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• In Section A we describe the computation of Anderson’s bound and present more experiments.

• In Section B, as noted in Section 1, we show a log-normal distribution where the sample mean distribution is visibly
skewed when n = 80.

• In Section C we present the proofs of Section 2.1.2.

• In Section D we discuss the Monte Carlo convergence result of our approximation in Section 3.

• In Section E.1 we show that our bound reduces to the Clopper-Pearson bound for binomial distributions as mentioned
in Section 4.1. In Section E.2 we present the proofs of Section 4.2.

A. Other Experiments
In this section we perform experiments to find an upper bound of the mean of distributions given a finite upper bound of
the support, or to a lower bound of the mean of distributions given a finite lower bound of the support. We find the lower
bound of the mean of a random variable X by finding the upper mean bound of −X and negating it to obtain the lower
mean bound of X .

First we describe the computation of Anderson’s bound with uAnd defined in Eq. 51. We compute β(n) through Monte
Carlo simulations. β(n) is the value such that:

PU( ∀i : 1 ≤ i ≤ n,U(i) ≥ i/n− β(n)) = 1− α. (58)

Therefore

PU(β(n) ≥ max
i:1≤i≤n

(i/n− U(i))) = 1− α. (59)

For each sample size n, we generate L = 1,000,000 samples Uj ∈ [0, 1]n, 1 ≤ j ≤ L. For each sample Uj ∈ [0, 1]n we
compute

β(n)j = max
i:1≤i≤n

i/n− U j(i).

Let β(n)1 ≤ · · · ≤ β(n)L be the sorted values from L samples. We output β̂(n) = β(n)(d(1−α)Le) as an approximation of
β(n).

For each experiment, we used α = 0.05 unless specified otherwise. We plot the following:

• The expected value of the bounds versus the sample size. For each sample size, we draw 10,000 samples of x, compute
the bound for each x and compute the average.

• For the upper bound of the mean, we plot the α-quantile of the bound distribution versus the sample size. For each
sample size, we draw 10,000 samples of x, compute the bound for each x and take the α quantile. If the α-quantile is
below the true mean, the bound does not have guaranteed coverage.

For the lower bound of the mean, we plot the 1 − α-quantile of the bound distribution versus the sample size. For
each sample size, we draw 10,000 samples of x, compute the bound for each x and take the 1 − α quantile. If the
1− α-quantile is above the true mean, the bound does not have guaranteed coverage.

• Coverage of the bounds. For each value of α from 0.02 to 1 with a step size of 0.02, we draw 10,000 samples of x,
compute the bound for each x and plot the percentage of the bounds that are greater than or equal to the true mean
(denoted coverage). If this percentage is larger than 1− α, the bound has guaranteed coverage.

We perform the following experiments:
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1. For the case in which we know a superset D+ of the distribution’s support with a finite lower bound and a finite upper
bound (the 2-ended support setting), we compare the following bounds:

• Anderson’s bound.
• New bound with the function T being Anderson’s bound.
• Student’s t.
• Hoeffding’s bound.
• Maurer and Pontil’s bound.

We find an upper bound of the mean for the following distributions:
• β(1, 5), uniform(0, 1) and β(5, 1). The known superset of the support is [0, 1]. The result is in Figure 6.
• β(0.5, 0.5), β(1, 1) and β(2, 2). The known superset of the support is [0, 1]. The result is in Figure 7.
• binomial(10, 0.1), binomial(10, 0.5) and binomial(10, 0.9). The known superset of the support is the interval

[0, 10]. The result is in Figure 8.
2. We also consider the case in which we want an upper bound of the mean without knowing the lower bound of the

support (or to find a lower bound without knowing an upper bound of the support). In the main paper we referred to
this as the 1-ended support setting. Since Hoeffding’s and Maurer and Pontil’s bounds require knowing both a finite
lower bound and upper bound, they are not applicable in this setting. We compare the following bounds:

• Anderson’s bound.
• New bound with T being Anderson’s bound.
• Student’s t

We address the following distributions:
• β(1, 5), uniform(0, 1) and β(5, 1). The known superset of the support is (−∞, 1]. We find the upper bound of

the mean. The result is in Figure 9.
• binomial(10, 0.1), binomial(10, 0.5) and binomial(10, 0.9). The known superset of the support is (−∞, 10].

We find the upper bound of the mean. The result is in Figure 10.
• poisson(2), poisson(10) and poisson(50). The known superset of the support is [0,∞). We find the lower

bound of the mean. The result is in Figure 11.

All the experiments confirm that our bound has guaranteed coverage and is equal to or tighter than Anderson’s and
Hoeffding’s.

From the experiments, our upper bound performs the best in distributions that are skewed right (respectively, our lower
bound will perform the best in distributions that are skewed left), when we know a tight lower bound and upper bound of the
support.

B. Discussion on Section 1: Skewed Sample Mean Distribution with n = 80

In this section, as noted in Section 1, we show a log-normal distribution where the sample mean distribution is visibly
skewed when n = 80 (Figure 12). Student’s t is not a good candidate in this case because the sample mean distribution is
not approximately normal. This example is a variation on the one provided by Frost (2021).

While the log-normal distribution is an extreme example of skew, this example illustrates the danger of assuming the validity
of arbitrary thresholds on the sample size, such as the traditional threshold of n = 30, for using the Student’s t method.
Clearly there are cases where such a threshold, and even much larger thresholds, are not adequate.

C. Proof of Section 2.1.2
We restate the lemma and theorem statements for convenience.

Lemma C.1 (Lemma 2.2). Let X be a random variable with CDF F and Y def
= F (X), known as the probability integral

transform of X . Let U be a uniform random variable on [0, 1]. Then for any 0 ≤ y ≤ 1,

P(Y ≤ y) ≤ P(U ≤ y). (60)

If F is continuous, then Y is uniformly distributed on (0, 1).
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(a) The PDFs of the test distributions.

(b) Expected values of the bounds versus sample size.

(c) The α-quantiles of bound distributions. If the α-quantile is below the true mean, the bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not have guaranteed coverage.

Figure 6. Finding the upper bound of the mean with D+ = [0, 1]
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(a) The PDFs of the test distributions.

(b) Expected values of bounds versus sample size.

(c) The α-quantiles of bound distributions. If the α-quantile is below the true mean, the bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not have guaranteed coverage.

Figure 7. Finding the upper bound of the mean with D+ = [0, 1]
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(a) The PMFs of the test distributions.

(b) Expected values of bounds versus sample size.

(c) The α-quantiles of bound distributions. If the α-quantile is below the true mean, the bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not have guaranteed coverage.

Figure 8. Finding the upper bound of the mean with D+ = [0, 10]
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(a) The PDFs of the test distributions.

(b) The expected value of the bounds.

(c) The α-quantile of the bound distribution. If the α-quantile is below the true mean, the bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not have guaranteed coverage.

Figure 9. Finding the upper bound of the mean with D+ = (−∞, 1]
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(a) The PMF of the test distributions.

(b) The expected value of the bounds.

(c) The α-quantile of the bound distribution. If the α-quantile is below the true mean, the bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not have guaranteed coverage.

Figure 10. Finding the upper bound of the mean with D+ = (−∞, 10]
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(a) The PMF of the test distributions.

(b) The expected value of the bounds.

(c) The 1 − α-quantile of the bound distribution. If the 1 − α-quantile is above the true mean, the bound does not have guaranteed
coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not have guaranteed coverage.

Figure 11. Finding the lower bound of the mean with D+ = [0,∞)
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Figure 12. The PDFs of lognorm(0, 1) and the sample mean distribution of lognorm(0, 1). The sample mean distribution of
lognorm(0, 1) is visibly skewed when the sample size n = 80.

Proof. Since P(U ≤ y) = y, we will show that P(Y ≤ y) ≤ y.

We will first show that if F (x) ≤ y, then x ≤ sup{z : F (z) ≤ y}. Suppose that x > sup{z : F (z) ≤ y}. Then, F (x) > y.
Therefore,

F (x) ≤ y implies x ≤ sup{z : F (z) ≤ y}. (61)

Now we have

P(Y ≤ y) = P(F (X) ≤ y) (62)
≤ P(X ≤ sup{z : F (z) ≤ y}) (63)
= F (z∗) where z∗ = sup{z : F (z) ≤ y} (64)
≤ y. (65)

If F is continuous, Angus (1994) shows that Y is uniformly distributed on (0, 1).

Lemma C.2 (Lemma 2.3). For any x ∈ Dn,

mD(x, F (x)) ≥ µ. (66)

Proof. We present the proof with the notation for when F is continuous. The proof when F has discontinuity is a trivial
extension. We have:

mD(x, F (x)) =

n+1∑
i=1

x(i)(F (x(i))− F (x(i−1))) (67)

where x(0)
def
= −∞ and x(n+1)

def
= sD. Then:

µ =

∫
x dF (x) (68)

=

n+1∑
i=1

∫ x(i)

x(i−1)

x dF (x) (69)

≤
n+1∑
i=1

∫ x(i)

x(i−1)

x(i) dF (x) (70)

=

n+1∑
i=1

x(i)(F (x(i))− F (x(i−1))) (71)

= mD(x, F (x)). (72)
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Lemma C.3 (Lemma 2.4). Let Z be a random sample of size n from F . Let U = U1, ..., Un be a sample of size n from the
continuous uniform distribution on [0, 1]. For any function T : Dn → R and any x ∈ Dn,

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (73)

Proof. Let ∪ denote the union of events and {} denote an event. Let Z be a sample from F . Then for any sample x:

PZ(T (Z) ≤ T (x)) (74)
= PZ(Z ∈ S(x)) (75)
= PZ(∪y∈S(x){Z = y}) (76)
≤ PZ(∪y∈S(x)Z � y) because Z = y implies Z � y (77)
≤ PZ(∪y∈S(x){F (Z) � F (y)}) (78)

because F is non-decreasing, so Z(i) ≤ y(i) implies F (Z(i)) ≤ F (y(i)). Let U1, · · · , Un be n samples from the uniform
distribution on (0, 1). From Lemma 2.2, for any u ∈ (0, 1), P(F (Zi) ≤ u) ≤ P(Ui ≤ u). Therefore

PZ(∪y∈S(x){F (Z) � F (y)}) (79)
≤ PU(∪y∈S(x){U � F (y)}). (80)

Recall that mD(y,U) = sD −
∑n
i=1 U(i)(y(i+1) − y(i)) where ∀i, y(i+1) − y(i) ≥ 0. Therefore if ∀i, U(i) ≤ F (y(i)) then

mD(y,U) ≥ mD(y, F (y)):

PU(∪y∈S(x){U � F (y)}) (81)
≤ PU(∪y∈S(x){mD(y,U) ≥ mD(y, F (y))}) (82)
≤ PU(∪y∈S(x){mD(y,U) ≥ µ}), by Lemma 2.3 (83)
≤ PU( sup

y∈S(x)
mD(y,U) ≥ µ) (84)

= PU(b(x,U) ≥ µ) (85)

The inequality in Eq. 84 is because if there exists y ∈ S(x) such that mD(y,U) ≥ µ, then supy∈S(x)mD(y,U) ≥ µ.
Therefore the event ∪y∈S(x){mD(y,U) ≥ µ} is a subset of the event supy∈S(x)mD(y,U) ≥ µ, and Eq. 84 follows.

From Eqs. 78, 80 and Eq. 85:

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (86)

D. Discussion on Section 3: Monte Carlo Convergence
In Section 3, we discussed the use of Monte Carlo sampling of the induced mean function b(x,U) via sampling of the
uniform random variable U , to approximate the 1 − α quantile of b(x,U). Let q̂` denote the output of the Monte Carlo
algorithm (Algorithm 1) using ` Monte Carlo samples. In this section we show that our estimator converges to the true
quantile as the number of Monte Carlo samples grows, and, given a desired threshold ε, we can compute an upper bound at
most Q(1− α, b(x,U)) + ε with guaranteed coverage.

Theorem D.1. Let ε > 0. Let γ = min
(
α,
(

ε
3(sD−supz∈S(x)) z(1))

)n)
. Use ` =

⌈
− ln(γ/2)

2

(
3(sD−supz∈S(x) z(1))

ε

)n⌉
Monte

Carlo samples to compute Q(1 − α + γ, b(x,U)) using Algorithm 1. Let q̂` be the output of the algorithm. We output
q̂` + ε/3 as the final estimator.

Then with probability at least 1− α:

µ ≤ q̂` + ε/3 ≤ Q(1− α, b(x,U)) + ε. (87)

To prove Theorem D.1, we first show some lemmas.

The Monte Carlo approximation error is quantified in the following lemma due to Serfling (1980). Let F (m−)
def
=

limx→m− F (x).
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Lemma D.2 (Theorem 2.3.2 in Serfling (1980)). Let 0 < p < 1. If Q(p,M) is the unique solution m of F (m−) ≤ p ≤
F (m), then for every ε > 0,

P(|Mdple −Q(p,M)| > ε) ≤ 2e−2lδ, (88)

where

δ = min (p− F (Q(p,M)− ε), F (Q(p,M) + ε)− p) .

Note that when the condition that Q(p,M) is the unique solution m of F (m−) ≤ p ≤ F (m) is satisfied, δ > 0. Let
M

def
= bD,T (x,U) ∈ [0, 1]. In Lemma D.3 we will show that the CDF of M satisfies the condition in Lemma D.2. Therefore

the error incurred by computing the bound via Monte Carlo sampling can be decreased to an arbitrarily small value by
choosing a large enough number of Monte Carlo samples l. The Monte Carlo estimation of bαD+,T (x) where D+ = [0, 1] is
presented in Algorithm 1.

We will show that for any x, for any T , for any p ∈ (0, 1), FM (m−) ≤ p ≤ FM (m) has a unique solution by showing that
for any x and T , FM is strictly increasing on its support. To do so, for any c1, c2 in the support such that c1 < c2 we will
show that

FM (c2)− FM (c1) > 0. (89)

Lemma D.3. Let M def
= b(x,U). Let FM be the CDF of M .

For any x, for any scalar function T , either:

1. M is a constant, or
2. For any c1, c2 such that 0 ≤ c1 < c2 ≤ 1,

FM (c2)− FM (c1) ≥

(
c2 − c1

sD − supz∈S(x) z(1)

)n
> 0. (90)

Proof. Recall the definition of the induced mean as

b(x, `) = sup
z∈S(x)

n+1∑
i=1

z(i)(`(i) − `(i−1)), (91)

= sup
z∈S(x)

sD −
n∑
i=1

`(i)(z(i+1) − z(i)), (92)

where `(0)
def
= 0, `(n+1)

def
= 1 and z(n+1)

def
= sD.

We now find the support of M . Let φ def
= supz∈S(x) z(1). We will show that for any u where 0 ≤ ui ≤ 1, we have

φ ≤ b(x,u) ≤ sD, and therefore the support of M is a subset of [φ, sD]. We have

b(x,u) = sup
z∈S(x)

sD −
n∑
i=1

u(i)(z(i+1) − z(i)) (93)

≤ sup
z∈S(x)

sD −
n∑
i=1

0(z(i+1) − z(i)) (94)

= sD. (95)
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Similarly we have

b(x,u) = sup
z∈S(x)

sD −
n∑
i=1

u(i)(z(i+1) − z(i)) (96)

≥ sup
z∈S(x)

sD −
n∑
i=1

1(z(i+1) − z(i)) (97)

= sup
z∈S(x)

sD − (z(n+1) − z(1)) (98)

= sup
z∈S(x)

z(1) (99)

= φ. (100)

Therefore M = b(x,U) ∈ [φ, sD]. We consider two cases: where φ = sD and where φ < sD.

Case 1: φ = sD.

Then for all i, supz∈S(x) z(i) ≥ φ = sD. Since z(i) ≤ sD, we have for all i, supz∈S(x) z(i) = sD. Therefore

b(x, `) = sup
z∈S(x)

n+1∑
i=1

z(i)(`(i) − `(i−1)) (101)

=

n+1∑
i=1

sD(`(i) − `(i−1)) (102)

= sD. (103)

Therefore M = b(x,U) is a constant sD, and the 1− α quantile of M is sD.

Case 2: φ < sD.

Let c1, c2 ∈ R be such that φ ≤ c1 < c2 ≤ sD. We will now show that

FM (c2)− FM (c1) > 0. (104)

Let v def
= sD−c2

sD−φ and w def
= sD−c1

sD−φ . If φ ≤ c1 < c2 ≤ sD then v < w and v, w ∈ [0, 1].

Let v def
= (v1, · · · , vn) and w

def
= (w1, · · · , wn) where ∀i, vi = v and wi = w. Then

b(x,v) = sup
z∈S(x)

n+1∑
i=1

z(i)(v(i) − v(i−1)) (105)

= sup
z∈S(x)

z(n+1)(v(n+1) − v(n)) + z(1)(v(1) − v(0)) (106)

= sup
z∈S(x)

sD(1− v) + z(1)(v − 0) (107)

= sup
z∈S(x)

sD − (sD − z(1))
sD − c2
sD − φ

(108)

= sD − (sD − φ)
sD − c2
sD − φ

because
sD − c2
sD − φ

≥ 0 (109)

= c2. (110)
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Similarly,

b(x,w) = sup
z∈S(x)

n+1∑
i=1

z(i)(w(i) − w(i−1)) (111)

= sup
z∈S(x)

z(n+1)(w(n+1) − w(n)) + z(1)(w(1) − w(0)) (112)

= sup
z∈S(x)

sD(1− w) + z(1)(w − 0) (113)

= sup
z∈S(x)

sD − (sD − z(1))
sD − c1
sD − φ

(114)

= sD − (sD − φ)
sD − c1
sD − φ

because
sD − c1
sD − φ

≥ 0 (115)

= c1. (116)

Since b(x,u) is constructed from a linear function of u with non-positive coefficients, for any u such that v ≤ u(1) ≤ · · · ≤
u(n) < w we have:

b(x,w) < b(x,u) ≤ b(x,v), (117)

which is equivalent to:

c1 < b(x,u) ≤ c2. (118)

So we have v ≤ u(1) ≤ · · · ≤ u(n) < w implies c1 < b(x,u) ≤ c2. Therefore for any c1, c2 such that φ ≤ c1 < c2 ≤ sD:

FM (c2)− FM (c1) (119)
= P(c1 < M ≤ c2) (120)
= PU(c1 < b(x,U) ≤ c2) (121)
≥ PU(v ≤ U(1) ≤ · · · ≤ U(n) < w) (122)
= PU( ∀i, 1 ≤ i ≤ n : v ≤ Ui < w) (123)
= (w − v)n (124)

=

(
c2 − c1
sD − φ

)n
(125)

> 0 because c1 < c2. (126)

Since the support of M is in [φ, sD] we have that FM is strictly increasing on the support.

In summary, the Monte Carlo estimate of our bound will converge to the correct value as the number of samples grows.

Now we prove Theorem D.1.

Proof of Theorem D.1. To simplify the notation, we use Q(α) to denote Q(α,M). From Lemma D.3, since FM is strictly
increasing on the support, for γ such that 0 < γ ≤ α, Q(1− α) < Q(1− α+ γ) and:

γ = F (Q(1− α), Q(1− α+ γ)) ≥

(
Q(1− α+ γ)−Q(1− α)

sD − supz∈S(x) z(1)

)n
. (127)

Therefore, letting γ = min
(
α,
(

ε
3(sD−supz∈S(x)) z(1))

)n)
we have that

Q(1− α+ γ) ≤ Q(1− α) + γ1/n(sD − sup
z∈S(x)

z(1)) (128)

≤ Q(1− α) + ε/3. (129)
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Let p def
= 1− α+ γ. From Lemma D.2 and Lemma D.3,

P(|q̂` −Q(p)| > ε/3) ≤ 2e−2lδ, (130)

where

δ = min (p− F (Q(p)− ε/3), F (Q(p) + ε/3)− p) (131)
= min (F (Q(p)− ε/3, Q(p)), F (Q(p), Q(p) + ε/3)) (132)

≥

(
ε

3(sD − supz∈S(x) z(1))

)n
. (133)

Therefore letting ` =
⌈
− ln(γ/2)

2

(
3(sD−supz∈S(x) z(1))

ε

)n⌉
,

P(|q̂` −Q(1− α+ γ)| > ε/3) ≤ 2e
−2l

(
ε

3(sD−supz∈S(x) z(1))

)n
(134)

≤ γ. (135)

Since P(Q(1− α+ γ) < µ) ≤ α− γ, using the union bound we have

P(|q̂` −Q(1− α+ γ)| > ε/3 OR Q(1− α+ γ) < µ) ≤ γ + α− γ (136)
= α. (137)

And therefore,

1− α ≤ P(|q̂` −Q(1− α+ γ)| ≤ ε/3 AND Q(1− α+ γ) ≥ µ) (138)
≤ P(Q(1− α+ γ) ≤ q̂` + ε/3 ≤ Q(1− α+ γ) + 2ε/3 AND Q(1− α+ γ) ≥ µ) (139)
≤ P(µ ≤ q̂` + ε/3 ≤ Q(1− α+ γ) + 2ε/3) (140)
≤ P(µ ≤ q̂` + ε/3 ≤ Q(1− α) + ε) from Eq. 129. (141)

E. Discussion on Section 4
We discuss the case when the distribution is Bernoulli in Section E.1, and present the proofs of Section 4.2 in Section E.2.

E.1. Special Case: Bernoulli Distribution

When we know that D = {0, 1}, the distribution is Bernoulli. If we choose T to be the sample mean, we will show that our
bound becomes the same as the Clopper-Pearson confidence bound for binomial distributions (Clopper & Pearson, 1934).

If x, z ∈ {0, 1}n and T (z) ≤ T (x) then m(z,u) ≤ m(x,u). Therefore for any u ∈ [0, 1]n,

bD,T (x,u) = sup
z∈{0,1}n:T (z)≤T (x)

mD(z,u) = mD(x,u). (142)

Let px be the number of 0’s in x. Therefore the bound becomes the 1− α quantile of mD(x,U) where

mD(x,U) = 1−
n∑
i=1

U(i)(x(i+1) − x(i)) = 1− U(px). (143)

Therefore the bound is the 1− α quantile of 1− U(px). Then

P(U(px) ≤ 1− bα(x)) = P(1− U(px) ≥ b
α(x)) = α. (144)

Let β(i, j) denote a beta distribution with parameters i and j. We use the fact that the order statistics of a uniform distribution
are beta-distributed. Since U(px) ∼ β(px, n+ 1− px), we have 1− U(px) ∼ β(n− px + 1, px)

bα(x) = Q(1− α, β(n− px + 1, px)). (145)

This is the same as the Clopper-Pearson upper confidence bound for binomial distributions.
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E.2. Proof of Section 4.2

Lemma E.1 (Lemma 4.1). Let X = (X1, · · · , Xn) be a sample of size n from a distribution with mean µ. Let ` ∈ [0, 1]n.
If GX,` is a (1− α) lower confidence bound for the CDF then

PX(m(X, `) ≥ µ) ≥ 1− α. (146)

Proof. 9 If ∀y ∈ R, F (y) ≥ GX,`(y) then

∀i : 1 ≤ i ≤ n, F (X(i)) ≥ `(i). (147)

Recall that mD(X, `) = sD −
∑n
i=1 `(i)(z(i+1) − z(i)). Therefore if ∀i : 1 ≤ i ≤ n, F (X(i)) ≥ `(i) then m(X, `) ≥

m(X, F (X)).

From Lemma 2.3, m(X, F (X)) ≥ µ. Therefore m(X, `) ≥ µ. And hence, finally,

P(m(X, `) ≥ µ) ≥ PX (∀y ∈ R, F (y) ≥ GX,`(y)) (148)
= 1− α. (149)

We now show that if GX,` (Figure 1) is a lower confidence bound, then the order statistics of ` are element-wise smaller
than the order statistics of a sample of size n from the uniform distribution with high probability:

Lemma E.2. Let U = U1, ..., Un be a sample of size n from the continuous uniform distribution on [0, 1]. Let ` ∈ [0, 1]n

and α ∈ (0, 1). If D+ is continous and GX,` is a (1− α) lower confidence bound for the CDF then:

PU( ∀i : 1 ≤ i ≤ n,U(i) ≥ `(i)) ≥ 1− α. (150)

Proof. Let K be the CDF of a distribution such that K is continuous and strictly increasing on D+ (since D+ is continuous,
K exists). Let X = (X1, · · · , Xn) be a sample of size n from the distribution with CDF K. By Lemma 2.2, K(X) is
uniformly distributed on [0, 1].

By the definition of GX,`, if ∀x ∈ C,K(y) ≥ GX,`(y) then:

K(y) ≥ 0, if y < X(1) (151)
K(y) ≥ `(i), if X(i) ≤ y < X(i+1) (152)
K(y) ≥ 1, if y ≥ sC . (153)

which is equivalent to:

∀i : 1 ≤ i ≤ n,K(y) ≥ `(i), if X(i) ≤ y < X(i+1). (154)

Since K(y) is non-decreasing, this is equivalent to:

∀i : 1 ≤ i ≤ n,K(X(i)) ≥ `(i) (155)

Since GX,` is a lower confidence bound,

1− α ≤ PX( ∀y ∈ R,K(y) ≥ GX,`(y)) (156)
= PX(∀i : 1 ≤ i ≤ n,K(X(i)) ≥ `(i)) (157)
= PU(∀i : 1 ≤ i ≤ n,U(i) ≥ `(i)) by Lemma 2.2. (158)

To prove Theorem 4.3, we prove the more general version where GX,` is a (possibly not exact) lower confidence bound for
the CDF.

9The proof is implied in (Anderson, 1969b) but we provide it here for completeness
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Theorem E.3. Let ` ∈ [0, 1]n. Let D+ = [−∞, b]. If GX,` is a 1− α lower confidence bound for the CDF, then for any
sample size n, for all sample values x ∈ Dn and all α ∈ (0, 1), using T (x) = mD+(x, `) to compute bαD+,T (x) yields:

bαD+,T (x) ≤ mD+(x, `). (159)

Proof. Since GX,` is a lower confidence bound for the CDF F , from Lemma E.2,

P(∀i, U(i) ≥ `(i)) ≥ 1− α. (160)

First we note that

bD+,T (x, `) = sup
y:y∈SD+,T (x)

mD+(y, `) (161)

= sup
mD+ (y,`)≤mD+ (x,`)

mD+(y, `) (162)

= mD+(x, `). (163)

Recall that bαD+,T (x) is the 1− α quantile of bD+,T (x,U). In order to show that bαD+,T (x) ≤ bD+,T (x, `), we will show
that

P(bD+,T (x,U) ≤ bD+,T (x, `)) ≥ 1− α. (164)

Recall that bD+,T (x,U) = supy∈ST (x) tD+ −
∑n
i=1 U(i)(x(i+1) − x(i)). Then if ∀i, U(i) ≥ `(i) then bD+,T (x,U) ≤

bD+,T (x, `). Therefore,

P(bD+,T (x,U) ≤ bD+,T (x, `)) (165)
≥ P(∀i, U(i) ≥ `(i)) (166)
≥ 1− α, by Lemma E.2. (167)

We can now show the comparison with Anderson’s bound and Hoeffding’s bound.

Theorem E.4 (Theorem 4.3). Let ` ∈ [0, 1]n be a vector such that GX,` is an exact (1− α) lower confidence bound for the
CDF.

Let D+ = (−∞, b]. For any sample size n, for any sample value x ∈ Dn, for all α ∈ (0, 1), using T (x) = bα,Anderson
` (x)

yields

bαD+,T (x) ≤ bα,Anderson
` (x). (168)

Proof. We have bα,Anderson
` (x) = mD+(x, `) where ` satisfies GX,` is a 1 − α lower confidence bound for the CDF.

Therefore applying Theorem E.3 yields the result.

Theorem E.5 (Theorem 4.4). Let D+ = (−∞, b]. For any sample size n, for any sample value x ∈ Dn,for all α ∈ (0, 0.5],
using T (x) = bα,Anderson

` (x) where ` = uAnd yields

bαD+,T (x) ≤ bα,Hoeffding(x), (169)

where the inequality is strict when n ≥ 3.

Proof. The proof follows directly from Lemma 4.2 and Theorem 4.3.

Recall that GX,uAnd is an exact (1− α) lower confidence bound for the CDF and therefore:

PU(∀i : 1 ≤ i ≤ n,U(i) ≥ uAnd
(i) ) = 1− α. (170)
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From Theorem 4.3, using T (x) = bα,Anderson
uAnd (x) yields

bαD+,T (x) ≤ bα,Anderson
uAnd (x). (171)

Let ` ∈ [0, 1]n be defined such that

`i
def
= max

{
0, i/n−

√
ln(1/α)/(2n)

}
. (172)

Since GX,`(x) is an 1− α lower confidence bound, from Lemma E.2:

PU(∀i : 1 ≤ i ≤ n,U(i) ≥ `(i)) ≥ 1− α (173)

= PU(∀i : 1 ≤ i ≤ n,U(i) ≥ uAnd
(i) ). (174)

Since uAnd
i = max {0, i/n− β(n)} and `i = max

{
0, i/n−

√
ln(1/α)/(2n)

}
, we have β(n) ≤

√
ln(1/α)/(2n), and

therefore uAnd
i ≥ `i for all i. Therefore m(x, `) ≥ m(x,uAnd), i.e.

bα,Anderson
uAnd (x) ≤ bα,Anderson

` (x). (175)

From Eq. 171, Eq. 175 and Lemma 4.2 we have the result.




