
Practical Non-parametric Density Estimation
on a Transformation Group for Vision

Erik G. Miller Christophe Chefd’hotel∗

Computer Science Division Odyssée Lab
UC Berkeley INRIA

Berkeley, California 94720 06902 Sophia-Antipolis
USA France

Abstract

It is now common practice in machine vision to define the
variability in an object’s appearance in a factored manner,as
a combination of shape and texture transformations. In this
context, we present asimpleandpractical method for es-
timating non-parametric probability densities over a group
of linear shape deformations. Samples drawn from such a
distribution do not lie in a Euclidean space, and standard
kernel density estimates may perform poorly. While vari-
able kernel estimators may mitigate this problem to some
extent, the geometry of the underlying configuration space
ultimately demands a kernel which accommodates its group
structure. In this perspective, we propose a suitableinvari-
ant estimator on the linear group of non-singular matrices
with positive determinant. We illustrate this approach by
modeling image transformations in digit recognition prob-
lems, and present results showing the superiority of our es-
timator to comparable Euclidean estimators in this domain.

1. Introduction

It is now common practice in machine vision to model ap-
pearance variability in a factored manner as a combination
of shape and texture variability [22, 4, 14]. A wide variety
of shape models have been proposed, ranging from rigid
transformations to arbitrary diffeomorphisms. For many
applications, linear models of deformation1 have provided
a good trade-off between flexibility and tractability (both
computational and statistical). They also represent an excel-
lent approximation to true perspective projection in a wide
range of realistic vision scenarios. Finally, they can be used
in combination in a local manner when greater flexibility is
desired.

∗The second author is now a Member of Technical Staff at Siemens
Corporate Research, Princeton, New Jersey, USA.

1By augmenting linear deformation models with arbitrary translations,
we obtainaffinemodels.

Early applications of linear (affine) models often adopted
a linear invariance (affine invariance) principle [19], in
which two images were considered equivalent if one im-
age could be linearly (affinely) transformed into the other.
Recently, it has been more common to assign a cost to
such transformations, with a higher cost assigned to “larger”
transformations. This has led to a large literature on how
to assign the appropriate cost of such transformations, and
how to derive a useful notion of distance between two im-
ages that satisfies some invariance properties [6, 7, 16].

From a statistical perspective, a natural approach to mod-
eling the distortions or shape change in images is to define a
probability density over shape changes for a particular ob-
ject or set of objects. In this paper, we present a simple,
computationally tractable density estimator for linear im-
age transformations. While our estimator is not the first pro-
posed for such sets of transformations (see, e.g., [10, 14]), it
offers both the advantage of respecting the underlyinggroup
structureof the data (to be made precise below), and a sim-
plicity that makes it of practical interest.

1.1. Estimation and transformation groups

It is not uncommon in engineering and machine learning
problems for data to have a natural group structure. Per-
haps the best known example is in the independent compo-
nents analysis (ICA) problem, where the transformation that
mixes a set of sound sources is unknown and is modeled as
an element of the general linear group GL(n,R), the set of
real non-singularn×n matrices. Gradient based searching
in this space of matrices can be done more efficiently by
taking advantage of the group structure [1]. This method
of attacking the ICA problem has the additional appeal that
the algorithm exhibitsuniform performance, i.e. the solu-
tion does not depend upon the mixing matrix [3].

Grenander, who gives a very general approach to proba-
bility theory on groups in [5], has recently proposed taking
into account the group structure in problems of parameter
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estimation [8]. A few authors have also looked atdensityes-
timation on group structures [12, 10] (in particular the group
SO(n) of n×n rotation matrices), and studied the conver-
gence of Fourier series density estimators from a theoretical
perspective. Our approach differs from the previous ones in
that we focus here on an easily computable and hence prac-
tical estimator.

In this paper, we introduce the notion of aninvariant
kernel, and we use such a kernel to produce a probability
density from a set of examples, which we refer to as anin-
variant kernel density estimate. The invariance is defined
with respect to group structure which holds for the data.
We apply our new estimator to the problem of estimating a
probability density over image transformations in the con-
text of a factored image model. That is, given a set of image
transforms drawn from a fixed but unknown distribution, we
wish to estimate a density over the transforms.

We proceed as follows. In Section 2, we review kernel
density estimation. In Section 3, we define the notion of in-
variant kernels, and suggest reasons one might want to take
into account the natural group structure of the set of lin-
ear shape deformations. In Section 4, we introduce our in-
variant kernel for the general linear group, and in Section 5
discuss properties of theinvariant density estimatorbased
upon this kernel. In Section 6, we present preliminary ex-
perimental results comparing our estimator to a traditional
Gaussian kernel estimator.

2. Kernel Density Estimation
So-called kernel probability density estimators (KDE’s),of
the form

f̂ (x;x1,x2, ...,xN) =
1
N

N

∑
i=1

1
h

K

(

x−xi

h

)

,

use a set of examples{x1,x2, ...,xN} drawn from a random
variableX (possibly multi-dimensional), a kernel function
K and a bandwidth parameterh, to estimate a probability
distribution forX. These estimators play a central role in
statistics and machine learning. Perhaps most importantly,
such estimators allow the modeling of the complex distribu-
tions arising from natural data sources such as images and
sounds with a relatively small computational burden.

Rosenblatt [21] and Parzen [17] described such estima-
tors and showed general conditions under which they would
converge to the true distribution as the sample size grows
and the kernel bandwidth shrinks. In this paper, our goal
is to model distributions over linear image transformations,
which can be conveniently represented as two by two matri-
ces with positive determinant2. It is tempting to use a ker-

2A straight-forward extension of the ideas in this paper allow the mod-
eling of “reflecting” linear transformations, i.e. two by twomatrices with
negative determinants.

nel density estimator “out of the box” to estimate a density
over transformation matrices by treating each matrix as an
element of a four-dimensional vector space. In the limit of
an infinite number of samples, this estimator will converge
to the true probability density.

However, the asymptotic convergence of a density esti-
mator does not imply it will work well for practical density
estimation. In particular, since the distribution of matrices
tends to be more concentrated (in a Euclidean sense) for ma-
trices with determinant less than one, and less concentrated
for matrices with determinant greater than one, one might
try a variable kernel estimator (as described in [13, 2]) to
improve the rate of convergence. While such adaptive den-
sity estimates may converge more rapidly to the true distri-
bution in many cases, they have more parameters and thus
may have relatively high variance. This is particularly rel-
evant when we have a limited amount of data. We propose
an alternative: to develop better non-parametric estimators
in low data scenarios by taking advantage of the intrinsic
properties of the set of transformation matrices.

3. Group structure and invariance

Traditionally in kernel density estimators, kernels are func-
tions of the difference between the coordinates of two points
x andxi in a Euclidean space. As a result, the kernels are in-
variant to translation. However, not all probability densities
are well modeled by such “Euclidean” KDE’s. In particular,
if there is a specific group structure and geometry in a set of
data, for example if samples have been drawn from a set of
transformation matrices, then other types of estimators may
be more appropriate.

3.1. Invariant kernels

Consider a more general kernel function

K(t;a) = f (D(t,a)),

wherea is a parameter that defines the “center” of the kernel
andK(t;a) takes on a value as a function of how differentt
is froma. More formally, some functionD(t,a) determines
the difference (not necessarily a vector difference) between
t anda, and the kernelK is some function of this difference.

For a groupG, we consider agroup differencefunction
defined by

DG(t,a) = t−1◦a,

where◦ is the group operator, andt−1 is the group inverse
of t. The group difference function is invariant to the ap-
plication of a fixed group element to both arguments. That
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is,

DG(b◦ t,b◦a) = [b◦ t]−1◦b◦a

= t−1◦b−1◦b◦a

= t−1◦a

= DG(t,a).

Predictably, we define a (left)invariant kernel function,
with respect to a groupG, as one that satisfies

K(t;a) = K(b◦ t;b◦a).

Any kernel which is a function of the group difference will
satisfy this property automatically, since it is satisfied by the
group difference. For example, the common unit variance
one-dimensional Gaussian kernel

K(t;a) =
1√
2π

e−
1
2 (t−a)2

is invariant with respect to the groupG= R when the group
operator◦ is “+”, since

K(b+ t;b+a) =
1√
2π

e−
1
2 (b+t−(b+a))2

=
1√
2π

e−
1
2 (t−a)2

= K(t;a).

Here, the group difference is simply vector (or in this case,
scalar) subtraction. Since the kernel is a function of this
difference, it is invariant with respect to the group of trans-
lations in one dimension.

Certain applications, however, may suggest a notion of
difference other than the vector difference which charac-
terizes Euclidean spaces [5]. In particular, when points in
a space are combined not through addition, but with some
other operator, it is frequently advantageous to use this op-
erator in the definition of the difference between points. If
we consider the set of real 2×2 non-singular matrices with
positive determinant (denoted GL+(2,R) in the following)
which can be used to rotate, shear, or scale images, we
notice that its elements are naturally combined via matrix
multiplication. But the question remains, what property is
it that demands that we treat these matrices as elements of
GL+(2,R) rather than 4-vectors in a Euclidean space? To
answer this question, we must look at the specific applica-
tion of our estimator, the analysis of handwritten digits.

3.2. A Random Transform Process
When people write digits and letters, there is natural vari-
ability in the pose of each letter. The pose varies both within
and across writers. One can think of the pose of each letter
as a transformation away from some canonical pose for that

letter. Thus, one may consider the writing of a set of hand-
written 2’s as a random process, that among other things,
produces samples of a random transform variable.

Consider for a moment the image of a two shown as
“Image A” in Figure 1. We may choose to represent
this image as the transformation of some other image in
a canonical form, such as Model 1 of Figure 1. Then,
the representation of Image A could take the form of a
pair, (digit, trans f orm) = (2,T1

A), where the digit identi-
fies the base type of the image (a two), andT1

A is the 2x2
matrix (with positive determinant) which, when applied to
Model 1 will produce Image A. However, we could just as
well choose Model 2 as the canonical form of the charac-
ter “2”, in which case the representation of Image A would
be (digit, trans f orm) = (2,T2

A), indicating that a different
transform, which depends upon the Model 2, is needed to
produce Image A. The key point here is that the transforma-
tion is not an inherent part of a single image, but is defined
only relative to the digit model.

Now suppose we want to define a difference between a
transform associated with Image A and a transform associ-
ated with Image B. We make the following demand of our
difference operator for transformations: that the difference
between the transformations for two characters beinvariant
to the choice of model. More generally, letS represent the
transformation from Model 1 to Model 2. Our requirement
on the difference operator can be written as

D(T1
A,T1

B) = D(T2
A,T2

B)

= D(S·T1
A,S·T1

B), (1)

where “·” denotes the matrix multiplication (it will be omit-
ted in the following). It is easy to see that adopting matrix
multiplication as the group operator, and the (non-negative
determinant) matrices as the group elements, satisfies this
demand. Thus, the invariance of the difference operator nat-
urally suggests the group structure for this type of data.

We point out that choosing a model with which to define
relative transforms is tantamount to choosing an “origin”,
i.e. an identity element, for the group of transformations.
Then Eq. 1 can be viewed as invariance to the choice of
origin for the set of transformation coordinates. Thus, any
function of the group difference operator is in this sense
coordinate freeor intrinsic.

Finally, a simple numerical example may clarify the in-
tuitive desire for a non-Euclidean difference. The matrices

[

10 0
0 10

]

and

[

7.07 7.07
−7.07 7.07

]

have a Euclidean difference with much greater magnitude
than the matrices

[

0.1 0
0 0.1

]

and

[

0.0707 0.0707
−0.0707 0.0707

]

,
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Figure 1: The transforms associated with an image of a character (Image A or Image B) is a function not only of the image
itself, but of the model to which it is compared (Model 1 or Model 2). By requiring that the difference between two image
transforms be invariant to the choice of model, we naturallyimpose a specific group structure on the set of transformations.

despite the fact that each pair of matrices “differs” only bya
rotation of 45 degrees. The linear group difference function
does not suffer from this property.

Since the linear group difference function for non-
singular 2x2 matrices is invariant to the application of a
group operation any kernel based upon this difference will
also be invariant. We now discuss such a kernel.

4. Invariant kernels for GL+(2,R)

We propose the following invariant kernel function for
GL+(2,R):

K(T;A) =
1

C(h)
e−

1
2h‖ log(T−1A)‖2

F
,

whereh is a kernel bandwidth parameter,C is a normaliza-
tion constant that depends upon the bandwidth, log is ama-
trix logarithm, and‖ · ‖F is the Frobenius norm, the square
root of the sum of the products of the matrix components by
their complex conjugates. This kernel is a function of the
natural group differenceT−1A between two matricesT and
A. Improving on the kernel discussed in [15], it is also sym-
metric. That is,K(T;A) = K(A;T). Furthermore, combin-
ing invariance and symmetry, we haveK(T; I) = K(T−1; I),
whereI is the identity matrix. A discussion of the matrix
logarithm and a derivation of these properties are found in
the appendix.

By construction, the kernel function is invariant since:

K(BT;BA) =
1
C

e−
1
2h‖ log((BT)−1BA)‖2

F

=
1
C

e−
1
2h‖ log(T−1B−1BA)‖2

F

=
1
C

e−
1
2h‖ log(T−1A)‖2

F

= K(T;A).

Notice that the definition of such a kernel is not restricted
to two by two matrices, and could be applied to GL+(n,R)
for arbitraryn.

However, it is not enough that our kernel produce the
same value for a pointT relative to the kernel parameter

A under transformation of these values byB. Since our
goal is to use the kernel asa probability lawto describe the
probability of events, we must also have, for an eventE,
that

Prob(E) =
Z

T∈E

1
C

e−
1
2h‖ log(T−1A)‖2

F dµ

=
Z

T∈B·E

1
C

e−
1
2h‖ log(T−1BA)‖2

F dµ

= Prob(B ·E),

under some measureµ.
To achieve this, we must define the kernel function as a

density not relative to the measure obtained from the stan-
dard volume elementdT = ∏1≤i, j≤2dT i, j , but relative to an
invariant measure on GL+(2,R).

An invariant measure exists on any locally compact
group, such that GL+(n,R), and is called the Haar measure
[18]. In our case, it is directly derived from a (left) invariant
volume element. Its expression in terms ofdT is given by

1
|T|n dT,

where| · | denotes the determinant ofT. We refer the reader
to [18] for a complete discussion of invariant measures on
groups.

Such a condition requires that
Z

T∈GL+(2,R)

1
C

e−
1
2h‖ log(T−1A)‖2

F
1

|T|2 dT = 1. (2)

At this point, we make a significant assumption, which is
that our kernel is integrable under the given invariant mea-
sure. Assuming this property holds (which did not prove3),
we must have that

C =
Z

T∈GL+(2,R)
e−

1
2h‖ log(T−1A)‖2

F
1

|T|2 dT.

Thus for a fixed bandwidthh, C is a constant, and is not
dependent upon where the kernel is centered. Finally, note

3But seems confirmed numerically by Monte-Carlo integration experi-
ments.
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that while we define the invariance properties of our kernel
with respect to the invariant measure on GL+(2,R), we can
give the kernel density with respect todT as well, which
can be read directly from Eq. 2:

KE(T;A) =
1
C

e−
1
2h‖ log(T−1A)‖2

F
1

|T|2 . (3)

5. A density estimator for GL+(2,R)

Suppose now that we have a set of samplesT1,T2, ...,TN

from a matrix random variable defined over GL+(2,R).
Armed with our invariant kernel, we can form a density esti-
mate using the set of samples in a style similar to the Parzen
estimate:

f (U;T1,T2, ...,TN) =
1
N

N

∑
i=1

K(U;T i).

We also refer to this density estimator as invariant, since

f (BU;BT1,BT2, ...,BTN) =
1
N

N

∑
i=1

K(BU;BT i)

=
1
N

N

∑
i=1

K(U;T i)

= f (U;T1,T2, ...,TN).

That is, premultiplication of the samplesT i used for estima-
tion and the test pointU being evaluated by any matrix in
GL+(2,R) does not change the probability density assigned
to the point. Note again that this argument extends immedi-
ately ton by n matrices, making these results applicable to
general linear groups in arbitrary dimension.

This estimator looks common enough until one consid-
ers the extent of the kernels in a Euclidean space. Kernels
centered aroundT i with small determinant are “peaky” and
have low variance (according to a Euclidean measure). At
the same time, kernels forT i with large determinant are
spread out and have relatively high variance (again in a Eu-
clidean sense). Finally, these kernels have very different
shape in the sense that they are not translations or scalings
of each other in Euclidean space. However, they do have
the proper invariance properties. What remains is to see
whether they perform well in practice.

6. Comparing density estimates
We compared our density to a traditional kernel estima-
tor, using fixed spherical Gaussian kernels. We performed
three different types of experiments. In the first experiment,
we built a hamstrung handwritten digit-classifier usingonly
information about the linear transformations necessary to

align a test character with each model. In a second exper-
iment, we modified a factored classifier discussed in previ-
ous work [15], using the new invariant estimator to build the
transformation density. Finally, we did a simple compari-
son of likelihoods of a hold-out sample under the two types
of density estimators. We stress that all of these tests are
designed to examine how well the transforms are modeled,
rather than to maximize performance of a digit classifier.
Before describing the experiments, we discuss the source
of the random linear transformations being modeled.

6.1. Factored character models
In [14], we presented a factored model of handwritten dig-
its. A quantity proportional to the posterior density of a
digit class given an image (with a uniform class prior) was
computed as

p(c|I) ∼ p(IL|c) · p(T|c), (4)

whereIL is the “latent image” that results from aligning an
imageI to a model andT can be thought of as the transform
that produced the observed imageI from the latent image.
Figure 2 shows a set of handwritten zeroes (observed im-
ages) on the left. The result of aligning these images to
each other is a set of latent images, shown on the right of
the figure.

By aligning a set of images from a single class to each
other (we call thiscongealing[14]), we implicitly define a
set of transforms (mapping the aligned latent images back
to the observed image). We can use these “training trans-
forms” to define a density. To classify a test image, we
align the image to each model (which in this case is a set
of congealing-aligned images) and maximize the likelihood
in (4).

6.2. The transformation-only classifier
Since our goal in this work is not to classify digits, but to
test various models of transforms, we modified our classi-
fier to completely ignore the latent image termin (4). The
classifier thus worked as follows. For each test image, align
that image as well as possible to each digit model. For each
digit model, this results in some transformT i . Evaluate the
likelihood of this transform under the transform density for
each class, and choose the class with the highest likelihood.

To illustrate, consider a test character “6”. Suppose we
align this test character to the “9” model. The transform
which optimizes this alignment is a 180 degree rotation.
Under the data derived model of typical transformations for
“9”s, such a transformation is very unlikely, and hence, the
likelihood that the test character is in fact a nine would be
assigned a very small value. While this example is trivial
for either a traditional density estimator or the invariantes-
timator, the hypothesis is that a good transform density esti-
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Figure 2: On the left are a set of handwritten zeroes. On the right are the same characters after having been linearly
transformed (and shifted) to maximize a criterion of their alignment. Such a “congealing” process produces a set of latent
images, and also, implicitly a sample of the random transform process that characterizes the shape variability of the observed
images. It is this process of linear shape variability, represented as matrices, that we wish to characterize with a probability
density function.

mator will be more successful in making subtler distinctions
of this type.

For this experiment we used varying number of trans-
forms to define the model transform density for each digit.
We then tested on 100 examples of each digit. The classifi-
cation accuracy is shown in Figure 3. The dashed line rep-
resents the invariant estimator, and the solid line the Parzen
estimator with Gaussian kernels. Note that both classifiers
did significantly better than random (10%) despite work-
ing with only information about the transform variable, but
the invariant density consistently outperformed the Gaus-
sian estimator. The bandwidth parameter of both classifiers
was chosen to maximize the accuracy for each data set size.

Since the Gaussian kernel estimator eventually con-
verges to the true distribution (assuming it’s smooth, etc.),
we would expect it to do as well or possibly better than
the invariant estimate as the number of training examples
goes to infinity, but with 1000 training examples per model
density, the invariant estimator still has a clear advantage.
We again emphasize that the goal of this experiment is to
demonstrate the superiority of the transform density esti-
mator, not to break records for digit recognition.

6.3. Learning from one example
In a second experiment, we applied the new estimator to
the problem of “learning from one example” as described
in [14]. In these experiments, a factored model of each
digit, consisting of a latent image model and a transforma-
tion model was again developed. The crude latent image

model was taken from a single image of each digit class
(hence learning from one example). The model of trans-
forms, however, was developed by congealing (aligning)
handwrittenlettersof the same class, and collecting the re-
sulting transforms. The assumption underlying this tech-
nique is that spatial variations such as rotations and scalings
should have similiar statistics across character classes.The
final performance of these classifiers is then substantially
dependent upon the quality of the transformation model de-
veloped from the set of transforms “borrowed” from the let-
ter classes. The purpose of this experiment was to see if
classification of digits could be improved by using the new
transformation density to produce a transform model.

In these experiments, the Gaussian kernel density pro-
duced an accuracy of 88.2%, while the invariant estimator
improved this result to 89.3%. The new estimator also im-
proved upon the previous estimator discussed in [15], that
did not take advantage of the properties of the matrix log-
arithm. This previous estimator achieved an accuracy of
88.6%. While these differences are small, it should be
remembered that we are probably approaching the perfor-
mance limits of a single example classifier, so large gains
should not be expected.

6.4. Maximum likelihood
Finally, we evaluated the density estimators by comput-
ing the average log likelihood of a test sample under each
density. Using 50 “training” examples to define each non-
parametric density, we maximized the likelihood of another
50 hold-out samples by optimizing the bandwidth parame-
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Figure 3: The figure shows the classification accuracy on
a digit recognition task usingonly information about the
transformation needed to align a test character to each
model. The solid line gives the performance using a Parzen
estimate with Gaussian kernels, while the dotted line shows
the improved performance resulting from the invariant esti-
mator.

ter. We found that for these sample sizes, the likelihoods
were consistently higher for the invariant density estimator.
Typical values for average log likelihoods were about 0.2
for the Gaussian kernel density and about 1.7 for the invari-
ant estimator. For very small sample sizes (N = 10 for train-
ing) we found that the Gaussian kernel estimator slightly
outperformed the invariant estimator. Since our bandwidth
optimizer was much more effective for the Gaussian den-
sity, we suspect this phenomenon could have been a result
of “overfitting” to the hold-out set4.

7. Summary

We have presented a probability density estimator that is
adapted to the structure of GL+(n,R). Since the basic ap-
paratus depends only upon the generic properties of matrix
transformation groups, we believe the same ideas could ap-
ply easily to larger or smaller sets of simple geometric trans-
formations (affine, rotations, ...) in arbitrary dimension. We
applied our estimator to a problem in pattern recognition
and showed improved results relative to a traditional Parzen
estimator with Gaussian kernels. Note that a rigorous theo-
retical study of the kernel properties, in particular verifying
its integrability, remains to be done.

4We shall repeat these experiments with distinct hold-out andtest sets
as soon as possible.

Appendix: Matrix logarithms

The characteristics of our kernelK follow directly from the
properties of the function:

d(A;B) = || log(A−1B)||F .

In a very informal interpretation, the use of a matrix log-
arithm can be seen as an attempt to “linearize” the structure
of the transformation group. We show below that the sym-
metry ofd(A;B), and thusK(A;B), is a direct consequence
of this choice.

When it exists, we call logarithm of a matrixX any so-
lution A of

eA = X.

Any nonsingular matrixX (i.e. any matrix in GL(n,R))
has matrix logarithms (in general infinitely many). Note
that matrix logarithms are generally complex valued. For a
rigorous definition and complete discussion of this matrix
function, we refer to [11, 9].

In this work, we consider theprimary matrix logarithm
[11] evaluated using an implementation of the Schur de-
composition method described in [9] (the principal branch
of the scalar complex logarithm is used). This matrix loga-
rithm satisfies some useful properties:

• log(I) = 0,

• log(AT) = (log(A))T ,

• log((A)−1) = −(log(A)),

• log((A−1)∗) = log((A∗)−1) = −(log(A))∗,

where A,AT
,A∗ = A

T
denote respectively the complex

conjugate, the matrix transpose and the Hermitian adjoint.
However, note that matrix logarithms do not share all the
properties of their scalar counterpart (for instance, we will
not have log(AB) = log(A)+ log(B) in general).

Combining the properties of the Frobenius norm, the
group difference and the previous results, for allA,B ∈
GL+(n,R), we can check thatd(A;B) satisfies:

• (Positiveness)d(A;B) ≥ 0.

• (Invariance) GivenX ∈ GL+(n,R), d(XA ;XB) =
d(A;B), since(XA)−1XB = A−1B.

• (Symmetry) d(A;B) = || log(A−1B)||F =

|| log((B−1A)−1)||F = || − log(B−1A)||F =
|| log(B−1A)||F = d(B;A).

Another interesting point is to consider the one-
dimensional case: GL+(1,R) =]0,+∞[. The usual real
scalar logarithm can be used, and forC(h) =

√
2πh, the Eu-

clidean densitya 7→ KE(a;b) corresponding toK(a;b) (see
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end of Section 4) reduces to the probability density of alog-
normaldistribution:

f (a) =
1

σa
√

2π
e
− (loga−m)2

2σ2
,

with m= log(b) andσ2 = h.
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