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Abstract—We introduce a framework where visual features
describing the interaction between robot hand, a tool, and an
assembly fixture can be learned efficiently using a small number
of demonstrations. We demonstrate the approach by torquing a
bolt with Robonaut-2 using a hand held ratchet. The difficulty lies
in the uncertainty of the ratchet pose after grasping and the high
precision required for mating the socket to the bolt and replacing
the tool in the tool holder. The approach learns the desired
relative position between visual features on the ratchet and the
bolt. It does this by identifying goal offsets from visual features
that are consistently observable over a set of demonstrations.
With this approach we show that Robonaut-2 is capable of
grasping the ratchet, tightening a bolt, and putting the ratchet
back into a tool holder. We measure the accuracy of the socket-
bolt mating subtask over multiple demonstrations and show that
a small set of demonstrations can decrease the error significantly.

I. INTRODUCTION

Learning from demonstration (LfD) is an appealing ap-
proach to programming robots because it is similar to how
humans teach each other. However, most work on LfD has fo-
cused on learning the demonstrated motion, action constraints,
and/or trajectory segments and has assumed that object labels
and poses can be identified correctly. This assumption may be
warranted in well-structured industrial settings, but does not
hold, in general, for the kinds of uncertainty and variability
common in everyday human environments.

We present an integrated approach that treats identifying
informative sensory features as part of the learning process.
This gives the robot the capacity to manipulate objects without
fiducial markers and to learn actions focused on salient parts
of the object. Instead of defining actions as relative movements
with respect to the object pose, our actions are based on
features that represent meaningful sensory milestones. In this
paper, features correspond to sensory patterns that can be
localized in the robot environment. With additional guidance
provided by the operator, the informative features specific to
an object instance can be identified automatically. The goal is
to have the robot interact with the same objects that appear in
the demonstrations.

We show that a challenging tool use task—tightening a
bolt using a ratchet—can be learned from a small set of
demonstrations. A different in-hand ratchet pose may result
in failure on mating the socket to the bolt if the robot only

considers the pose of the hand and the bolt. The proposed
approach learns what part of the ratchet should be aligned with
the bolt by recognizing consistent spatial relations between
features among a set of demonstrations.

Two major contributions in this work are as follows.
1) Action demonstrations are classified into three different

types based on the interaction between visual features
and robot end effectors. This allows robots to repeat tool
usage demonstrations by modeling the spatial relations
between visual features from the tool and the workpiece.

2) An approach that distills multiple demonstrations of
the same action to produce more accurate actions by
identifying spatial relations that are consistent across
demonstrations.

II. RELATED WORK

Much research has focused on methods for “learning from
demonstration (LfD),” in which robots acquire approximate
programs for replicating solutions to sensory and motor tasks
from a set of human demonstrations. In work by Calinon et al.
[5] [4], Gaussian mixture models are used to model multiple
demonstrated trajectories by clustering segments based on
means and variances. A Gaussian mixture regression is used
to generate motions for different start and goal states during
execution. In work by Pastor et al. [13], dynamic movement
primitives are used to generalize trajectories with different start
and end point. Instead of modeling trajectories in terms of
motion invariants, our work focuses on learning consistent
perceptual feedback that provides informative guidance for
situated actions.

Approaches that learn from multiple demonstrations often
require an experienced user to show a variety of trajectories
in order to estimate task information like state variables, task
constraints, relative frame, etc. In work by Alexandrova et al.
[2], instead of generalizing from multiple examples, the user
demonstrates once and provides additional task and feature
information via a user interface. The approach in this paper
is similar, the user specifies action types and the informative
features are identified automatically.

In the work by Phillips et al. [15], experience graphs
are built from demonstration and used to speed up motion
planning. A manipulation task such as approaching a door



and opening can be planned in a single stage by adding
an additional dimension that represents the state of the ob-
ject. However, the demonstrated tasks are restricted to cases
where the object can be manipulated in a one dimensional
manifold that is detectable based on the position of a single
contact point. In this work, demonstrations are stored as aspect
transition graphs (ATGs). ATGs are directed multi-graphs
composed of aspect nodes that represent observations and
edges that represent action transitions. Aspect nodes represent
observations directly and can, therefore, be used to model a
higher dimensional space.

ATGs were first introduced by Sen [17] as an object repre-
sentation that models how different control programs can lead
from one aspect to another. Ku et al. [9] [10] further applied
belief space planning on ATGs and show that ATG models
learned from demonstration can be used to plan sequences of
actions to compensate for the robot’s reachability constraint.
In this work, we extend the ATG representation to model
interaction between objects and demonstrate that by distilling
multiple ATGs learned from demonstrations the accuracy of
actions can increase significantly.

In the work by Akgun et al. [1], a demonstrator provides a
sparse set of consecutive keyframes that summarizes trajectory
demonstrations. Pérez-D’Arpino and Shah [14] also introduced
C-Learn, a method that learns multi-step manipulation tasks
from demonstrations as a sequence of keyframes and a set
of geometric constraints. In our work, aspect nodes that
contain informative perceptual feedback play a similar role
as keyframes that guide the multi-step manipulation. Instead
of considering geometric constraints between an object frame
and the end effector frame, relations between visual features
and multiple robot frames are modeled.

There has been a lot of work on developing visual de-
scriptors that are robust to viewpoint variations [12] [3] [21].
Recently, several papers have investigated learning image
descriptions using Convolutional Neural Networks (CNNs) [7]
[18] [11]. The hierarchical CNN features [11] were shown to
represent parts of an object that are informative for manipula-
tion. We construct aspects and actions using hierarchical CNN
features that are consistent among multiple examples.

III. APPROACH

In this section, we describe our approach by teaching the
robot to use a ratchet from demonstrations. First, we describe
the aspect transition graph (ATG) that is used to model
demonstrations. Second, we explain how the user demonstrates
each part of the task and provides additional information for
building ATG models. Third, we illustrate how multiple ATGs
created from demonstrations are merged to create more robust
models. Finally, we demonstrate how a set of ATG models are
used during execution.

A. Aspect Transition Graph Model
In previous work, aspect transition graphs (ATG) created

from demonstrations were used to represent how actions lead
from one observation to another using a directed multi-graph

[10]. In this work, we extend the ATG representation to include
actions that support interactions between objects and add force
feedback to the aspect representation. In the following, we
describe the definition of an ATG, the visual and force features,
the aspect representation, and the actions.

1) Definition: An aspect transition graph (ATG) is a di-
rected multigraph G = (X ,U), composed of a set of aspect
nodes X connected by a set of action edges U that capture
the probabilistic transition between aspect nodes. We define
an aspect as a multi-feature observation that is stored in the
model. An action edge U is a triple (x1, x2, a) consisting of
a source node x1, a destination node x2 and an action a that
transitions between them.

2) Visual Features: Aspect nodes in an ATG include visual
features that participate in measurements of the similarity
between aspect nodes and observations. Their positions are
also used as references for end effector positions in actions
edges. The hierarchical CNN features introduced by Ku et al.
[11] exploit the fact that CNNs are by nature hierarchical;
a filter in a higher layer with coarse location information
is a combination of lower level features with higher spatial
accuracy. Instead of representing a feature with a single filter in
a certain CNN layer, hierarchical CNN features use a tuple of
filter indices to represent a feature such as (f5

i , f
4
j , f

3
k ), where

f5
i , f4

j , and f3
k represent the ith filter in the 5th convolutional

layer, the jth filter in the 4th convolutional layer, and the
kth filter in the 3rd convolutional layer respectively. A lower
layer CNN filter often represents the local structure of a more
complicated structure represented by a higher layer filter. The
hierarchical CNN feature identifies local structures at each
level that are related to a hierarchical “part-based” representa-
tion of an object, each part of which affords opportunities for
control and interaction. In this paper, the layer of a hierarchical
CNN feature refers to the lowest layer in the filter tuple. A
variant of hierarchical CNN features that are localized through
guided backpropagation are used as visual features in this work
[19].

3) Force Features: The force features are based on load
cells in Robonaut-2’s forearms. We collect the force values and
project them to the body frame at 10 Hz. The values are then
averaged over the preceding one-second interval. This force
feature is concatenated with visual features and proprioceptive
feedback to represent aspect nodes.

4) Aspect Representation: In previous work, Ku et al.
[10] introduced an aspect representation based on visual and
proprioceptive feedback. The representation uses a set of
visual feature responses and their spatial relations with robot
end effectors to represent an aspect node. In this work, we
extend this aspect representation to include force features and
handle multiple object interactions.

In previous work, a single object is considered per ATG
model. In this work, we consider multiple objects and their
interactions. An aspect node can be used to represent a
particular “view” of an object or a distinctive interaction
between adjacent objects. For example, two disjoint feature
clusters generated by two objects are modeled by two aspect



nodes, each representing how the robot perceives them. In
contrast, a single feature cluster can span two (partially)
assembled objects to focus on object-object interactions. The
ATG representation can therefore model object interactions
that result in transitions between these two types of aspect
nodes.

5) Actions: An action is represented using a controller
in the control basis framework [8] and is written in the
form �|�⌧ , where � is a potential function that describes
the error between the current and target robot configuration,
� represents sensory resources allocated, and ⌧ represents
the motor resources allocated. The potential functions are
formulated as �V =

P
v2V (v�gv)2, where v and gv are visual

features and goal locations for these features (v, gv 2 R3) and
�R =

P
r2R(r � gr)2, where r and gr are robot frames and

goals for these frames (r, gr 2 SE(3)).
Demonstrated actions are distinguished into three types:
1) robot-visual actions aRV = �R|�V

⌧

2) robot-proprioceptive actions aRP = �R|�P
⌧

3) visual-visual actions aV V = �V|�V0
⌧

Parameters �V and �P are the sensory resources containing
a set of observed visual features V and a set of robot frames
P based on proprioceptive feedback, respectively. Potential
functions �R and �V have a minimum when a set of robot
frames R and a set of visual features V that are controllable
by the robot matches a set of corresponding goals G calculated
based on offsets to �. We give examples of these three types
of demonstrations in the following.

a) The robot-visual action (aRV ) specifies the target pose
of a set of robot frames with respect to a set of visual feature
locations. The left and right image in Figure 1 shows the
result of executing an aRV action where the goal is to reach
the ratchet pregrasp pose. The yellow and cyan dots represent
5th and 4th layer hierarchical CNN features and the red and
green circles represent the minima of potential functions for
the hand and fingers. The arrows represent the offset from
features used as references to construct potential functions and
the red and green ellipses represent the contour lines of the
potential functions for the hand and index finger. This type of
action was used in previous work [10] for tool grasping.

Fig. 1. Example of a robot-visual action (aRV ) that reaches the ratchet
pregrasp pose.

b) The robot-proprioceptive action (aRP ) specifies the

target pose of a set of robot frames with respect to a set of
current robot frames based on proprioceptive feedback. The
left and right image in Figure 2 shows the result of executing
an aRP action where the goal is to move the hand relative to
the current hand frame so that the grasped ratchet is extracted
from the tool holder. The yellow ellipse is the current hand
pose and the arrow indicates the reference offset derived from
demonstration. The red ellipses represent the contour lines of
the potential functions for the hand.

Fig. 2. Example of a robot-proprioceptive action (aRP ) that extracts the
ratchet.

c) The visual-visual action (aV V ) specifies the goal position
of a set of controllable visual features relative to another set of
visual features on a different object. The left and right image
in Figure 3 shows the result of executing an aV V action where
the goal is to place the socket on top of the bolt. The purple
dots are features on the bolt used as references for constructing
the potential function and the orange dot is the feature on
the socket controlled by the potential function. The blue dots
are goal positions generated based on relative positions to
features indicated by the black arrows. The red dotted arrow
shows a path for the feature to reach the minimum of the
potential function represented by the blue ellipse contours.
After a single visual-visual action, visual features on the
grasped object may fail to reach the goal location due to
movement error, change in object in-hand pose, or imperfect
camera calibration. To tackle this problem, the same action is
executed multiple times with updated visual feature locations
on the grasped object until convergence. Unlike robot-visual
actions, modeling spatial relations between visual features
allows situations where the in-hand ratchet poses are different
to have the same intended action outcome.

The detected locations of visual features and robot frames
are inevitably influenced by noise in the system that may be
caused by imperfect sensors or changes in the environment.
This makes tasks that require high precision challenging. To
accommodate this problem we assume that the references for
motor resources ⌧ is generated by adding zero mean noise
N(0,⌃) to the original reference. By sampling from this
distribution during execution, the controller superimposes an
additive zero mean search to the motion. Such movement
increases the tolerance of the insertion task to uncertainty.

Figure 4 shows the sensorimotor architecture that drives



Fig. 3. Example of a visual-visual action (aV V ) that places the ratchet on
top of the bolt.

transitions in the ATG model. The perceptual feedback is used
to represent aspect nodes and actions are executed based on
these sensory resources defined in action edges.

Fig. 4. The sensorimotor architecture driving transitions in the ATG
framework. The sensory resources �F that represent a set of features based on
visual and force feedback and �P that represents a set of robot frames based
on proprioceptive feedback are used to parameterize actions �|�⌧ . Here � is
a potential function that describes the error between the current and target
robot configuration and ⌧ represents the motor resources allocated. In this
example, the 5th layer hierarchical CNN features �v5 are used to control the
arm motors ⌧arm and the 3rd and 4th layer hierarchical CNN features �v3,v4
are used to control the hand motors ⌧hand.

B. Building Models From Demonstrations

Each demonstration coupled with information provided by
the operator is used to create an ATG model. During execution,
this set of ATG models is used to determine the next action
based on the current observation and the given target. We
describe the user interface and how ATGs are created from
demonstration in the following.

1) User Interface: Demonstrated tasks are performed using
a teleoperator implemented in the MoveIt! platform [20], in
which the user can drag interactive markers in a graphical
interface to move the robot end effector or change the robot
hand configuration. Similar to the keyframe demonstration
approach [1] [14], users indicate intermediate steps for each
demonstration required for creating the ATG model. After the
robot reaches an intermediate step, the interface asks the user
to provide the type of demonstration listed in Section III-A5
that the user performed.

For the robot-proprioceptive action aRP = �R|�P
⌧ , the user

can select either the end effector frame or the body frame
as the proprioceptive sensor resource �P . The user also has
the option to add a structural search movement described in
Section III-A5 to the demonstrated action.

2) Creating ATG models: During the demonstration, an
aspect node is created for each observed feature cluster at
each intermediate step. A feature cluster can be a single object
or multiple objects in contact based on the Euclidean cluster
extraction algorithm in the point cloud library [16]. Based
on the demonstration type selected by the user, the system
connects new aspect nodes xt to aspect nodes xt�1 created at
the previous time step with action edges at�1 that model the
demonstrated action.

For the robot-visual action aRV = �R|�V
⌧ , the relative poses

between a set of visual features V and a set of robot frames
R are recorded in the action edge. This set of visual features
is selected based on the feature’s proximity to the robot
end effector after action execution. In this work, hierarchical
CNN features mentioned in section III-A2 are used as visual
features. Five 5th layer hierarchical CNN features that are
closest to each hand frame and eight 4th layer hierarchical
CNN features that are closest to each finger tip frame are
selected. For example, the action that moves the robot hand to
a pregrasp pose for grasping the ratchet will use features such
as the corner of the handle or the neck of the ratchet that are
close to the fingers as references for placing the fingers relative
to the ratchet. The aspect nodes connected by this action is
identified based on their proximity to the active robot end
effector.

For the robot-proprioceptive action aRP = �R|�P
⌧ , the

relative poses between the set of robot frames R and the set of
reference robot frame P are recorded in the action edge. For
example, the action that lifts the ratchet up after grasping it is
modeled by moving the hand frame relative to the current hand
frame. The aspect nodes connected by this action is identified
based on their visual similarity to the last connected aspect
node.

For the visual-visual action aV V = �V|�V0
⌧ , the relative

poses between a set of visual features V on the tool grasped
by the robot and a set of visual features V 0 on the target object
interacting with the tool is recorded in the action edge. The set
of visual features on the tool is selected based on the feature’s
stability with respect to movement under the assumption that
the grasped object is rigid. This is determined by the position
differences of the features in the hand frame before and after



the action. The set of visual features on the target object is
then selected based on the feature’s distance to the selected
features on the tool after the action. This visual-visual action
is represented by two action edges that connect the aspect
nodes that represent the tool and the target object to the aspect
node that represents the interaction. These aspect nodes can
be identified base on their relative distance and proximity to
the active end effector.

This sequence of aspect nodes connected by action edges
become the ATG model that represents the demonstration.
Aspect nodes that are created from other feature clusters that
are not chosen are grouped into a background ATG that is
used to recognize feature clusters that are not targets for
manipulation. For example, a demonstration that only grasps
the ratchet does not care about the bolt platform. A background
ATG that represents the bolt is therefore used to match to the
feature cluster of the bolt during execution.

C. Learning from Multiple Demonstrations
With a single demonstration, there remain ambiguities re-

garding the goal. For example, in the action that puts the socket
on top of the bolt, it is ambiguous whether the demonstration
intends to convey a spatial relationship between the socket and
the bolt or some other part of the ratchet and the bolt. With
multiple demonstrations, this ambiguity may be resolved by
observing consistent relations between features. In this section,
we describe how to take multiple demonstrations of the same
task to create more robust ATG models. We call these ATGs
created from multiple demonstrations distilled ATGs.

1) Identifying Common Features: A set of features are
stored in the aspect node to represent the observation of an
aspect. Correctly associating the current observations with a
memorized aspect node is crucial for implementing transitions
to goal status. However, not all features provide the same
amount of information. Moreover, some features are more
sensitive to lighting changes and some may belong to parts of
the visual cluster that may change appearance across examples.
With a single demonstration, these kinds of features may
be indistinguishable. With multiple demonstrations, common
features can be identified by estimating the feature variance
across demonstrations.

Given demonstrations of the same task with the same
sequence of intermediate steps, our approach looks for features
that are consistent across multiple demonstrations. For the
observations at each intermediate step, the N most consistent
features are chosen. The consistency score is defined as
Sc = nf/std(f), where nf is the number of times feature
f appears among the matched intermediate steps and std(f)
is the standard deviation of the value of feature f . We score
visual features, proprioceptive features, and force features
together with weights of 1, 1, 0.001, respectively.

2) Recognizing Consistent Actions: For action edges that
represent a robot-visual action aRV or a visual-visual action
aV V in an ATG model, the action reference is specified in
terms of a subset of features stored in the aspect node. As
result of a single demonstration, features are chosen based

on their proximity to robot frames or features controllable by
the robot. With multiple demonstrations, a more robust set of
features can be identified and used to define the aspect.

For the robot-visual action aRV = �R|�V
⌧ , the top N

pairs of robot frames r 2 R and visual features v 2 V
that have the lowest variances in XYZ position offsets are
chosen to represent the action. For example, when learning
from multiple demonstrations of the action that grasps the
ratchet, this approach concludes that features on the ratchet
are more reliable than features on the tool holder since the
ratchet may be placed at different positions in the tool holder
across demonstrations.

For the visual-visual action aV V = �V|�V0
⌧ , the top N

pairs of visual features in the tool aspect node v 2 V and
the target object aspect node v0 2 V 0 that have the lowest
variance var(v, v0) is selected. var(v, v0) is the variance of
the XYZ position offsets between feature v and feature v0 after
the action across demonstrations. For example, the action that
places the socket of the ratchet on top of the bolt determines
that a consistent spatial relation exists between the features
on the socket and those on the bolt after executing the action.
Figure 5 shows the top feature pairs identified for constructing
a visual-visual action from demonstrations. The robot is able
to comprehend that the head of the ratchet should be aligned
with the bolt autonomously.

Fig. 5. Identifying informative features from multiple demonstrations. The
two rows represent two demonstrations that place the socket of the ratchet
on top of the bolt. The columns from left to right show the aspect nodes
representing the tool, the target object, and the interaction for this visual-visual
action aV V = �V|�V0

⌧ . The green circles in the tool and interaction aspect
nodes represent the top visual feature v 2 V used to reach the minimum
of the potential function �V while the red circles in the target object aspect
node represent corresponding features v0 2 V 0 that are used as references.

To confirm that the selected visual features represent mean-
ingful parts of an object, we visualize the feature identified
on the ratchet head in Figure 5 using the visualization tool
introduced by Yosinski et al. [22]. Figure 6 shows the top
9 images that the filters f5

23, f4
60, and f3

184 have the highest
response on among the ImageNet dataset. The feature tuple
(f5

23, f
4
60, f

3
184) can be interpreted as a red region surrounded



by black regions. Although there are no ratchet class trained
on the neural network, it reuses similar visual patterns learned
among other classes such as bird species. The left image in
Figure 7 shows a visualization on what pixels contribute to the
feature using guided backpropagation [19]. The background
grey corresponds to zero contribution. Notice that the feature
is only contributed by the head of the ratchet and represents
meaningful parts for modeling the action. The right image is
the corresponding input image.

Fig. 6. Visualization of the hierarchical CNN feature (f5
23, f

4
60, f

3
184) that

is identified on the ratchet head by showing the top 9 images that have the
highest response among ImageNet for filter f5

23, f4
60, and f3

184.

Fig. 7. Visualization on what pixels contribute to the hierarchical CNN
feature (f5

23, f
4
60, f

3
184) using guided backpropagation.

D. Planning Actions with ATG models

The set of ATG models created from demonstrations stores
observations of each feature cluster in aspect nodes and
predicts transitions caused by action edges (Figure 8). During
execution, this set of ATG models is used to plan actions to
reach a given goal state.

At time step t, for each feature cluster the aspect node xt

in the set of ATGs that has the highest posterior probability
p(xt|zt) given the current observation zt of the feature cluster
is first identified. The prior probability p(x0) of being in an as-
pect node x0 at time 0 is set to be uniform over all aspect nodes
in the set of ATGs unless modified by the user. The probability
p(xt) of being in an aspect node xt is updated by the Bayes
filter algorithm, p(xt) =

P
xt�1

p(xt|at�1, xt�1) · p(xt�1),
where at�1 is the action taken at time step t � 1. The
transition probability p(xt|at�1, xt�1) is set proportional to
p(at�1|xt, xt�1), which is modeled as a multivariate Gaus-
sian distribution based on the value difference between the
parameters of the executed action at�1 and the action edge
â that connects aspects xt�1 and xt in the ATG model. The
maximum a posteriori (MAP) aspect node for each feature

Fig. 8. The visualization of the set of ATGs created from demonstrations
for the ratchet task. Each connected ATG represents a sub-task. The images
represents aspect nodes and the edges indicate the type of actions used to
model transitions.

cluster can therefore be determined by calculating p(xt|zt) =
p(zt|xt) · p(xt), where p(zt|xt) is modeled with generalized
Gaussian distributions as introduced in [10].

During execution, the user selects a goal aspect. Based
on the MAP aspect node xt of each feature cluster, the
next action is chosen based on the first action edge on the
shortest path from the MAP aspect node to the goal aspect
node. If the chosen action edge is a visual-visual action type,
the planner needs to confirm that both the tool aspect node
and the target object aspect node is observed. There are two
ways to transition between nodes, 1) follow edges learned
from demonstrations, or 2) identify equivalent aspect nodes
in ATGs and transition between them. If there is no valid
path from the current aspect node xt to the given goal aspect
node, the planner guesses possible paths by merging similar
aspect nodes from the current ATG to other ATGs until a path
exists. The similarity between two aspect node uses the same
model as the likelihood function p(zt|xt). These two ways of
identifying paths in ATGs allow the robot to learn subtasks
separately and repeat the full task during execution.

IV. EXPERIMENTS

In this work, we show that with a small set of demonstra-
tions, Robonaut-2 is capable of performing a ratchet task that
involves grasping the ratchet, tightening a bolt, and putting the
ratchet back into a tool holder. The complete task sequence can
be seen in the supplementary video. We compare the success
rate of mating the socket to the bolt as a function of the number
of demonstrations using Robonaut-2. To evaluate the accuracy
of the position of the socket with respect to the bolt, we
further experimented in the Robonaut-2 simulator [6] using up
to five demonstrations. The demonstration collection process,



the experimental setting, and the result of the comparison is
described in the following.

A. Demonstrations for the Ratchet Task

Instead of demonstrating the entire ratchet task in one ses-
sion, we segment the task into shorter sequences of sub-tasks
that are easier to demonstrate. The ratchet task is segmented
into five different subtasks, a) grasping the ratchet, b) mating
socket to the bolt, c) tightening the bolt, d) removing the socket
from the bolt, and e) putting the ratchet back into the tool
holder. For subtasks a), two demonstrations are provided. For
subtask b) and e) four demonstrations are combined to create
the distilled ATG model as described in Section III-C. For
subtasks c) and d), only one demonstration is performed since
the features that support these actions are unambiguous.

Figure 8 shows the ATGs created from these five sub-tasks
from top to bottom. The type of demonstrations classified for
each action are listed next to the action edges. For example,
the ATG created for subtask a) (grasping the ratchet) has
four different relations between the hand, the ratchet, and the
tool holder: the ratchet in the tool holder (no hand), pregrasp,
grasped within and without the tool holder. ATG for b) shows
that in order to execute the visual-visual action, both the
ratchet-in-hand aspect and the bolt aspect have to exist. The
second action edge that mates the socket to the bolt incorpo-
rates a structural search motion as well. ATG for subtask c)
is created from demonstrations of two tightening turns. Each
clockwise and counter-clockwise turn is categorized as a type
a2 demonstration that moves relative to the hand frame.

During execution, the aspect where the bolt is tightened
is first submitted as a goal aspect to the robot. The planner
described in Section III-D identifies the current aspect node
and finds a path to reach the goal aspect. Once the robot
finishes tightening the bolt, the aspect where the ratchet is
put back to the tool holder is set as the goal aspect. Figure 9
shows the sequence of the complete task. With this approach
Robonaut-2 is capable of executing the complete ratchet task
successfully even when there are small differences in the initial
tool, bolt, and tool holder locations.

B. Evaluating Ratchet Task

In this experiment, the robustness of the framework is
tested on the ratchet task based on the ATGs created from
demonstrations. A total of 22 settings are tested. For each
setting, the initial location of the tool holder or bolt platform
is altered. For the first 16 settings, the bolt platform is moved
away 5 cm from the demonstrated position and the tool
holder is placed at 16 different locations on a four by four
grid that are 1 cm apart. For the other 6 settings, different
bolt platform positions and orientations and one randomly
chosen tool holder position on the four by four grid are set.
These initial poses are shown in Figure 10. For each different
settings, if grasping fails, the robot retries grasping. If mating
the socket with the bolt fails, the robot skips tightening and
continue. The number of successes for each subtask are shown
in table I. Grasping failed twice when the ratchet got stuck

Fig. 9. The ratchet task sequence performed by Robonaut-2. The images
from left to right, then top to bottom, show a sequence of actions where
Robonaut-2 grasps the ratchet, tightens a bolt on a platform, and puts the
ratchet back into a tool holder.

and the robot lifted the whole tool holder. Mating socket
with the bolt and placing the ratchet back have 86.3% and
81.8% success rate. Tightening failed once when the socket
slipped away from the bolt while tightening. 14 out of 24 trials
succeeded the complete task.

Fig. 10. Top down views of initial poses and failed poses on the ratchet task.
The green objects in the left image shows a set of initial poses tested and
the blue objects are the initial poses for the demonstrations. The pink objects
in the right image shows a set of initial poses that failed to mate the socket
with the bolt and the purple objects are the initial poses that failed to place
the ratchet back. The red ratchet pose failed in both subtasks in two different
trials.

TABLE I
NUMBER OF SUCCESSFUL TRIALS ON SUBTASKS.

subtask (a) (b) (c) (d) (e)

successful trials 22 / 24 19 / 22 18 / 19 22 / 22 18 / 22/ total trials

C. Evaluating Distilled ATGs
In this experiment, the success rate of mating the socket with

the bolt is compared between two ATGs that are created from
single demonstrations and an ATG distilled from the exact two
ATGs. For each trial, the robot starts with the grasped ratchet



and the bolt placed on the right side of the robot. The trial
succeeds if the robot mates the socket to the bolt. The starting
hand position and the relative pose between the ratchet and the
hand vary for each trial due to the different grasping result.
We performed 11 trials for each ATG created from the single
demonstration. The results are shown in table II. The ATGs
created with single demonstration performed poorly due to
using features that are on the handle of the ratchet instead of
the socket.

TABLE II
COMPARING SUCCESS RATE BETWEEN DISTILLED ATG AND SINGLE

DEMONSTRATION ATGS.

distilled ATG from ATG from
ATG example 1 example 2

number of successful 16 / 22 0 / 11 4 / 11trials / total trials

success rate 0.727 0.182

D. Comparing Accuracy in Simulation

To further understand how the number of demonstrations
used affect the action accuracy, we compare ATGs created
with one to five demonstrations in the Robonaut-2 simulator.
For each of these five ATGs we tested 125 trials of the
placing socket on top of the bolt task with different in-
hand ratchet poses and bolt platform locations. For each
trial, a perturbation P = (rxy, r✓, bxy) is added to an initial
configuration, where rxy is the ratchet offset in the XY
plane in hand, r✓ is the ratchet angle difference on the Z
axis in hand, and bxy is the bolt platform offset in the XY
plane. We tested all combinations of the following set of
parameters, rxy = {(0, 0), (2, 0), (0, 2), (�2, 0), (0,�2)} in
centimeters, r✓ = {�0.2,�0.1, 0, 0.1, 0.2} in radians, and
bxy = {(0, 0), (3, 0), (0, 3), (�3, 0), (0,�3)} in centimeters.
For each trial, the distance between the final socket location
and the ground truth socket location calculated based on the
demonstration is recorded.

Fig. 11. The accuracy of the placing socket on top of the bolt task versus
the number of demonstrations used to create the ATG.

The results are shown in Figure 11. With two demonstra-
tions a distilled ATG can lower the socket position error
significantly. Adding more demonstrations did not improve the
accuracy much on this task. This may be because that with two
demonstrations the visual features identified are already the
best among the detected set. Figure 12 shows the informative
features, represented by green dots, identified on the ratchet for
ATGs created with one, two, and five demonstrations. The fea-
ture selected in the ATG created from a single demonstration
is further away from the socket than the features selected by
ATGs created from multiple demonstrations. This offset may
result in less accurate actions when the ratchet is held in the
hand with a different angle. In this case, the features identified
among ATGs created from two to five demonstrations are
similar, and therefore result in similar accuracy. This result is
consistent to our findings in the Robonaut-2 experiment. With
a small set of demonstrations, the distilled ATG identifies more
informative features and lowers the action error significantly.

Fig. 12. Informative features identified in experiments in simulation. The
images from left to right corresponds to tool aspect nodes for the putting
socket on top of the bolt task using ATGs created from one, two, and
five demonstrations. The green dots represent the visual features selected to
represent the action. The feature selected in the ATG created from a single
demonstration is further away from the socket and may result in less accurate
actions.

V. CONCLUSIONS

In this work, we introduced a learning from demonstration
approach that learns both actions and features. We categorize
demonstrations into three different types depending on what
frames or features are used as references and what is used
to calculate the error to the target. Having the user provide
additional information about the type of the demonstration
allows the system to define the goal of the task by modeling
the spatial relations between features automatically. Through
multiple demonstrations, informative visual features and rela-
tive poses may be identified and used to model actions that are
more accurate than models of single demonstrations. This ef-
fect is clearly observed in the improvement in success rate and
accuracy over single demonstration models when mating the
socket to the bolt. We show that with the proposed approach
Robonaut-2 is capable of grasping the ratchet, tightening a
bolt, and putting the ratchet back into a tool holder with a
small set of demonstrations. In future work, we would like to
determine the demonstration types automatically from multiple
examples, generalize to unseen objects of the same class, and
apply to other tool usage tasks.
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