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1 Introduction

Optical flow, tracking, background subtraction, stereovision, alignment, registration have
in common that they try to find correspondences between parts of the images. These corre-
spondences are often computed by mapping the images to descriptors and comparing these.
A good descriptor that enables robust matching will be therefore useful for all of these low-
level problems. Some of the properties that such descriptor should have are: robustness (to
image noise, small misalignments), smoothness to degradations (to spatial location, scale,
brightness), smoothness in its representation and ability to adapt to different images easily.

Having a common representation for multiple problems allows the combination of different
problems to help constrain the solution better. Many examples of recent work leverage the
combination of tracking and optical flow [4], tracking and background subtraction [22, 21]
or segmentation and optical flow [20].

In this document we introduce distribution fields (DFs) as an image descriptor for low-
level vision problems. We argue that many current image descriptors (i.e.: SIFT, HOG,
kernel-based descriptors, geometric blur etc.) can be explained in terms of a DF, which is
a distribution at each pixel over the feature space. This way different descriptors can be
compared and combined. Many of these descriptors have some of the important properties
described above. However, to our knowledge, only DF together with a set of operations
associated to them can capture all of them.

The rest of this document is organized as follows. In section 2 we explain the relationship
between DFs and other descriptors. In section 3 we describe DFs, the operations over them
and the meaning of these operations. In section 4 we present experiments comparing the
basin of attraction of DFs and other descriptors’. In section 5 we apply DFs to object
tracking and show state-of-the-art results.

2 Related work

The idea of using a distribution per pixel over the feature values has been used successfully
for several vision problems. Stauffer and Grimson [22] used a parametric distribution at
each pixel for tracking through background subtraction. In this work, there is a foreground
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model that is a distribution field. Each distribution is modeled as a mixture of Gaussians.
A pixel is classified as foreground or background based on the probability density of the
pixel value. This descriptor is robust to certain noise, and has smooth degradations to
brightness. However, the parametric model has certain limitations as it is explained in the
work of Elgammal et al. [11], like the flexibility of the model to adapt to changes. In this
work, also a DF is used for background subtraction, but the background model is built
nonparametrically by treating each frame as a sample. As it is explained in section 3, the
background model we propose in the DF framework is also built in a data-driven way.

An important shortcoming of both [22] and [11] is that they don’t provide smooth degra-
dations to spatial shifts. This is, using these descriptors to compare two identical images
that are translated with respect to each other would not provide in general a smooth decreas-
ing distance for their alignment. This obstacle is often overcome in the vision literature by
spreading the information spatially blurring the image. There is no straightforward mecha-
nism to achieve this in an integrated way with the probabilistic model.

Blurring or multi-resolution techniques are used in many vision applications, including
optical flow [2] and image matching (for example, using the Gaussian pyramid [5]). Blurring
provides smoother spatial degradations. This is, these methods spread information in an im-
age so that gradient descent algorithms have a larger “capture range” or basin of attraction,
and to avoid local minima of the matching function.

A second purpose of blurring is to mitigate the effects of appearance changes on com-
parison metrics. If two images cannot be put in perfect pixel-to-pixel correspondence before
applying an image difference function like the sum of squared differences, then pre-blurring
the images will reduce the effect on differences of these slight misalignments. This type of
blurring can be useful in tracking applications when the tracked object is changing appear-
ance from frame to frame.

Unfortunately, blurring images has unwanted side effects. In particular, blurring images
creates new image values that are averages of the original values. It is difficult to distinguish,
in a blurred image, whether a pixel value of 50 represents several original pixel values of 50
or whether this blurred value is the result of taking the mean of some 0 and 100 pixels. This
well-known loss of information from blurring1 affects the discriminative power of blurring
methods, as we show in section 4.

Another use of DFs was demonstrated by Learned-Miller [16] in developing the congealing
framework for joint image alignment. In this work, each image is transformed to increase
its likelihood with respect to a field of distributions defined across all of the other images.
In essence, the likelihood of each image is maximized with respect to the disribution field
defined by the set of images at each time step. It has been noted by Learned-Miller [16] that
congealing has a large basin of attraction for alignment and that it is relatively robust to
local minima in alignment, since a large collection of images can smooth the optimization
landscape.

Descriptors for template matching methods can also be interpreted as DFs. The HOG
descriptor [10] is a histogram over the gradient of a patch, and therefore a distribution field.

1See, for example, the discussion in Szeliski’s book [23], page 450.

2



If computed densely (one histogram at each pixel), since the histogram is computed using a
large patch around the pixel, the information about a pixel is spread out, yielding a smoother
function. This large ”support” of the descriptor is similar to the blur of the image. This is
also in the case of the SIFT descriptor [18]. These descriptors are robust to certain noise,
and misalignments. However, the size of the support can’t be adapted to the images, or
updated for refining the search. These descriptors strongly represent the geometry of the
image and can be overly sensitive to changes in pose.

An alternative to building a template is use a histogram that describes the full patch (for
example, a face that is being tracked [15]). Histograms provide a larger basin of attraction,
and they overcome the problem of oversensitivity to spatial structure. The histogram can be
weighted in order to give more relevance to the points in the center of the patch [9, 7], since
they are more likely to contain reliable information. These kernel-based methods have had
a lot of success because they are fast, simple, and invariant to many pose changes. However,
the histogram of a patch is not invariant to changes in illumination. The main problem
of kernel-based methods is the loss of spatial information that happens when building the
histogram. This creates ambiguity in the optimization function as described in [14] and also
prevents some motions like rotation to be modeled. In order to resolve these ambiguities, the
size of the descriptor should be expanded. Some recent efforts have focus on including some
spatial information in the descriptor by using multiple kernels [14], or multiple patches [12].
These methods improve the performance of the single histogram descriptor, but require other
mechanisms to decide the number and shape of the kernels. In [13], the authors propose
a solution for the placement of the kernels, but a change in object appearance may make
these kernels unstable, and therefore the optimal placement will need to be recomputed.
Also, if the number of these kernels is small, the tracking accuracy is more vulnerable to
occlusion or abrupt motion. Other additions to the single weighted histogram descriptor are
higher order statistics [3] or temporal information [6], and increasing the discriminability
of the descriptor using feature selection [8, 17, 25]. DFs can combine the rich and robust
information contained in a histogram while preserving the spatial structure of the object to
be tracked.

The idea of blurring information only of similar channels is also described in the bilateral
filter [24].

3 Description of Distribution Fields

A distribution field (DF) is simply an array of probability distributions, one for each location
in a “field”. The probability distribution at each location defines the probability of each
feature value at the location. For example, if the feature space were gray-scale intensity,
then each location in the field (pixel position) would have a probability distribution over the
values 0-255.
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Figure 1: Left.. Distribution field after exploding the “cameraman” image. (The original
image is shown superimposed on the distribution field for clarity.) The number of brightness
levels (or layers) has been quantized to 8. Right. The same distribution field after smoothing
in the dimensions of the original image.

3.1 Representation of Distribution Fields

A distribution field is represented as a matrix df with (2 + n) dimensions, where the first
two dimensions are the width and height of the image (or image patch), and the other n
dimensions index the feature space that we choose. For example, if the feature space is
intensity, then an image of size m x n yields a 3D distribution field matrix of size m x n x b,
where b is the number of intensity feature values, or bins. For a grayscale image, we can use
b = 256, or a coarser representation with fewer bins to save memory or processing time. For
a higher dimensional feature space, such as two-dimensional gradient measurements, we can
build a distribution field with a two-dimensional distribution at each pixel location, yielding
a distribution field matrix of four dimensions.

3.2 Exploding an image

Most previous work which used the DF data structure created each distribution field from
a set of images. For example, in background subtraction, they are typically created from a
video sequence of background images. The DF was then a summary of the statistics of the
set of background images. In this work, we use DFs as descriptors for single images. The
first step in creating a DF from a single is image is what we call exploding an image into a
distribution field.

Exploding an image into a distribution field results in a distribution field with a Kronecker
delta function at each pixel location. In particular, exploding an image I into a distribution
field df with as many bins as features values is defined by

df(i, j, k) =

{
1 if I(i, j) == k
0 otherwise,
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where i and j index the row and column of the image, and k indexes the possible values of
the pixel. We call each of the k bins a layer. This produces a probability distribution at
each pixel since the sum of the components of each column is 1. The left side of Figure 1
shows the results of computing this DF for the well-known camera man image.

At this point, the distribution field representation contains exactly the same information
as the original representation, albeit in a much larger representation. We now show how to
“spread” the information in the image without destroying it as occurs in traditional blurring
techniques.

3.3 Smoothing Distribution Fields

The blurring of distribution fields has the same benefits as blurring images, but few of the
drawbacks. The right side of Figure 1 shows a smoothed version of the distribution field on
the left. The three dimensional distribution field matrix has simply been convolved with a
two-dimensional Gaussian filter which spreads out in the x and y dimensions, but not in the
feature dimension. That is, the smoothed distribution field dfs can be written simply as

dfs = df ∗ h(x,y), (1)

where h(x,y) is a 2D Gaussian kernel, and ∗ is the convolution operator.
Prior to convolution, we could interpret any value of 1 in layer L of a distribution field to

mean “there is a pixel of value L at this location in the original image.” After convolution,
we have a somewhat different interpretation. The semantics of the smoothed distribution
field is, for any non-zero value in a layer L, “there is a pixel of value L somewhere near this
location in the original image.” Thus, the convolution has introduced positional uncertainty
into the representation. A critical point is that no information has been lost about the value
of pixels in the original image, only about their position. This is because there has been no
averaging of pixel values during the convolution process.

It is easy to show that if the convolution kernel in Equation 1 is itself a probability dis-
tribution, then the smoothed distribution field dfs maintains the property that each column
of pixels integrates to 1,2 and hence is still properly called a DF.

Smoothing can also take place in feature space. This allows the model to explain changes
due to subpixel motion, shadows, and changes in brightness. In the example of a grayscale
image, this smoothing is a 1D Gaussian filter over the third dimension. We can write a
further smoothing dfss of the already spatially smoothed distribution field dfs as

dfss = dfs ∗ hz, (2)

where hz is a 1D Gaussian kernel along the feature dimension.

3.4 Comparison between Distribution Fields

The comparison between DF’s that different images yield can be done with any distance
function like L1 and L2 over the difference between the two matrices df1 and df2. For

2This property breaks down at the boundaries of images.
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example, an L1 difference would be defined as

DL1(df1, df2) =
∑
i,j,k

|df1(i, j, k)− df2i, j, k|. (3)

Our experiments on basins of attraction in section 4 show that the performance does not
strongly depend upon the difference function used.

Also, using their probabilistic interpretation, the comparison between DFs can be done
by computing the likelihood of one being sampled from the other. Given the two images I1
and I2, the likelihood that I2 came from I1 is

P (I2|I1) =
∏
x∈I2

P (x|I1), (4)

which in the DF framework can be computed as

P (I2|I1) =
∏
x∈I2

(DF1(x) ∗G(σ))DF2(x), (5)

where both DF1 and DF2 are binary DFs and G(σ) is a 3-dimensional Gaussian filter with
standard deviation vector σ.

3.5 Sharpening match

When two images are compared using the likelihood function described in (5), a decision
needs to be made about the value of the parameter σ. If σ is very large, all DFs will be very
similar, because the distributions will be close to uniform. If σ is too small, small spatial
shifts or changes in illumination might produce a much worse similarity value between the
images than it should. This value of σ needs to be adaptative to each pair of DFs. The best
value of σ for comparing two images can be computed by maximizing its likelihood

L(σ|I1, I2) =
∏
x∈I2

(DF1(x) ∗G(σ))DF2(x) (6)

which can be expanded to

L(σ|I1, I2) =
∏
i∈I2
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where σf and σs are the standard deviations of the Gaussians filter used to convolve in
feature space and image space respectively. Changing the product for the sum of the logs
and rearranging the terms, the expression for the log-likelihood is
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Figure 2: This shows how a patch is surrounded by a set of uniform distributions to handle
the boundary case in smoothing patches.

3.6 Blending Distribution Fields

Because we build smooth distribution fields by convolving with Gaussian kernels, we have
to deal with boundary issues at the edges of patches or images. To do this, we assume that
we have no knowledge of the image outside of a patch. But we would like to spread the
information from a patch beyond the original patches borders. To achieve this, we surround
an exploded distribution field with a “uniform” distribution field that consists of uniform
probability distributions. Then, the process of convolutional smoothing described earlier
has the effect of mixing the uniform distributions outside the patch with the brightness
distributions within the patch to create a smooth transition across the patch boundary.
This process is illustrated in Figure 2.

3.7 Combination of Distribution Fields

In some cases, combining the information of several DF’s can be useful. For example, in
combining information about the past in tracking, we use a linear combination of an old
distribution field and a new distribution field. This operation in DF’s can be implemented
as the component-by-component average of the matrices. This allows us to build a non-
parametric model based on the real distribution at each pixel. This can also be useful for
tracking or joint alignment.

4 Basin of attraction

One of the most important advantages of DFs is the capacity to spread out information about
a pixel value in image space without loss of this information. This slow degradation to spatial
location is useful for finding correspondences because it creates a wide basin in the objective
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function around the local optimum. This is very good in cases of large displacement or
sudden move. In order to measure the width of this basin of attraction, we have run several
experiments.

4.1 Why the basin of attraction is important for tracking

Naively, finding correspondences in an image could be done using a sliding window strategy
(exhaustive search) for each image patch. However, search for correspondences in tracking,
flow, alignment, etc can be efficiently done through gradient descent, by taking advantage
of the smooth motion assumption. This search strategy relies on the assumption that there
isn’t any local optimum in the path traveled by following gradient descent from the start of
the search to the global optimum. This might not be the case if the start of the search (or
first guess) is too far from the global optimum, or if the objective function is not smooth.
In this section we focus on analyzing this last condition of smoothness. In order to evaluate
the smoothness of the objective function around the global optimum we use the concept of
basin of attraction.

Given an objective function f(x) and a point p, we define the basin of attraction as the
neighborhood of positions around p from which following the gradient of f(x) leads to p.
The width of this basin of attraction around the true position of a target sits at the core of
the problem of finding correspondences, and serves evaluating the goodness of the objective
function for gradient descent search methods. Objective functions with wider basins of
attraction will be more robust to poor initial guesses and will be more likely to converge to
the true position of the target.

In this section we describe a series of experiments that evaluate the width of the basin
of attraction of different descriptors, features spaces and similarity metrics.

4.2 Experiment details

This semi-synthetic experiment isolates the problem of creating a smooth objective function
to that of creating an objective function robust to changes in appearance.

The experiment takes an image and an arbitrary patch in it (of size 30x30), and evaluates
the basin of attraction around the true position of this patch, for a given descriptor, a
given feature space and a given similarity metric. Notice that if the search strategy in this
experiment was exhaustive search, the experiment would be trivial.

The general method to compute the basin of attraction is as follows. We arbitrarily select
the patch whose top left corner is in position p = (x, y). The search starts by comparing it
with the patch whose top left corner is in position p = (x, y − 1). If the search converges
to the true position, then we try starting in p = (x, y − 2), then p = (x, y − 3), etc, up to
p = (x, y −maxd). In our experiments, we have chosen maxd = 30. The first displacement
dr for which the search doesn’t converge to the true position marks the width of the basin
of attraction. This is also done in the other horizontal direction, by starting the search in
p = (x, y+1), then p = (x, y+2), etc., to obtain the width of the basin in the other direction
dl. The width of the basin is the minimum of dr and dl.
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The details of the different combinations of search strategies, similarity metrics, param-
eter settings and descriptors are described below.

• A: L1 distance The descriptors used to represent the image and the patch are DF’s
over intensity space, with nbins = 256. Both DF’s are convolved with a Gaussian filter
with parameter σ = 15. The similarity metric for comparing two DF’s is L1. The
search strategy used is gradient descent. For a particular displacement d, the steps to
decide whether p− d is within the basin of attraction are:

1. Explode and smooth full image.

2. Explode and smooth patch.

3. Use L1 to follow gradient descent until minimum is reached. For two distribution
fields df1 and df2, the distance metric L1 is defined as in equation (9).

L1(df1, df2) =
∑
i,j,k

|df1(i, j, k)− df2(i, j, k)| (9)

• B: Maximum Likelihood with fixed σ. The previous approach requires the value of
σ to be fixed. This can be avoided by choosing σ such that it maximizes the likelihood
of a DF with respect to the other. This likelihood is the product of the probabilities of
each point in the first DF under the probability distributions in the second DF. This
is described in detail in equation (7). This experiment tests the basin of attraction of
DF’s when σ is chosen automatically. The descriptors used are also DF’s over intensity
space, with nbins = 256. Only the DF that represents the full image is convolved. The
value of the parameter σ used is the one that maximizes the likelihood. The similarity
metric for comparing two DF’s is the likelihood of one with respect to the other, from
equation (7). The search strategy is gradient descent. For a particular displacement
d, the steps to decide whether p− d lies within the basin of attraction are:

1. Explode full image.

2. Explode patch.

3. Compute the σmax that maximize the likelihood of the patch with respect to the
full image, according to equation (7). This computation is exhaustive over a
discrete, finite set of different values. In this experiment, these are 1, 3, 5, ..., 39.

4. Smooth full image with σmax.

5. Use the likelihood of the DF’s to follow gradient descent, until a maximum is
reached.

• C: Maximum Likelihood with single-pixel steps. The value of the optimal sigma
varies depending on the displacement from the true position. In general, the smaller
the displacement, the more similar their DF’s are and the smaller sigma needs to be in
order to maximize the likelihood. In this case, the value of sigma should be updated
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at each step in the gradient ascent, and this is what this experiment tests. In this
experiment everything is the same as in (B), except that the value of σ is updated at
each step. For a particular displacement d, the steps to decide whether p− d is within
the basin of attraction are:

1. Explode full image.

2. Explode patch.

3. Compute the σmax that maximize the likelihood as in (B).

4. Smooth full image with σmax.

5. Use the likelihood of the DF’s to follow gradient ascent for 1 step.

6. Repeat 3-5 until a maximum is reached.

• D: Maximum Likelihood with single-pixel steps. σ chosen using gradient
ascent. The optimization of σ can be time consuming if done exhaustively. However,
the likelihood function is smooth enough so that following gradient ascent given a good
start can lead to a good value of σ. This experiment is identical to (C), but instead of
exploring the full range of likelihoods for the values 1, 3, 5, ..., 39, σmax is chosen using
gradient ascent.

• E: Maximum Likelihood with multi-pixel steps. Optimizing the value of σ at
each step is computationally intensive. Instead, we can alternate between the optimiza-
tion of position and σ. This experiment is identical to C, except that the optimization
of position and σ alternate. For a particular displacement d, the steps to decide whether
p− d is within the basin of attraction are:

1. Explode full image.

2. Explode patch.

3. Compute the σmax that maximizes the likelihood as in (B).

4. Smooth full image with σmax.

5. Use the likelihood of the DF’s to follow gradient ascent until a maximum is
reached.

6. Repeat 3-5 until a maximum is reached.

• F: Other descriptors. For the sake of comparison we also compute the basin of
attraction of commonly used image descriptors. These are normalized cross correlation,
blurring the image, mean-shift and multiple kernel tracking.

1. Normalized Cross Correlation. The procedure to calculate the basin of at-
traction is the one described before of using increasingly larger displacements. For
a particular displacement d, the point p − d lies in the basin of attraction if the
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gradient descent starting in p − d converges to p. The objective function of the
gradient descent for two image patches I1 and I2 is

NCC(I1, I2) =

∑
x,y

(
I1(x, y)− Ī1

) (
I2(x, y)− Ī2

)√∑
x,y

(
I1(x, y)− Ī1

)2∑
x,y

(
I2(x, y)− Ī2

)2 , (10)

where Ī is the mean of the pixel values of image I.

2. SSD using image blur. The procedure to calculate the basin of attraction using
blur is the same as the one for NCC, except that the objective function is

SSDblurred =

√∑
x,y

I1(x, y)′ − I2(x, y)′, (11)

where I ′ is the result of blurring the image by convolving it with a Gaussian filter
(I ′ = I ∗G(σ)). In our experiments, we use σ = 15, which is the same size as in
the DF experiment.

3. Mean Shift. Mean Shift tracking is very similar in spirit to DF since it uses a
histogram-based descriptor. Instead of using the mean shift search strategy, we
use gradient descent. The method to compute the basin of attraction is identical
to the SSD and NCC, except that the objective function is the Bhattacharyya
coefficient of the weighted histograms of the image patches. The weight of the
histograms is computed as described in [9].

4. Multiple Kernel Tracking. This method is similar to mean shift, except that
there multiple weighted histograms per image patch. Each of these weighted
histograms is generated using a different kernel to compute the weights. We
chose a roof kernel and a gaussian kernel, as described in the original paper [14].

The data used in these experiments comes from the UWA database available in http:

//www.cs.washington.edu/research/imagedatabase/groundtruth/. A subset of 289 im-
ages were arbitrarily selected for these experiments.

4.3 Experiments discussion

Figure 3 shows the results of the basin of attraction for several similarity metrics compared
to other traditional ones. For each number in the x axis, It shows the ratio of images that
have a basin of attraction of at least that number. It’s surprising to observe the performance
of the method that uses a fixed sigma obtained by maximizing the likelihood. In fact, the
graph can be misleading, since what it’s showing is not a much narrower basin of attraction
around the maximum, but lack of accuracy. On average, the position of maximum likelihood
using this technique is around 6 pixels away from the true position. Figure 4 shows some
examples of the performance of this technique. Figure 5 shows the the results for the rotation
experiment.
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Figure 3: Basin of attraction of different similarity metrics

5 Tracking

5.1 Tracking Algorithm using Distribution Fields

Since the DF descriptor provides a large basin of attraction, the algorithm used for tracking is
fairly simple. There are a few parameters in our model, all of which were set by experimenting
on a set of training videos that were independent of the test set.

The model of the target is created by exploding the image that contains the target into
a distribution field and smoothing the distribution field with a Gaussian kernel. Searching
for the target in a new frame consists of building a new DF by also exploding and creating
a DF at each candidate position, and following the direction where the gradient of the L1
difference between the two DF’s descends. Once a local minimum is reached, the model of
the target is updated, using a linear combination of the model and the new observation, as
in:

df
(t+1)
model = λdf t

model + (1− λ)df
(t+1)
obs . (12)

In our work we use λ = 0.95, based on experiments with training videos.
In order to make the algorithm more robust to the values of σ used to smooth the DF’s,

we use a hierarchical approach. Instead of using a single DF to represent the target, we use
a small set of DF’s, where each of them is built using an increasing value of σ. These DF’s
contain information at different frequencies, resembling a Gaussian pyramid. At each frame,
we use a coarse to fine strategy. The most smoothed DF is used to start search, until it
reaches a local minimum. This position is the start for the search using the second DF.

We summarize the procedure in pseudo-code:
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Figure 4: Basins of attraction and local optima reached for different sample images. Each
graph shows the likelihood along the x axis, the true position is at 31. Each image shows the
true position of the patch in red and the local optimum reached in green. It seems reasonable
that patches with rich texture (like the one in second row and second column) will be easier
to find than those more homogeneous (like that one in the third row). Repeating patterns are
likely to be confusing (as in the first row, second column), and some mistakes are surprising
(like the one in second row first column). A typical example is the very first one, where the
true position is missed by 5-6 pixels. One possible explanation is that the highest frequency
information is lost when the DF is convolved with a very large value of σ.

1. Input: Video sequence V and patch I in frame 1.
2. Parameters, all set using training video sequences.

(a) Spatial smoothing parameters σi
xy, i ∈ 1, 2, 3.

(b) Brightness smoothing parameter σz.
(c) Number of brightness bins b.
(d) Mixing parameter lambda = 0.95.

3. Initialize df 0
model = explode(I) ∗ h2 ∗ h1

4. Initialize target location (x, y) to center of patch I.
5. For each video frame:

(a) dfobject = explode(patch(x, y)) ∗ h2 ∗ h1.
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Figure 5: Results for the basin of attraction in rotation.

(b) Minimize difference D(dfobject, dfmodel) using gradient descent of patch position.
Recalculate dfobject for each new location.

(c) Reset (x, y) to result of gradient descent.
(d) df t+1

model = λdf t
model + (1− λ)dfobject.

5.2 Tracking Experiments

Two key questions must be answered to perform evaluations: which methods to compare
against and which test suite to use. Unfortunately there does not seem to be a widely agreed
upon standard for a tracking test suite in the computer vision literature. Many algorithms
are shown running on videos that are not available publicly or have not been used by other
researchers.

Recently, however, Babenko et al. [1] compiled a list of commonly used and publicly
available videos3 that have been used to assess tracking algorithms. While these videos do
not represent the full gamut of scenarios under which to evaluate tracking, they nevertheless
represent a valuable de facto standard for evaluation. They exhibit a wide range of phenom-
ena from occlusion, object deformation, significant change in object appearance (subject
turns 360 degrees out of plane), moving backgrounds, and complex backgrounds (surfing).
They also show a variety of objects being tracked such as faces, toys, and soda cans.

Two of the recently top performing tracking algorithms, the MIL tracker [1] and PROST [19]
have been run on 6 of these videos, and MIL has been run on all of them. For this reason
we chose to evaluate our algorithms on these videos. We shall refer to this collection of 11

3The videos can be found at http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml.
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Figure 6: Mean distance to target (shorter is better). Performance comparison be-
tween DF tracking and other algorithms. Both graphs show the average distance between
the estimated object location and the location marked as ground truth. The plots on the left
show results for videos in which PROST results were available. The plots on the right show
results for which PROST results were not available. We outperform PROST in 4 of the 6
videos. We far outperform all other algorithms. Since the MIL tracker is non-deterministic,
we show results for 5 separate runs.

videos4 as the MIL video database.
Among the algorithms that have been evaluated on the MIL video database, the best

performers have been the MIL tracker [1] and the PROST tracker [19]. For this reason, we
included these two trackers in our comparisons. Unfortunately, PROST has only been run
on a subset of six of the videos, and therefore we can only compare directly to PROST on
half of the videos.

The MIL tracker uses unsupervised online learning over Haar features to train a dis-
criminative model over the two classes background and foreground. They improve over
other ”learning-by-detection” algorithms by not requiring the labeling of data, which may
be inaccurate by using boosting instead. In [19], three different trackers are used: one uses
normalized cross correlation directly over the intensity values, the second one uses optical
flow and mean shift, and the last one is an online random forest. The three trackers are
combined using a simple cascade. In this paper we use PROST and MIL as representatives
to compare in our experiments because they are, to the best of our knowledge, the algorithms
that have the highest performance in this dataset.

In addition to these trackers, we felt that our tracker was most similar in spirit to the
Multiple Kernel Tracker [14], and so we implemented this tracker and also ran it on the same
suite. The kernels used in our implementation are those described in their experiments, which

4There is a 12th video, but the link to it is broken.
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are an Epanechnikov kernel and a roof kernel.
We evaluate our algorithm and other usings two different modes of comparison. The

first, for which results are shown in Figure 6, is the mean distance, over all frames in the
video, of the distance between the algorithm’s estimated target location and the ground
truth location. While this is certainly a useful metric, it has some negative elements. For
example, if a tracker “falls off” the target and essentially has no idea where it is, then its
subsequent score will simply be determined by how far it happens to be from the tracked
object. If it is “unlucky” and happens to be on the other side of the image, it will suffer
much more than if it happens to be near the target, even though it has no knowledge of the
target in either case.

The plots on the left side of Figure 6 include comparisons with PROST, the MIL tracker,
and the MKT tracker. For the PROST tracker, we show improved performance (lower mean
distance) on 4 of the 6 videos, although admittedly these gains are small. In addition to
outperforming the PROST tracker, we believe our algorithm is significantly simpler, since
it relies on only a single descriptor (rather than three) and there is no arbitration among
trackers, as int he PROST tracker.

For the MIL and MKT trackers, we show significantly improved results. Because the
MIL tracker is stochastic, we show 5 runs of it. The right half of the figure shows additional
results for the MIL and MKT trackers. PROST results were not available for these videos.
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