incur additional errors in practice when using a finite grid.

Below, we examine the types of additonal errors which can arise on a finite grid.

1.6.1. City Block Distance

On an infinitely fine square grid, ALCAP assigns to a straight edge e a length equal to the

city block distance between the two vertices v1 and v2 defining the edge:

Ls(v
1, v2) = |v1

x − v2
x|+ |v1

y − v2
y|. (2)

To compute the perimeter of an entire figure F we then have

Ls(F ) =
N∑

i=0

Ls(v
i, vi+1). (3)

where v0 and vN name the same vertex for notational convenience. Now consider the set

of all local extrema of the figure F relative to the x and y directions starting at v0. These

appear as the horizontal and vertical hashmarks in the left side of Figure 3. Let xi be the

x-coordinate of the ith extremum in the x direction. Let the total number of these extrema

be X. Also, let yi be the y-coordinate of the ith extremum in the y direction. Let the total

number of these extrema be Y . We will call these xi and yi local coordinate extrema. Then

we have

Ls(F ) =
N∑

i=0

Ls(v
i, vi+1) (4)

=
N∑

i=0

|vi
x − vi+1

x |+ |vi
y − vi+1

y | (5)

=
N∑

i=0

|vi
x − vi+1

x |+
N∑

i=0

|vi
y − vi+1

y | (6)
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Figure 3: Effects of tessellation on the coordinate extrema of a figure. Some extrema (e.g.
y6) remain in the same position in the tessellated figure. Others (e.g. y1) are shifted. Some
disappear (y2 and y3). Topogical changes can cause new extrema to appear (*).

=
X∑

i=0

|xi − xi+1|+
Y∑

i=0

|yi − yi+1|. (7)

Notice that in the last step, we replace a sum over all vertices with sums over the local

coordinate extrema. This is possible since the signs of the quantities in the absolute value

brackets will only change at extrema, eliminating all but the coordinate extrema terms in

the sum. This applies even for figures with curved boundaries (and hence an infinite number

of vertices).

An immediate consequence of the above result is that if a finite square grid G tessellates

a continuous figure F into a discrete figure F ′ such that the local coordinate extrema of F ′

are equivalent to those of F , then the LCAP perimeter estimate of F ′ will be equivalent

to the ALCAP perimeter estimate of F . Of course, for a finite grid, the above condition

(equivalence of extrema) will not hold in general. When tessellating a figure F into F ′, this

condition can break down in two ways: 1) either the coordinate extrema between the two

figures can remain in one-to-one correspondence but be shifted from their original positions,

or 2) coordinate extrema can be created or eliminated artificially by the tessellation (i.e.

the one-to-one correspondence can be violated). Figure 3 illustrates the common error types

that can occur when tessellating a complex figure on a coarse grid.

First note extremum y6 in Figure 3. Since it occurs at a convexity, and it lies exactly on
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a horizontal grid line, it will be mapped to an equivalent extremum in the tessellated figure

(on the right). However, tessellation of the figure causes errors in all of the other extrema.

1.6.2. Type 1 errors

The most common type of error is seen at extremum y1. Here, at a convexity, the extremum

will be shifted up to the nearest horizontal line. This will cause an error of at most s, the

height of a pixel in the grid. The maximum value of these errors can always be reduced to

s∗ by reducing the pixel size of the grid to s∗.

At y5, a concave extremum on the figure, the shift in the extremum due to tessellation can

be arbitrarily large, depending upon the depth of the invagination in the figure. In this case,

the extremum is shifted exactly one pixel height. These errors can usually be reduced by

reducing pixel size, but they are a function of both the width of the “hole” in the figure and

the pixel size, so it is difficult to put a bound on these errors in terms of simple parameters

of the figure.

1.6.3. Type 2 errors

In type 2 errors, extrema are destroyed or created by the tessellation. Consider the extrema

y2 and y3 of Figure 3. The vertical extrema are so close together vertically, that they will be

lumped together in the tessellated figure, effectively eliminating both of them as extrema.

These errors can be avoided if the grid pixel size is smaller than the minimum horizontal or

vertical distance between extrema.

Finally, consider the invagination of the figure marked by the sequence of extrema x2,

x3, y7, and y8. Due to the narrowness of the gap between the two parts of the figure at this

point, the tessellation will create a topological change in the figure. This topological change

creates new extrema at the position of the asterisk in the tessellated figure at right. This

can cause large errors in the LCAP perimeter estimate. Latecki [10] described the precise

circumstances under which tessellation can produce topological errors. Choosing a pixel size

small enough to avoid these conditions will alleviate these errors.

To summarize, in a practical situation one should choose the size of the tessellating pixels

so that continuous coordinate extrema are mapped to their discrete counterparts in a one-
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to-one manner and “sufficiently well” for the problem at hand. It may not always be clear

how small the tiles need to be for a highly convoluted figure or surface. Thus, the practical

application of LCAP should be limited to situations in which it is known or at least expected

that the extrema are not greatly disturbed by the tessellation. For example, for the class of

convex plane figures, it is easy to see that the LCAP estimate is within 8s of the ALCAP

estimate, where s is the pixel size for the grid. Hence for this class of figures, to obtain an

LCAP estimate within ε of the ALCAP estimate we must choose a pixel size so that 8s < ε

or s < ε
8
.

Having expounded the limitations of LCAP perimeter estimates, we now turn our atten-

tion to the analysis of ALCAP methods on various grids.

2. Two Dimensional Tilings

As mentioned above, we will analyze the square, hexagonal, and triangular tilings. The

hexagonal tiling is unique up to rotation, but for the square and triangular tilings, different

grids can be produced by shifting rows of tiles. We analyze the grids show in Figures 4A

and 4B.

2.1. The Cartesian Square Tiling

Let LS(θ) be the estimated length of a unit length line segment at angle θ computed using

ALCAP on a square grid. For a unit length line segment on an infinitely fine square grid,

we have

LS(θ) = | sin θ|+ | cos θ| (8)

(which is also the city block distance between the endpoints of the line segment).

Then to compute the expectation of the estimated length over our distribution P of

random line segments, we integrate the estimated length (Eq. (8)) over the interval [0, π/2]
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and divide by the interval of integration (see [8],[20]):

EP [LS (θ)] =

π
2∫

0

LS (θ) p (θ) dθ =

π
2∫

0

LS (θ)
1
π
2

dθ =
4

π
, (9)

We call this value the mean length estimate on a square grid.

A B

C D

Figure 4: Some square and triangular grid variations. Only grid types A and B are analyzed
in this paper. Hexagons admit only a single grid type.

On average, we overestimate the length of a line by a factor of 4/π ≈ 1.273 by using the

city block estimate of length. We define the length error, which is just the difference between

the true length of the line segment (which is defined to be 1) and the estimated length to be

eLS
(θ) = |LS (θ)− 1| . (10)

Then the expected length error, or simply the length bias, is

EP [eLS
(θ)] = EP [|LS (θ)− 1|] = EP [LS (θ)]− 1 =

4

π
− 1 ≈ 0.273. (11)

By symmetry, we can see that the length bias will be the same for lines whose defining

orientation angle lies in the other three quadrants, so the same result is obtained whether

we integrate over the full range of angles or merely in the first quadrant. Notice also that

we could have limited the integration to the range θ ∈ [0, π/4] since the integrated functions

are symmetric about the line θ = π/4. In fact, any of the regions shown in Figure 5A serve

as a basis for the interval of integration for Eq. (9).
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Figure 5: Bias symmetry regions for square and hexagonal tessellations. The recognition of
such regions simplifies bias computations in more complicated tessellations. (The symmetry
regions for the triangular grid are equivalent tot those for the hexagonal grid.)

2.2. Hexagonal Tilings

Next consider the errors obtained when the plane is tiled with hexagons, as in Figure 6. We

start by noticing that for lines of unit length which lie at an angle θ ∈ [0, π/6], the following

formula for estimated length holds:

LH (θ) =
4

3
cos θ. (12)

The conclusion is that only the run, and not the rise, of such a line is relevant to the

computation of its estimated length. To see this, note that each line which lies in the

interval θ ∈ [0, π/6] (L1 and L2 in Figure 6) can be estimated by the hexagonal grid pieces

in Figure 7. Each of these pieces is 4/3 as long as the distance between pixel centers along

the x-axis, resulting in Eq. (12). These hexagonal grid pieces are analogous to the east-

west and north-south segments used for computing city block distance on a square grid. By

symmetry again, the interval θ ∈ [0, π/6] is large enough to define all the needed properties

of the hexagonal tiling.

For our mean estimated length, then we have

EP [LH (θ)] =

π
2∫

0

LH (θ) p (θ) dθ =

π
2∫

0

LH (θ)
1
π
2

dθ =
4

π
. (13)

Remarkably, this is the same mean length estimate as for the square. And the hexagonal
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L1

L2

L3

π/6

Figure 6: Lines on a hexagonal grid. For lines which lie at an angle between θ ∈ [0, π/6]
radians from the x-axis, the estimated length is a constant times the length of the line
projected onto the x-axis.

Figure 7: These two sections of the hexagonal grid, laid end to end, can be used to approx-
imate any line segment which forms an angle θ ∈ [0, π/6] with the x-axis.

length bias is:

EP [eLH
(θ)] = EP [|LH (θ)− 1|] = EP [LH (θ)]− 1 =

4

π
− 1 ≈ 0.273. (14)

2.3. Length Bias vs. Centered Length Bias

At first glance, one might conclude that the hexagonal tiling is no better than the square

tiling, since they have the same length biases. However, we can make an improvement to

our estimated length function on each grid by noticing that the estimated length is almost

always an overestimate of the true length. We define a new function of the line segment-

valued random variable P called the centered estimated length which we define for a square

grid as:

Lcent.
S (θ) =

sin θ + cos θ

KS
, (15)

where KS is a correction factor for the overestimate.
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The centered length error is then

eLcent.
S

(θ) =

∣∣∣∣∣sin θ + cos θ

KS
− 1

∣∣∣∣∣ , (16)

such that, for appropriate values of KS (a little bit larger than 1), eLcent.
S

should have a

lower mean value than the previously defined error measure. That is, by assuming that the

true length of a line segment is a little bit less than the value actually obtained from the

local counting algorithm, we are likely to be closer to the true line segment length. The

expectation of the centered length error is:

EP
[
eLcent.

S
(θ)

]
=

π
2∫

0

∣∣∣∣∣sin θ + cos θ

KS

− 1

∣∣∣∣∣ 1π
2

dθ, (17)

which we call the centered bias for the square tiling. We define KS to be the value which

minimizes this expectation. KS is difficult to obtain analytically due to the absolute value

within the integral. However, evaluating numerically using a commercial math package [22],

we obtain KS ≈ 1.323, and EP
[
eLcent.

S
(θ)

]
≈ 0.0798 , implying that even after centering, we

can expect an error of approximately 8 percent in the length of lines or the perimeter of a

figure on a square grid. Summarizing, the integral above represents the mean magnitude of

the difference between the true length of the line, which we have defined to be 1, and the

centered estimated length.

On a hexagonal grid, the expectation of the centered estimated length becomes

EP
[
eLcent.

H
(θ)

]
=

π
6∫

0

∣∣∣∣∣
4
3
cos θ

KH
− 1

∣∣∣∣∣ 1π
6

dθ. (18)

Here, through numerical methods again, we obtain KH ≈ 1.291, and EP (Lcent.
H (θ)) ≈ 0.0348.

Hence, tiling with hexagons does improve the mean accuracy of length estimates by almost

five percent over the square tiling.
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2.4. Triangular Tilings

We also evaluated an equilateral triangular tiling. The mean length estimate for the trian-

gular tiling was superior to the other tilings, giving a length bias ≈ 0.103.

However the centered bias and the squared centered bias matched exactly the values for

the hexagonal tiling. This can be explained by the fact that each path on an hexagonal grid

is a constant factor longer ( 2√
3
than the corresponding path on a triangular grid, provided

the grids are at a certain orientation). Since the centered bias and the squared centered

bias are computed by minimizing over a factor which divides the length, the constant factor

which accounts for the difference between the two tilings is eliminated.

2.5. Error Extrema and the Squared Centered Bias

Before moving on to 3-D tessellations, we examine a few more statistics for two-dimensional

tilings, the error extrema and the squared centered bias.

Table 1 shows the maximum and minimum errors both before and after centering for the

three tilings. Notice that the maximum centered error for the triangular tiling is less than

half of that for the square tiling and is about 20 percent less than for the hexagonal tiling.

Hence, in any application where maximum error is critical, tessellating with a triangular grid

may be worth the trouble.

2.5.1. Squared centered bias

An alternative to the centered error discussed previously involves weighting large errors

more heavily than small errors. To do this we can merely square the residue used in previous

expressions. This gives us

eLsq.
S
(θ) =

(
sin θ + cos θ

KS
− 1

)2

, (19)

for the square grid, with an expectation of

EP
[
eLsq.

S
(θ)

]
=

π
2∫

0

(
sin θ + cos θ

KS
− 1

)2
1
π
2

dθ, (20)
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Triangle Square Hexagon

Statistic
Closed
Form

Approx.
Closed
Form

Approx.
Closed
Form

Approx.

Mean
Length
Estimate

2
√

3
π

1.103 4
π

1.273 4
π

1.273

Maximum
Error

2
√

3
3

− 1 0.155
√
2− 1 0.414 1

3
0.333

Minimum
Error

0 0.0 0 0.0 2
√

3
3

− 1 0.155

Length Bias 2
√

3
π

− 1 0.103 4
π
− 1 0.273 4

π
− 1 0.273

Optimal
Centering
Constant

– 1.118 – 1.323 – 1.291

Maximum
Centered
Error

– 0.106 – 0.244 – 0.134

Minimum
Centered
Error

0 0.0 0 0.0 0 0.0

Centered
Bias

– 0.0348 – 0.0798 – 0.0348

Squared
Centered
Bias

2π2+3
√

3π−36

π(3
√

3+2π)
0.00176 π2+2π−16

π(π+2)
0.00946 2π2+3

√
3π−36

π(3
√

3+2π)
0.00176

Table 1. Some estimated-length statistics of a random unit-length line segment process
under triangular, square, and hexagonal tessellations. For non-centered length bias, the
triangular grid is the winner. After centering, however, the triangular and hexagonal grids
perform equally well, both signficantly outperforming the square grid.
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which we call the squared centered bias.

The value which minimizes the above equation (KS) represents the “best” adjustment

of our guess at the true length of the line given that we want to weigh larger errors more

heavily. Values for the squared centered bias are given for the three two-dimensional tilings

in Table 1.

3. Three Dimensional Tilings

We now turn to the problem of estimating the surface area of a volume on a discrete grid in

three dimensions using ALCAP. The basic procedure is for each voxel to report the amount

of its own surface area which is part of the surface area of the global object. Measurements

of surface area will be biased again due to the discretization of the volume. We replace our

unit length line segment process P from 2-D with a unit area planar patch process Q in 3-D.

In two dimensions, we examined regular polygons which can tile the plane. Unfortunately,

there is only a single regular polyhedron, the cube, which can tile 3-space. Looking for

alternatives to cubes with as many symmetries as possible, we expanded our search to two

additional groups, the semi-regular polyhedra and their duals. Lyusternik [14, page 147]

defines a semi-regular polyhedron as “a polyhedron all of whose faces are regular polygons

(though all faces need not be of the same type) and all of whose polyhedral angles are equal.”

Properties of these solids and the regular polyhedra can be found in [4, 14, 21].

Exactly one semi-regular polyhedron, the truncated octahedron, tiles space. It is pictured

in Figure 11. And exactly one dual of the regular and semi-regular polyhedra, the rhombic

dodecahedron, tiles space. (See Figure 16). It is the dual of the cuboctahedron, another

semi-regular polyhedron. As an initial effort, we limit the scope of this paper to these two

solids and the cube. However, it would be interesting in future work to find the optimal

tiling solid for surface area computations.

3.1. Cubic Tilings

Let θ and φ define the normal to a planar segment, as one would define a point on the unit

sphere by two angles. Such a patch and the associated angles can be seen in Figure 8. The
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estimated area of this planar segment using ALCAP on a cubic grid is then:

AC (θ, φ) = sinφ + cosφ cos θ + cosφ sin θ. (21)

The three terms on the right hand side of Eq. (21) are the projections of the planar segment

θ

φ

planar patch

normal to patch

Figure 8: A planar patch and its associated angles.

onto each of the primary Cartesian planes (x-y, y-z, x-z) respectively. This projection process

is analogous to finding the city block length estimate in two dimensions.

3.1.1. Expected Estimated Area

Integrating Eq. (21) over the angles θ and φ in the interval [0, π/2] and dividing the result by

the solid angle (in units of steradians) over which we have integrated gives us the mean area

estimate or expected area estimate obtained with a cubic grid over Q. We need to multiply

the area expression by the Jacobian term, cosφ, which handles the foreshortening of area as

we approach the “north pole” of the unit sphere. We have

EQ [AC (θ, φ)] =

π
2∫
0

π
2∫
0

AC (θ, φ) cosφ dφ dθ

π
2∫
0

π
2∫
0
cos φ dφ dθ

=

π
2∫
0

1
2
+ π

4
(sin θ + cos θ) dθ

π
2∫
0
1dθ

=
π
4
+ π

2
π
2

=
3

2
. (22)

In the case of calculating the mean length estimate on a square grid in two dimensions, we

noted that we could restrict our interval of integration to θ ∈ [0, π/4], due to the symmetry

of a square grid. There is an analogous, albeit more complicated symmetry in 3-D on a
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C

A B

θ,φ=0
θ=π/4

θ=π/2

φ=π/2

φ=arctan(cos θ)

Figure 9: Integrating the estimated area expression in Eq. (21) over the spherical triangle
shown θ ∈ [0, π/2] ;φ ∈ [0, π/2] yields the area bias for planar segments on a cubic grid. We
obtain the same result if we restrict the solid angle of integration to Area A, B, or C (area
A is used in the text).

cubic grid. Picture a sphere whose center is at the origin and whose equator lies in the x-y

plane, as in Figure 9. The family of planar segments whose normals fall within the solid

angle of Area A (or B or C for that matter) of Figure 9 have the same estimated areas and

hence the same mean estimated area as the total family of planar segments whose normals

lie in a single Cartesian octant. That is, just as the range θ ∈ [0, π/4] represents all of

the unit length line segments needed to calculate the mean estimated length on a square

grid, the part of the unit sphere defined by θ ∈ [0, π/4] ;φ ∈ [0, arctan (cos θ)] represents

a family of unit area planar segments sufficient to calculate the mean estimated area on a

cubic grid. To understand this, note that the function we are evaluating (from Eq. (21)) is

symmetric with respect to the three coordinate axes. That is, if we relabel the axes and their

associated angles, the value of the function integrated across the entire region remains the

same. (Actually, the smallest possible regions of symmetry are half the size of those shown

in Figure 9. One can subdivide each of the Regions A, B, and C into smaller regions by

drawing a great circle across the sphere from the center of the lune to the corner of the lune.

This gives a total of six regions of symmetry per spherical octant, for a total of 48 regions of

symmetry on the sphere. The six part symmetry is particularly apparent in Figure 10E and
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Figure 10: Estimated area error and centered estimated area error as a function of surface
angle for different tessellations. A. Estimated surface area error for the cubic tiling. Notice
that the errors are zero at the corners of the lune, which represent the errors for planes
parallel to the three principal Cartesian planes. The mean error is large, however. B. The
centered area error for cubes. The mean error is greatly reduced by centering the error.
C. Surface area error for a TO tiling. Notice that the maximum error is reduced but the
minimum error is increased. D. The centered surface area error for the TO tiling. E. Surface
area error for the RD tiling. Notice the low variance in the error. F. Centered surface area
error for the RD tiling. This tiling achieves the least centered area bias of the tilings we
analyzed.
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Figure 10F.) This concept can be verified by integrating the equation for area bias over 1/3

of the spherical triangle shown in Figure 9, i.e. the solid angle which is represented by Area

A. We should end up with the same mean area estimate which was computed in Eq. (23),

namely, 3/2. We see that this is in fact the case:

π
4∫
0

arctan(cos θ)∫
0

AC (θ, φ) cosφ dφ dθ

π
4∫
0

arctan(cos θ)∫
0

cos φ dφ dθ

=
π
4
π
6

=
3

2
. (23)

This symmetry provides us with a slew of identities which can be found in Appendix A.

These identities are helpful in deriving closed form solutions to area bias estimates for more

complicated tilings which we shall encounter later.

3.1.2. Area Bias, Centered Area Bias, and Other Statistics

Once we have established the area estimation function and calculated the mean area estimate

for a tiling, the computations of other statistics for that tiling follow straight forwardly. While

it is not always easy to obtain a closed form solution for these statistics, at least numerical

approximations can be obtained.

Since we described in detail the various statistics chosen for the 2-D tilings, we omit

repeating our exposition of these statistics for the cubic tiling, and merely present formulas

and solutions for the additional statistics below. These results are summarized in Table 2.

Area Bias for Cubic Tiling. We define the area error to be

eAC
(θ, φ) = |AC (θ, φ)− 1| , (24)

and the expectation of this quantity, or area bias, is then

EQ [eAC
(θ, φ)] = EQ [|AC (θ, φ)− 1|] = EQ [AC (θ, φ)]− 1 =

3

2
− 1 = 0.5. (25)

Figure 10A shows the area error for a cubic tiling as a function of θ and φ, the two angles

which define the normal to a planar segment. The color at each point represents the error
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Cube
Truncated
Octahedron

Rhombic
Dodecahedron

Statistic
Closed
Form

Approx.
Closed
Form

Approx.
Closed
Form

Approx.

Mean Area
Estimate

3
2

1.500 3
8
+ 9

√
6

4π
arctan 1√

2
1.455 3

2
1.5

Maximum
Error

√
3− 1 0.732

√
30+6

√
3

4
− 1 0.589

√
10
2

− 1 0.581

Minimum
Error

0 0.0
√

3−1
4

0.183
√
2− 1 0.414

Area Bias 1
2

0.500 −5
8
+ 9

√
6

4π
arctan 1√

2
0.455 1

2
0.5

Optimal
Centering
Constant

– 1.533 – 1.478 – 1.517

Maximum
Centered
Error

– 0.348 – 0.191 – 0.0701

Minimum
Centered
Error

0 0.0 0 0.0 0 0.0

Centered
Bias

– 0.0812 – 0.0580 – 0.0318

Squared
Centered
Bias

– 0.0102 – 0.00462 – 0.00191

Table 2. Some statistics for random plane processes on tessellations of cubes, truncated
octahedra, and rhombic dodecahedra.
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for the planar segment defined by that particular point. For the cubic tiling, as expected,

the error is zero at the three corners of the plot, since this corresponds to the three principal

Cartesian planes, which can be perfectly represented in a cubic tiling. However, as the angle

of the plane becomes more oblique, the error increases quickly. The maximum error occurs

in the middle of the plot and has an area error of
√
3 − 1 ≈ 0.732. Figure 10B shows the

benefit of centering the error which is discussed in the following section.

Centered Bias for Cubic Tiling. To produce the centered area bias, we must first define

the centered estimated area to be

Acent.
C (θ, φ) =

AC(θ, φ)

KC
, (26)

where KC is the correction factor for the overestimate of area. Then, the centered area error

is:

eAcent.
C

(θ, φ) =

∣∣∣∣∣AC(θ, φ)

KS

− 1

∣∣∣∣∣ , (27)

and the expectation of this quantity is just

EQ
[
eAcent.

C
(θ, φ)

]
=

π
4∫

0

arctan(cos θ)∫
0

∣∣∣∣∣AC(θ, φ)

KC

− 1

∣∣∣∣∣ 1π
6

cosφ dφ dθ. (28)

Minimizing over KC using numerical methods, we obtain KC ≈ 1.533 corresponding to

a centered area bias of approximately 0.0812. Figure 10B shows a plot of the centered area

error as a function of the planar segment normals. Notice the greatly reduced error due to

the correction factor.

Squared Centered Bias for Cubic Tiling. Following in the same vein, we compute the

squared centered error for area, as

EQ
[
eAsq.

C
(θ, φ)

]
=

π
4∫

0

arctan(cos θ)∫
0

(
AC(θ, φ)

KC
− 1

)2
1
π
6

cosφ dφ dθ, (29)
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The value of KC ≈ 1.516 minimizes the expression, which has a corresponding value of

approximately 0.0102.

Error Maxima and Minima for Cubic Tiling. In two dimensions, computing the val-

ues of θ which maximized and minimized our estimated length functions was easy since these

functions are monotonic over the relevant range of θ. In three dimensions, this same state-

ment holds for the partial derivatives (with respect to φ and θ) of the cubic grid estimated

area function, so again we have it easy:

max

θ, φ
AC (θ, φ) = AC

(
π

4
, arctan

(
cos

π

4

))
=

√
3, (30)

and
min

θ, φ
AC (θ, φ) = AC (0, 0) = 1. (31)

These values give us a maximum centered error of approximately 0.348, and the minimum

centered error is of course 0.

3.1.3. Summary of Results for Cubic Grid

The expected error when we simply compute area of a smooth figure on a cubic grid using

a local counting scheme is exactly 50 percent. While this is large, we can do substantially

better by dividing the ALCAP result by 1.533 and using this as our guess of the true area.

Our expected error is then only about 8 percent. However, as we shall see, we can do

substantially better than this by using other grids. Furthermore, our worst case error, even

after centering, is still 34 percent, which is quite severe for some applications. This too, we

would like to improve upon.

3.2. The Truncated Octahedron

A simple solution finding the ALCAP surface area estimates for a truncated octahedron

(TO) grid relies on finding certain symmetries in the tiling which we can exploit.
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Figure 11: A truncated octahedron.

3.2.1. The Estimated Area Function for Truncated Octahedral Grids

Unlike the square, the cube, and the hexagon, it is not immediately obvious how to align the

TO’s with respect to the coordinate axes to simplify our analysis of estimated surface area.

Figure 12 shows several possibilities, assuming the viewer is looking down along the z-axis,

from a point P at (0, 0, 1). The one shown on the far right is of particular interest, since it

is symmetric with respect to the three coordinate axes. That is, in this orientation, the TO

would look exactly the same if projected onto any of the three principal Cartesian planes.

This feature greatly simplifies the computation of the estimated area of a planar segment

tiled with TO’s.

Figure 12: Four views of a truncated octahedron. The choice of orientation of this solid
relative to the coordinate axes can significantly affect the complexity of the analysis of
surface area bias. Because it is symmetric with respect to the three coordinate axes, the
orientation shown in the rightmost drawing is used in this paper.

Another key property of this particular orientation of the TO is that for the discretization

of a plane which forms an angle of less than π/4 with the x-y plane (exactly those planes
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whose normals lie in Region C of Figure 9), if we view the tiling from the z-axis, that is,

from a point P at (0, 0, 1), we can see every voxel (but not necessarily every exposed facet of

each voxel) which is part of the surface representation. That is, the projection of the surface

onto the x-y plane contains part of every voxel which is part of the surface representation.

That is, there are no “hidden voxels” as there would be for the representation of planes at

steeper angles, or with different orientations. This projection will always look something like

the diagram in Figure 13. In particular, all of the exposed hexagonal facets will be visible,

and all of the square facets which are parallel to the x-y plane will be visible. This is critical

in that it allows us to count the contribution to area made by these faces from a projection

of the tessellated plane.

Figure 13: A part of a surface represented with truncated octahedra as described in the text.
The view is from any of the coordinate axes.

To get a better understanding of this phenomenon, examine Figure 14. This represents

the intersection of a TO tiling of a planar surface with the x-z plane. Notice that the angle

θ < π/4. The viewer from above will always be able to see each voxel which is part of the

surface. In fact, the projection of this surface contains an image of every facet of each voxel

which is part of the planar representation, except for those facets marked as “invisible”.

Additional insights may be gained by referring to Figures 15A, which shows a planar patch

tessellated with truncated octahedra, and Figures 15B, C, and D, which show approximate

projections of the patch onto the three Cartesian planes.

If we were only interested in the surface facets which were viewable from this angle, we
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Viewer at (0,0,1)

θ

Invisible
Surfaces

Figure 14: Intersection of TO tiling of a surface with the x-z plane. Notice that while all
voxels which are part of the surface can be seen from above, not all facets of those voxels
which contribute to the surface area can be seen.

            

Figure 15: Views of a planar patch which has been tessellated with truncated octahedra.
A. An oblique view of the patch. B, C, D. Three nearly perpendicular projections of the
patch.
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could compute their area with the formula

ATxy (φ, θ) =
(
1

4
+
3

4

√
3
)
sinφ (32)

since 1/4 of the projected area is covered by square faces of TO’s whose projected areas are

equivalent to their original areas and 3/4 of the projected area is covered by hexagonal faces

of TO’s which have been foreshortened by a factor of
√
3. However, this approach would

miss the “invisible facets” shown in Figure 14. To compute their contribution to the surface

area of the tessellated surface, we must view the surface from both the x- and y-axes as well.

That is, we must project the surface onto both the y-z and the x-z planes and add area from

these projections to the estimated area expression.

Adding together these three projections without modification will over-count the area,

however, since the hexagonal facets which appear in the y-z and x-z projections also appear

in the x-y projections. We do not want to count any facet more than once. Hence, we only

count the portion of the projection which resulted from projecting the square facets for our

second and third projections. This gives the formula:

AT (φ, θ) =
(
1

4
+
3

4

√
3
)
sinφ +

1

4
sin θ cos φ+

1

4
cosφ cos θ, {∀ (φ, θ) ∈ C} , (33)

where C again represents Region C of Figure 9.

This formula is only valid because we are limiting our analysis to planes which form an

angle of less than π/4 with the x-y plane. The best analogy here is again with the analysis of

perimeter on a hexagonal grid in two dimensions. On a hexagonal grid, the simple formula

for perimeter only holds for certain sets of line segments, those which form an angle of less

than π/6 with the x-axis.

Now that we have an expression for the estimated area at a particular pair of angles, θ

and φ, we can integrate our expression for estimated area (AT ) over the appropriate solid

angle interval, again using the proper Jacobian, to obtain the mean estimated area for a TO

tiling:

EQ [AT (φ, θ)] =

∫ ∫
C

AT (φ,θ) cos φ dφ dθ∫ ∫
C

cos φdφ dθ
=

π
16
+ 3

√
6

8
× arctan 1√

2
π
6

≈ 1.455. (34)
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(For a more detailed exposition of this result, refer to Appendix B.)

3.2.2. Other Statistics on the TO Grid

As with the cubic tiling, it is interesting to examine a variety of statistics for the TO tiling.

Since these are computed in a manner identical to that of the cubic tiling, they are simply

summarized in Table 2. The most significant item to note in the table regarding the TO is

that the centered area bias is significantly lower for the TO grid. This means we can estimate

the area of an arbitrary binary volume significantly more accurately using a local counting

algorithm on a TO grid than on a cubic grid. This is a very satisfying result. However, we

may be able to do better yet!

3.3. The Rhombic Dodecahedron

Finally, we examine one last solid, the rhombic dodecahedron. Several of its projections onto

planes are identical to the projections of cubes, and hence from some angles, it looks exactly

like a cube. This can be very confusing to the eye. Nevertheless, it does tile space, and we

examine its properties here.

Figure 16: The rhombic dodecahedron.
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3.3.1. The Estimated Area Function for Rhombic Dodecahedral Grids

As was the case for truncated octahedra, it turns out to be useful for the purposes of

tessellation analysis to look for symmetries in the rhombic dodecahedron (RD) relative to

the coordinate axes. The RD also has a 3-D orientation such that the projection onto each

of the three major Cartesian planes is equivalent. Figure 17 shows possible candidates for

tiling orientations, and the orientation on the right has the desired property, i.e. it looks the

same to a viewer from any of the coordinate axes.

Recall that for a TO tiling, all voxels which contributed to the surface area computation

of a tessellated plane were at least partially visible from the z-axis. Also all of the facets

which were not perpendicular to the line of sight (the “invisible facets”) made a contribution

to the projection of the tessellated plane onto the x-y plane. Given the above choice of

orientation for RD voxels, we have the same situation for the RD grid. For a plane whose

normal makes an angle of less than π/4 with the z-axis and which is tessellated with RD’s,

each voxel which is part of the surface of that plane can be seen when the tessellated plane

is viewed from infinity on the z-axis. Figure 19 shows the appearance of such a tessellation

when viewed from the z-axis. As with the TO tiling, the part of the surface area which

Figure 17: Projections of the rhombic dodecahedron.

can be seen from this limited perspective has a simple formula in terms of the projection

of the plane. (Figure 18 offers additional renditions of a rhombic dodecahedron-tiled planar

segment projected onto several different planes.) Each rhombic facet is foreshortened by
√
2,

yielding the following formula for planar segments of unit area whose normals are designated

by (φ, θ):

Axy (φ, θ) =
√
2 sin φ. (35)

However, as with the case of the truncated octahedron, Eq. (35) does not capture all of

the area which is part of the tessellated surface. That is, there are again certain “invisible”
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Figure 18: Views of a planar patch which has been tessellated with rhombic dodecahedra.
A. An oblique view of the patch. B, C, D. Three nearly perpendicular projections of the
patch.
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facets which are not captured by that projection. To measure the rest of the area, we

must add in parts of other projections as well. It took a bit of experimentation to find the

projections which allow one to count each face only once. It turns out that if we project the

surface onto the planes whose equations are x = z and y = z, we obtain exactly twice the

area of the remaining uncounted area.

Figure 19: A surface tessellated with rhombic dodecahedra, as viewed from along the z-axis.

Hence, our new and complete formula for estimated area on the RD grid becomes

AR (φ, θ) =
√
2 sin φ +

1

2
cosφ cos

(
θ +

π

4

)
+
1

2
cosφ sin

(
θ +

π

4

)
, {∀ (φ, θ) ∈ CL} , (36)

where the last two terms are 1/2 the projection onto the aforementioned planes. This

expression can also be integrated (see Appendix B) to yield the results found in Table 2.

Note that the equation is accurate only over a subset of the Region C from Figure 9. We

call this Region CL since it is the left half of Region C. Fortunately, it represents another

(albeit smaller) of the “symmetry regions” discussed earlier. That is, integrating over it

alone produces the correct mean area error. We refer the reader again to Figures 10E and F

for an illustration of these smaller symmetry regions.
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3.4. Summary of Results for 3-D

Examining Table 2, we see that while the truncated octahedron gives the best result for mean

area estimate, the rhombic dodecahedron has a significantly smaller centered area bias and

also a much smaller maximum centered error. This is a significant result if we are trying to

minimize the error in surface area computation using local counting algorithms on a regular

grid.

To understand these results visually, examine Figure 10. On the left of the figure are

plotted the area errors of the cubic, truncated octahedral, and rhombic dodecahedral tilings

as functions of the planar segment normals. Notice that while the cube has the smallest

errors of any of the plots (the error is zero at the corners of the lune), it also has the largest

error (in the center). It also has a large variation in error. This implies that after centering

the error, the other tessellations may do better. This is demonstrated on the right hand side

of the figure, which shows the centered area error for each of the tessellations. In particular,

notice that the rhombic dodecahedral centered error (F) has relatively low error throughout

the plot. This gives some intuition to the result that the overall centered error bias is lower

for the RD tiling.

4. Discussion and Applications

Given the results in Table 2, it is clear that the truncated octahedron and the rhombic

dodecahedron tessellations produce more accurate surface area estimates for random planes

as characterized by our process Q. While the main thrust of this paper is not applications,

it is worth mentioning a few possibilities here.

The justification for this work is mostly of a “basic research” nature. Surface area is

one of the most fundamental properties of solid volumes, and understanding its computation

under certain constraints may or may not prove fruitful. Some researchers have let their

excitement about alternative tessellations in two dimensions get in the way of reason. That

is, just because a tessellation has certain mathematical properties does not necessarily mean

that it will be useful in a particular situation. In particular, some researchers lament the fact

that virtually all modern imaging and display has been done on raster grids and displays.
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They hope that there is some way to “recover” the lost data from this sampling process and

make use of it on a hexagonal grid. However, the original data is already gone. We cannot

create more data by “resampling” on a hexagonal grid.

For example, Her and Yuan [7] espouse the advantages of a hexagonal grid relative to

a square grid of the same resolution. But because, as they put it, “a real hexagonal grid

device is very difficult to find”, they proceed to discuss the advantages of creating a pseudo-

hexagonal grid by combining pairs of pixels on a square grid. This process, however, can

only destroy information. The resulting images will obviously have poorer resolution, as the

authors discuss. But the authors claim “in some cases, however, that better connectivity

and symmetry properties in an image are no less important than the resolution itself.” The

only problem with this argument is that we could have obtained the exact same connectivity

information directly from the original square grid without losing any information. The

eagerness to apply the advantages of a new tessellation should not obscure the fact that it

simply may not be worth it.

Hence, we must look for applications where the original continuous data is still available

or for which hardware is not inherently rectangular, such as in raster displays. One of the

most promising potential application areas which satisfies these requirements is in medical

imaging.

4.1. Medical Applications

The advent of many volumetric medical imaging modalities (magnetic resonance imaging

(MRI), computed tomography (CT), high resolution ultrasound imaging, etc.) have resulted

in a large number of quantitative studies of 3D structures, for example see [16]. While

many of these are based on volume measurements rather than surface area measurements,

improving the accuracy of surface area estimates may make this measure more attractive.

Petty et al. [18] studied surface area measurements of the planum temporale (a relatively

smooth part of the brain) in schizophrenic patients as a correlate of disease. Such studies

could presumably benefit from better surface area measurements, especially since analytical

models of the surfaces being measured are unavailable.

Body surface area is commonly used in computing doses for various pharmaceuticals.
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This measure is commonly approximated using only a patient’s weight and height. It would

seem that a full body scan with a subsequent surface area analysis could yield a better

estimate of surface area, if this expense were warranted. At a minimum, such techniques

could be used to find more accurate correlates of true body surface area.

In medical applications, the original data (human tissue properties) are for all practical

purposes continuous. At some point these data must be discretized for analysis. If we

cannot get access to the data before discretization, then alternative tessellations are of no

use. Hence, for retrospective medical analysis, in which we only have the discretized medical

images, we can think of no way to make an improvement in surface area estimates. However,

MRI is acquired as frequency data and modifying the software to sample this data along a

truncated octahedral grid or a rhombic dodecahedral grid may not be difficult.

4.1.1. The Practicality of Using TO and RD Voxels

At first glance, TO’s and RD’s appear much more complicated than cubic or rectangular

prism voxels. However, many of the properties in which we are interested are not difficult to

compute on these grids. For example, finding the voxel which contains a particular spatial

point is just a matter of finding the nearest voxel center, since the TO and RD tessellations

are both Dirichlet (Voronoi) tessellations. Also, keeping the voxels in a logically arranged

order in memory may be of some concern. The realization that the centers of voxels in a

TO tiling have positions equivalent to two interleaved rectangular prism grids and in an RD

tiling have positions equivalent to four interleaved rectangular prism grids suggests a variety

of relatively straightforward addressing schemes, such as keeping a pair of rectangular arrays

for a TO tiling. We do not want to imply that there is no additional cost in using these

tessellations, but only that many tasks are still manageable on these grids.

4.2. Industrial Applications

In the manufacturing world, there are a number of reasons that one may want to know the

surface area of an irregularly shaped object. These include calculating flux of some physical

quantity across or along a surface such as shear stress, heat or electromagnetic fields [1],
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computing wind resistance (as in the automotive industry), or merely needing to know how

much paint or substrate one needs to cover an object. While in some engineering situations,

a manufactured device is composed of objects whose surface area is easily computable, this

is not always the case [12, 13]. In these situations, application of the results presented here

may be of some use.

4.3. Other Properties of the RD and TO Tilings

If the computation of surface area alone is not enough to justify a new representation for

solids in a particular application, other properties of the RD and TO tilings may be enough

to swing the balance.

4.3.1. Tessellation as Sampling

For example, we can view the process of voxelization in the signal processing context as a

sampling. As implied by Mersereau and Dubois [17, 3], the TO and RD tilings are both

more “efficient” spatial samplers than the cubic grid. That is, for a 3-D band-limited signal

which is spherically symmetric in the frequency domain, we require fewer samples on a TO

or RD grid to fully reconstruct the signal (that is, to meet the Nyquist sampling criterion

for all spatial frequencies) than we do on a cubic grid. The number of samples needed is

proportional to the volume of the minimum grid shape which can bound the unit sphere.

For example, this is equal to 8.0 for a cubic tiling but only 4
√
2 ≈ 5.657 for the RD tiling.

Hence, one can sample space about 41 percent more efficiently with an RD grid.

4.3.2. Topology: Thinning Algorithms and Finite Element Methods

Working with TO grids might also simplify 3-D thinning algorithms, since like hexagons

in 2-D, there is no neighborhood ambiguity on a TO grid [8]. This could greatly simplify

analyses such as those found in [19, 11, 15]. Such neighborhood consistency properties are

also desirable in certain finite element modeling applications.
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4.3.3. Geometry of Construction

Finally, we consider a few implications of tiling choices in applications where solid voxels

are used to conform as closely as possible to a given shape. For example, in creating a

foundation using “bricks” of a fixed shape along a boundary whose shape is unknown in

advance, the TO grid gives us a smaller surface area boundary than the cubic tiling. As

seen from Table 2, the TO grid is the winner in this category with a mean area of 1.455

units compared with 1.5 units for that of the cube and the RD. Minimizing exposure to the

elements in a construction project by minimizing surface area using this method represents

a potential application.

4.4. Future Work

While we have shown that the rhombic dodecahedron outperforms the truncated octahedron

and the cube for the computation of surface area, we have not shown that this is the optimal

solid for the job. If we restrict our choices to space-filling parallelohedra (volumes which can

fill space through simple parallel displacement), then we must also analyze the triangular

prism, the hexagonal prism, and another 14-hedron which tiles space.

As already suggested, random and pseudo-random tilings represent possible interesting

solutions to boundary estimate problems, depending on the nature of the problem [9]. Fur-

ther investigation into these is certainly warranted.

Though this paper focussed on local counting algorithms, there is also potential for

the aforementioned tessellations in improving non-local schemes for computing area. Such

algorithms may become significantly more efficient or simple when employing these grids

rather than the conventional rectangular prism grids.

Appendix A. Some Identities

The following identities were derived using several equivalences we came across during our

analyses. They were used heavily in the derivation of closed form expressions for the area

biases for truncated octahedral and rhombic dodecahedral tilings. They are based on two
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sets of observations, the first having to do with symmetries of certain functions on the unit

sphere and the second stemming from different parameterizations of families of planes. Many

more such identities could be derived, but these give the basic flavor of the ones which were

used in deriving the results in this paper. The main use of these identities was to make

difficult integrals easier to solve. In particular, many of the integrals involving the arctan

function were simplified in this manner.

1.1. Regions of Symmetry

Recall that the estimated area function for the cube is given by

AC (θ, φ) = sinφ + cos φ cos θ + cos φ sin θ (37)

Then, by symmetry of coordinates we have the following:

π
4∫

0

arctan(cos θ)∫
0

AC (θ, φ) cosφ dφ dθ (38)

=

π
2∫

π
4

arctan(cos(π
2
−θ))∫

0

AC (θ, φ) cosφ dφ dθ (39)

= 2×
π
4∫

0

π
2∫

arctan(cos θ)

AC (θ, φ) cos φ dφ dθ (40)

= 2×
π
2∫

π
4

π
2∫

arctan(cos θ)

AC (θ, φ) cos φ dφ dθ (41)

1.2. Alternative Parameterizations of Planar Segments

A family of planes represented by a lune on the unit sphere (as in Figure 9) is described

by the range of two parameters, φ and θ. Different geometrical interpretations of these

parameters (but which represent the same family of planes) give rise to different formulas

for computing statistics of these families of planes.

For example, in the case of computing the area bias for cubes, it is useful to consider
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these parameters to represent the angular deviation of a plane’s normal from the z-axis.

However, in the case of the rhombic dodecahedron, it is more convenient to consider these

angles to be the angles formed between the plane and the x- and y-axes respectively.

These different interpretations lead to multiple expressions for the same quantity, which

are expressed in the following identities:

π
4∫

0

arctan(cos θ)∫
0

(cosφ cos θ) cosφ dφ dθ (42)

=

π
2∫

π
4

arctan(cos(π
2
−θ))∫

0

(cosφ sin θ) cosφ dφ dθ (43)

= 2×
π
4∫

0

π
2∫

arctan(cos θ)

(sinφ) cos φ dφ dθ (44)

= 2×
π
2∫

π
4

π
2∫

arctan(cos(π
2
−θ))

(sinφ) cosφ dφ dθ. (45)

Similarly, we have:

π
4∫

0

arctan(cos θ)∫
0

(sinφ) cosφ dφ dθ (46)

=

π
2∫

π
4

arctan(cos(π
2
−θ))∫

0

(sin φ) cosφ dφ dθ (47)

=

π
2∫

π
4

arctan(cos(π
2
−θ))∫

0

(cos φ cos θ) cosφ dφ dθ (48)

=

π
4∫

0

π
2∫

arctan(cos θ)

(cosφ cos θ) cosφ dφ dθ

+

π
2∫

π
4

π
2∫

arctan(cos (π
2
−θ))

(cosφ cos θ) cosφ dφ dθ (49)
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=

π
4∫

0

π
2∫

arctan(cos θ)

(cosφ sin θ) cosφ dφ dθ

+

π
2∫

π
4

π
2∫

arctan(cos(π
2
−θ))

(cosφ sin θ) cosφ dφ dθ (50)

=

π
4∫

0

arctan(cos θ)∫
0

(cosφ sin θ) cosφ dφ dθ. (51)

Appendix B. Derivation of Closed Form Solutions to

Mean Estimated Area Integrals

2.1. The Truncated Octahedron Grid

Here we present the derivation of the mean surface area estimates for the truncated octahe-

dron grid. To remind the reader, from Eq. (33), we have

AT (φ, θ) =
(
1

4
+
3

4

√
3
)
sinφ +

1

4
sin θ cos φ+

1

4
cosφ cos θ, {∀ (φ, θ) ∈ C} , (52)

as the estimated area formula as a function of the planar segment normals, for planar seg-

ments whose normals fall within Region C of Figure 9. The integral for mean estimated area

is then that shown on the left hand side of Eq. (34). We compute its value below:

∫ ∫
C

AT (φ,θ) cos φ dφ dθ∫ ∫
C

cos φ dφ dθ
(53)

=

∫ ∫
C
(( 1

4
+ 3

4

√
3) sinφ+ 1

4
sin θ cos φ+ 1

4
cos φ cos θ) cos φ dφ dθ

π
6

(54)

=

∫ ∫
C
( 1

4
sin φ+ 1

4
sin θ cos φ+ 1

4
cos φ cos θ) cos φ dφ dθ +

∫ ∫
C
( 3

4

√
3 sinφ) cos φ dφ dθ

π
6

(55)

=

∫ ∫
C

1
4
(sin φ+sin θ cos φ+cos φ cos θ) cos φ dφ dθ +

∫ ∫
C
( 3

4

√
3 sinφ) cos φ dφ dθ

π
6

(56)
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=

1
4

π
4
+ 3

√
3

4




π
4∫
0

π
2∫

arctan(cosθ)

(sinφ)cosφ dφ dθ +

π
2∫

π
4

π
2∫

arctan(cos(π
2
−θ))

(sinφ)cosφ dφ dθ




π
6

(57)

=

π
16
+ 3

√
3

4


2×

π
4∫
0

π
2∫

arctan(cos θ)

(sinφ) cosφ dφ dθ




π
6

(58)

=

π
16
+ 3

√
3

4


 π

4∫
0

(
sin2 φ|

π
2

arctan(cos θ)

)
dθ




π
6

(59)

=

π
16
+ 3

√
3

4


 π

4∫
0

(
1− cos2 θ

1+cos2 θ

)
 dθ

π
6

(60)

=

π
16
+ 3

√
3

4


 π

4∫
0

1
1+cos2 θ


 dθ

π
6

(61)

=

π
16
+ 3

√
3

4


arctan

(
tan θ√

2

)
√

2
|

π
4
0




π
6

(62)

=
π
16
+ 3

√
6

8
× arctan 1√

2
π
6

. (63)

Explanations of some of the steps follow. Eq.(55) separates the integral into two parts,

one of which is 1/4 of the cubic grid integral we previously computed. This allows us in

Eq.(57) to reduce the left term in the numerator to 1/4 times π/4. In Eq.(58), we have used

the symmetry of the two halves of Region C in Figure 9. This could also be inferred from

the identities of Eq.(40) and Eq.(41). The rest of the analysis is straight forward calculus.

2.2. The Rhombic Dodecahedron Grid

Here we present the derivation of the mean surface area estimates for the rhombic dodeca-

hedron grid. Before proceeding with the body of the derivation, it will be useful to have the
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following lemma:

π
4∫

0

(
arctan (cos θ) +

cos θ

1 + cos2 θ

)
cos θ dθ = 2

arctan 1√
2√

2
. (64)

To prove this we note that

2

π
4∫

0

arctan(cos θ)∫
0

(cos φ cos θ) cosφ dφ dθ (65)

= 2

π
4∫

0

arctan(cos θ)∫
0

cos2 φ cos θ dφ dθ (66)

= 2

π
4∫

0

arctan(cos θ)∫
0

(
1 + cos 2φ

2

)
cos θ dφ dθ (67)

=

π
4∫

0

(
φ +

sin 2φ

2

)
cos θ|arctan(cos θ)

0 dθ (68)

=

π
4∫

0

(φ + sin φ cosφ) cos θ|arctan(cos θ)
0 dθ (69)

=

π
4∫

0

(
arctan (cos θ) +

cos θ

1 + cos2 θ

)
cos θ dθ, (70)

which is the left hand side of the lemma, and starting from the same expression we can also

produce

2

π
4∫

0

arctan(cos θ)∫
0

(cos φ cos θ) cosφ dφ dθ (71)

= 2


2

π
4∫

0

π
2∫

arctan(cos θ)

(sin φ) cosφ dφ dθ


 (72)

= 2
arctan 1√

2√
2

, (73)

which is the right hand side of the lemma expression. The step of Eq.(72) uses the identities of

Eq.(42) and Eq.(44). The step of Eq.(73) duplicates part of the derivation in the immediately
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preceding derivation for the truncated octahedron, namely, the steps of Eq.(58) through

Eq.(63). This completes the proof of the lemma.

From Eq. (36), we have

AR (φ, θ) =
√
2 sin φ +

1

2
cosφ cos

(
θ +

π

4

)
+
1

2
cosφ sin

(
θ +

π

4

)
, {∀ (φ, θ) ∈ CL} , (74)

as the estimated area formula as a function of the planar segment normals, for planar seg-

ments whose normals fall within the left half of Region C of Figure 9. The mean estimated

area is then

∫ ∫
CL

AR(φ,θ) cos φ dφ dθ∫ ∫
CL

cos φdφ dθ
(75)

=

∫ ∫
CL

(
√

2 sin φ+ 1
2

cos φ cos(θ+π
4 )+

1
2

cos φ sin(θ+π
4 )) cos φdφ dθ

π
12

(76)

=

∫ ∫
CL

(√
2 sinφ+

√
2

2
cos φ cos θ

)
cos φdφ dθ

π
12

(77)

=

√
2

∫ ∫
CL

(sinφ) cos φ dφ dθ +
∫ ∫
CL

√
2

2
cos2 φ cos θ dφ dθ

π
12

(78)

=

√
2

∫ ∫
CL

(sinφ) cos φ dφ dθ +
√

2
4

∫ ∫
CL

(1+cos 2φ) cos θ dφ dθ

π
12

(79)

=

√
2

arctan

(
1√
2

)
2
√

2
+

√
2

4

π
4∫
0

(
φ + sin 2φ

2

)
|

π
2

arctan(cos θ) cos θ dθ

π
12

(80)

=

arctan

(
1√
2

)
2

+
√

2
4

π
4∫
0

(
π
2
−

(
arctan (cos θ) + sin(2 arctan(cos θ))

2

))
cos θ dθ

π
12

(81)

=

arctan

(
1√
2

)
2
π
12

+

√
2

4

π
4∫
0

(
π
2
−(arctan(cosθ)+sin(arctan(cosθ))cos(arctan(cosθ)))

)
cosθdθ

π
12

(82)
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=

arctan

(
1√
2

)
2

+
√

2
4

π
4∫
0

(
π
2
−

(
arctan (cos θ) + cos θ

1+cos2 θ

))
cos θ dθ

π
12

(83)

=

arctan

(
1√
2

)
2

+
√

2
4


 π

4∫
0

π
2
cos θ dθ −

π
4∫
0

(
arctan (cos θ) + cos θ

1+cos2 θ

)
cos θ dθ




π
12

(84)

=

arctan

(
1√
2

)
2

+
√

2
4


 π

4∫
0

π
2
cos θ dθ − 2

arctan 1√
2√

2




π
12

(85)

=

arctan

(
1√
2

)
2

+
√

2
4

(
π
2

√
2

2
− 2

arctan 1√
2√

2

)
π
12

(86)

=

arctan

(
1√
2

)
2

+ π
8
−

arctan

(
1√
2

)
2

π
12

(87)

=
3

2
. (88)

Well that was a lot of work to get an answer of 3/2! Explanations of some of the steps

follow. Eq.(76) uses the standard sum of angles identity. Eq.(79) uses the results from the

TO derivation to produce the arctan expression of the leftmost term in Eq.(70). Eq.(81)

applies the double angle identity for sin. Finally, Eq.(84) uses the lemma proved above to

simplify the nasty integral.
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