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Abstract

We develop a linear model of commonly observed joint
color changes in images due to variation in lighting and
certain non-geometric camera parameters. This is done by
observing how all of the colors are mapped between two im-
ages of the same scene under various “real-world” lighting
changes. We represent each instance of such a joint color
mapping as a 3-D vector field in RGB color space. We show
that the variance in these maps is well represented by a low-
dimensional linear subspace of these vector fields. We dub
the principal components of this space the color eigenflows.
When applied to a new image, the maps define an image
subspace (different for each new image) of plausible varia-
tions of the image as seen under a wide variety of naturally
observed lighting conditions. We examine the ability of the
eigenflows and a base image to reconstruct a second image
taken under different lighting conditions, showing our tech-
nique to be superior to other methods. Setting a threshold
on this reconstruction error gives a simple system for scene
recognition.

1. Introduction

The number of possible images of an object or scene, even
when taken from a single viewpoint with a fixed camera, is
very large. Light sources, shadows, camera aperture, expo-
sure time, transducer non-linearities, and camera processing
(such as auto-gain-control and color balancing) can all af-
fect the final image of a scene [5]. Humans seem to have
no trouble at all compensating for these effects when they
occur in small or moderate amounts. However, these effects
have a significant impact on the digital images obtained
with cameras and hence on image processing algorithms,
often hampering or eliminating our ability to produce reli-
able recognition algorithms.

�

For a color version of this paper, please see
http://www.ai.mit.edu/people/emiller/color flows.pdf.

Addressing the variability of images due to these photic
parameters has been an important problem in machine vi-
sion. We distinguish photic parameters from geometric pa-
rameters, such as camera orientation or blurring, that af-
fect which parts of the scene a particular pixel represents.
We also note that photic parameters are more general than
“lighting parameters” that would typically only refer to light
sources and shadowing. We include in photic parameters
anything which affects the final RGB values in an image
given that the geometric parameters and the objects in the
scene have been fixed.

In this paper, we address the problem of whether two
given images are digital photographs of the same scene un-
der different photic parameter settings, or whether they are
different physical scenes altogether. To do this, we develop
a statistical linear model of color change space, by ob-
serving how the colors in static images change under natu-
rally occurring lighting changes. This model describes how
colors change jointly under typical (statistically common)
photic parameter changes. Then, given a pair of images,
we ask whether we can describe the difference between the
two images, to within some tolerance, using the statistical
color change model. If so, we conclude that the images are
probably of the same scene.

Several aspects of our model merit discussion. First, it
is obtained from video data in a completely unsupervised
fashion. The model uses no prior knowledge of lighting
conditions, surface reflectances, or other parameters during
data collection and modeling. It also has no built-in knowl-
edge of the physics of image acquisition or “typical” image
color changes, such as brightness changes. It is completely
data driven. Second, it is a single global model. That is, it
does not need to be re-estimated for new objects or scenes.
While it may not apply to all scenes equally well, it is a
model of frequently occurring joint color changes, which
is meant to apply to all scenes. Third, while our model is
linear in color change space, each joint color change that
we model (a 3-D vector field) is completely arbitrary, and is
not itself restricted to being linear. That is, we define a lin-
ear space whose basis elements are vector fields that repre-
sent nonlinear color changes. This gives us great modeling
power, while capacity is controlled through the number of
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basis fields allowed.
After discussing previous work in Section 2, we describe

the form of the statistical model and how it is obtained
from observations in Section 3. In Section 4, we show how
our color change model and a single observed image can
be used to generate a large family of related images. We
also give an efficient procedure for finding the best fit of the
model to the difference between two images, allowing us to
determine how much of the difference between the images
can be explained by typical joint color changes. In Section
5 we give results and comparisons with 3 other methods.

2. Previous Work

The color constancy literature contains a large body of work
for estimating surface reflectances and various photic pa-
rameters from images. A common approach is to use linear
models of reflectance and illuminant spectra (often, the il-
luminant matrix absorbs an assumed linear camera transfer
function) [9]. A surface reflectance (as a function of wave-
length

�
) can be written as ��� �����	��
������ � � � � ����� Sim-

ilarly, illuminants can be represented with a fixed basis as� � ����� ��������� � � � � ����� The basis functions for these mod-
els can be estimated, for example, by performing PCA on
color measurements with known surface reflectances or il-
luminants. Given a large enough set of camera responses
or RGB values, the surface reflectance coefficients can be
recovered by solving a set of linear equations if the illumi-
nant is known, again assuming no other non-linearities in
the image formation.

A variety of algorithms have been developed to estimate
the illuminant from a single image. This can be done if
some part of the image has a known surface reflectance.
Making strong assumptions about the distribution of re-
flectances in a typical image leads to two simple meth-
ods. Gray world algorithms [2] assume that the average re-
flectance of all the surfaces in a scene is gray. White world
algorithms [10] assume that the brightest pixel corresponds
to a scene point with maximal reflectance.

Some researchers have redefined the problem to one of
finding the relative illuminant (a mapping of colors under an
unknown illuminant to a canonical one). Color gamut map-
ping [4] models an illuminant using a “canonical gamut”
or convex hull of all achievable image RGB values un-
der the illuminant. Each pixel in an image under an un-
known illuminant may require a separate mapping to move
it within the “canonical gamut”. Since each such map-
ping defines a convex hull, the intersection of all such hulls
may provide enough constraints to specify a “best” map-
ping. [3] trained a multi-layer neural network using back-
propagation to estimate the parameters of a linear color
mapping. The method was shown to outperform simpler
methods such as gray/white world algorithms when trained

and tested on artificially generated scenes from a database
of surface reflectances and illuminants. A third approach by
[6] works in the log color spectra space. In this space, the
effect of a relative illuminant is a set of constant shifts in the
scalar coefficients of linear models for the image colors and
illuminant. The shifts are computed as differences between
the modes of the distribution of coefficients of randomly se-
lected pixels of some set of representative colors.

Note that in these approaches, illumination is assumed to
be constant across the image plane. The mapping of RGB
values from an unknown illuminant to a canonical one is as-
sumed to be linear in color space. A diagonal linear operator
is commonly used to adjust each of the R, G, and B chan-
nels independently. Not surprisingly, the gray world and
white world assumptions are often violated. Moreover, a
purely linear mapping will not adequately model non-linear
variations such as camera auto-gain-control.

[1] bypasses the need to predict specific scene properties
by proving statements about the sets of all images of a par-
ticular object as certain conditions change. They show that
the set of images of a gray Lambertian convex object un-
der all lighting conditions form a convex cone1. Only three
non-degenerate samples from this cone are required to gen-
erate the set of images from this space. Nowhere in this
process do they need to explicitly calculate surface angles
or reflectances.

One aspect of this approach that we hoped to improve
upon was the need to use several examples (in this case, 3)
to apply the geometry of the analysis to a particular scene.
That is, we wanted a model which, based upon a single im-
age, could make useful predictions about other images of
the same scene.

We present a paper in the same spirit, although it is a sta-
tistical method rather than a geometric one. Our main goal
is: given two different images, we wish to accept or reject
the hypothesis that the two images are of the same scene, but
taken under different lighting and imaging conditions. We
view this problem as substantially easier than the problem
of estimating surface reflectances or illuminants.

3. Color Flows

In the following, let ��� �!�#"%$'&�$)( �'*,+.-0/214365 " 5798:8 $ 3;5 & 5 7:898 $ 3<5 ( 5 7:898>= be the set of all possi-
ble observable image color 3-vectors. Let the vector-valued
color of an image pixel ? be denoted by @A�B? �C+ � .

Suppose we are given two D -pixel RGB color imagesE �
and
EGF

of the same scene taken under two different

1This result depends upon the important assumption that the camera,
including the transducers, the aperture, and the lens introduce no non-
linearities into the system. The authors’ results on color images also do
not address the issue of metamers, and assume that light is composed of
only the wavelengths red, green, and blue.
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sets of photic parameters � � and � F (the images are reg-
istered). Each pair of corresponding image pixels ?�� � and?��F $�� 5���5 D , in the two images represents a mapping@ �B?�� � �
	� @A�B?��F � . That is, it tells us how a particular pixel’s
color changed from image

E �
to image

E F
. This single-color

mapping is conveniently represented simply by the vector
difference between the two pixel colors:

� �B? � � $ ? �F � � @ � ? �F �� @A�B? � � ��� (1)

By computing D of these vector differences (one for each
pair of pixels) and placing each vector difference at the
point @ � ?�� � � in the color space � , we have created a vec-
tor field that is defined at all points in � for which there are
colors in image

E �
.

That is, we are defining a vector field ��� over � via

� � � @ �B? � � � � � � �B? � � $ ? �F � $ � 5���5 D � (2)

This can be visualized as a collection of D arrows in color
space, each arrow going from a source color to a destination
color based on the photic parameter change � � 	� � F . We
call this vector field ��� a partially observed color flow. The
“partially observed” indicates that the vector field is only
defined at the particular color points that happen to be in
image

E �
.

To obtain a full color flow, i.e. a vector field � defined at
all points in � , from a partially observed color flow ��� , we
must address two issues. First, there will be many points
in � at which no vector difference is defined. Second, there
may be multiple pixels of a particular color in image

E �
that

are mapped to different colors in image
E F

. We propose the
following interpolation scheme2, which defines the flow at
a color point �#"%$'&�$)( � * by computing a weighted proximity-
based average of nearby observed “flow vectors”:

� � "%$ & $ ( � �
���

�
������������ ��!"$#%�&�('*) +,) -�#/.��%021 F23 0 �4� � @ �B?�� � �'�� �

�
���� �5����� � ! " #%�&�6'7) +,) -�# . � 0 1 F23 0

�
(3)

This defines a color flow vector at every point in � . Note
that the Euclidean distance function used is defined in color
space, not in the space defined by the [x,y] coordinates of
the image. 8

F
is a variance term which controls the mixing

of observed flow vectors to form the interpolated flow vec-
tor. As 8

F � 3
, the interpolation scheme degenerates to a

nearest-neighbor scheme, and as 8
F �:9

, all flow vectors
get set to the average observed flow vector. In our experi-
ments, we found empirically that a value of 8

F �;��< (with
colors on a scale from

3= 7:898
) worked well in selecting a

neighborhood over which vectors would be combined. Also

2This scheme is analogous to a Parzen-Rosenblatt non-parametric ker-
nel estimator for densities, using a 3-D Gaussian kernel. To be a good
estimate, the true flow should therefore be locally smooth.

note that color flows are defined so that a color point with
only a single nearby neighbor will inherit a flow vector that
is nearly parallel to its neighbor. The idea is that if a par-
ticular color, under a photic parameter change � � 	� � F , is
observed to get a little bit darker and a little bit bluer, for
example, then its neighbors in color space are also defined
to exhibit this behavior.

We have thus outlined a procedure for using a pair of
corresponding images >���� E � $ E F � to generate a full color
flow. We will write for brevity �6�;� �?> � to designate the
flow generated from the image pair > .

3.1 Structure in the Space of Color Flows

Certainly an image feature appearing as one color, say blue,
in one image could appear as almost any other color in an-
other image. Thus the marginal distribution of mappings
for a particular color, when integrated over all possible
photic parameter changes, is very broadly distributed. How-
ever, when color mappings are considered jointly, i.e. as
color flows, we hypothesize that the space of possible map-
pings is much more compact. We test this hypothesis by
statistically modeling the space of joint color maps, i.e. the
space of color flows.

Consider for a moment a flat Lambertian surface that
may have different reflectances as a function of the wave-
length. While in principle it is possible for a change in
lighting to map any color from such a surface to any other
color independently of all other colors3, we know from ex-
perience that many such joint maps are unlikely. This sug-
gests that there is significant structure in the space of color
flows. (We will address below the significant issue of non-
flat surfaces and shadows, which can cause highly “incoher-
ent” maps.)

In learning color flows from real data, many common
color flows can be anticipated. To name a few examples,
flows which make most colors a little darker, lighter, or red-
der would certainly be expected. These types of flows can
be well modeled with simple global linear operators acting
on each color vector. That is, we can define a 3x3 matrix@

that maps a color @BA in the image
E �

to a color @DC in the
image

EGF
via

@ C � @ @ A � (4)

Such linear maps work well for many types of common
photic parameter changes. However, there are many effects
which these simple maps cannot model. Perhaps the most
significant is the combination of a large brightness change

3By carefully choosing surface properties such as the reflectance of a
point as a function of wavelength, E�F GBHJI�K , and lighting conditions L�F(IMK ,
any mapping NO can, in principle be observed even on a flat Lambertian
surface. However, as noted in [12, 8], the metamerism which would cause
such effects is uncommon in practice.
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a b
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Figure 1: Image b is the result of applying a non-linear op-
erator to the colors in image a. c-f are attempts to match b
using a and four different algorithms. Our algorithm (image
f) was the only one to capture the non-linearity.

coupled with a non-linear gain-control adjustment or bright-
ness re-normalization by the camera. Such photic changes
will tend to leave the bright and dim parts of the image
alone, while spreading the central colors of color space to-
ward the margins. These types of changes cannot be cap-
tured well by the simple linear operator described above,
but can be captured by modeling the space of color flows.

A pair of images exhibiting a non-linear color flow is
shown in Figures 1a and b. Figure 1a shows the original
image and b shows an image with contrast increased using
a quadratic transformation of the brightness value. Notice
that the brighter areas of the original image get brighter and
the darker portions get darker. This effect cannot be mod-
eled using a scheme such as that given in Equation 4. The
non-linear color flow allows us to recognize that images a
and b may be of the same object, i.e. to “match” the images.

3.2 Color Flow PCA

Our aim was to capture the structure in color flow space by
observing real-world data in an unsupervised fashion. To do
this, we gathered data as follows. A large color palette (ap-
proximately 1 square meter) was printed on standard non-
glossy plotter paper using every color that could be pro-
duced by our Hewlett Packard DesignJet 650C pen plotter
(see Figure 2). The poster was mounted on a wall in our
office so that it was in the direct line of overhead lights
and computer monitors, but not in the direct light from the
single office window. An inexpensive video camera (the
PC-75WR, Supercircuits, Inc.) with auto-gain-control was
aimed at the poster so that the poster occupied about 95%
of the field of view.

Images of the poster were captured using the video cam-
era under a wide variety of lighting conditions, including
various intervals during sunrise, sunset, at midday, and with
various combinations of office lights and outdoor lighting
(controlled by adjusting blinds). People used the office dur-
ing the acquisition process as well, thus affecting the ambi-
ent lighting conditions. It is important to note that a variety
of non-linear normalization mechanisms built into the cam-
era were operating during this process.

Our goal was to capture as many common lighting condi-
tions as possible. We did not use unusual lighting conditions
such as specially colored lights. Although a few images that
were captured probably contained strong shadows, most of
the captured images were shadow-free. Smooth lighting
gradients across the poster were not explicitly avoided or
created in our acquisition process.

A total of 1646 raw images of the poster were obtained
in this manner. We then chose a set of 800 image pairs
>��;� � E �� $ E �F � $�� 5���5��93:3 $ by randomly and indepen-
dently selecting individual images from the set of raw im-
ages. Each image pair was then used to estimate a full color
flow � �?>�� � as described in Equation 3.

Note that since a color flow � can be represented as
a collection of �	� coordinates, it can be thought of as a
point in

-0/�

. Here � is the number of distinct RGB col-

ors at which we compute a flow vector, and each flow vec-
tor requires 3 coordinates: �9" , �9& , and � ( , to represent the
change in each color component. In our experiments we
used � � �,< / �� 3	� < distinct RGB colors (equally spaced
in RGB space), so a full color flow was represented by a
vector of � �  3	� < � � 7:7 �	� components.

Given a large number of color flows (or points in
- /�


),
there are many possible choices for modeling their distribu-
tion. We chose to use Principal Components Analysis since
1) the flows are well represented (in the mean-squared-error
sense) by a small number of principal components (see Fig-
ure 3), and 2) finding the optimal description of a difference
image in terms of color flows was computationally efficient
using this representation (see Section 4).
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Figure 2: Images of the poster used for observing color
flows, under two different “natural” office lighting condi-
tions. Note that the variation in a single image is due to
reflectance rather than a lighting gradient.

The principal components of the color flows were com-
puted (in MATLAB), using the “economy size” singular
value decomposition. This takes advantage of the fact that
the data matrix has a small number of columns (samples)
relative to the number of components in a single sample.

We call the principal components of the color flow data
“color eigenflows”, or just eigenflows4, for short. We em-
phasize that these principal components of color flows have
nothing to do with the distribution of colors in images, but
only model the distribution of changes in color. This is
a key and potentially confusing point. In particular, we
point out that our work is very different from approaches
that compute principal components in the intensity or color
space itself, such as [13] and [11]. Perhaps the most im-
portant difference is that our model is a global model for
all images, while the above methods are models only for a
particular set of images, such as faces.

An important question in applying PCA is whether the
data can be well represented with a “small” number of prin-
cipal components. In Figure 3, we plot the eigenvalues as-
sociated with the first 100 eigenflows. This rapidly descend-
ing curve indicates that most of the magnitude of an average
sample flow is contained in the first ten components. This
can be contrasted with the eigenvalue curve for a set of ran-
dom flows, which is also shown in the plot.

4. Using Color Flows to Synthesize
Novel Images

How do we generate a new image from a source image and a
color flow or group of color flows? Let @A�B? � be the color of

4PCA has been applied to motion vector fields as in [7], and these have
also been termed “eigenflows”.
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Figure 3: The eigenvalues of the color flow covariance ma-
trix. The rapid drop off in magnitude indicates that a small
number of eigenflows can be used to represent most of the
variance in the distribution of flows.

a pixel ? in the source image, and let � be a color flow that
we have computed at a discrete set of � points according
to Equation 3. For each pixel in the new image, its color @B�
can be computed as

@ � � ? � ��@ �B? ��� � � ���@A� ? �'� $ (5)

where
�

is a scalar multiplier that represents the “quantity
of flow”. �@A�B? � is interpreted to be the color vector closest
to @ �B? � (in color space) at which � has been computed. If
the @ � � ? � has components greater than the allowed range of
0–255, then these components must be truncated.

Figure 4 shows the effect of each of the eigenflows on
an image of a face. Each vertical sequence of images repre-
sents an original image (in the middle of the column), and
the images above and below it represent the addition or sub-
traction of each eigenflow, with

�
varying between � � stan-

dard deviations for each eigenflow.
We stress that the eigenflows were only computed once

(on the color palette data),and that they were applied to the
face image without any knowledge of the parameters under
which the face image was taken.

The first eigenflow (on the left of Figure 4) represents
a generic brightness change that could probably be repre-
sented well with a linear model. Notice, however, the third
column in Figure 4. Moving downward from the middle
image, the contrast grows. The shadowed side of the face
grows darker while the lighted part of the face grows lighter.
This effect cannot be achieved with a simple matrix multi-
plication as given in Equation 4. It is precisely these types
of non-linear flows we wish to model.
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Figure 4: Effects of the first 3 eigenflows. See text.

4.1 From flow bases to image bases

Let � be the set of all images that can be created from a
novel image and a set of eigenflows. Assuming no color
truncation, we show how we can efficiently find the image
in � which is closest (in an � F sense) to a target image.

Let ?�� ) � be a pixel whose location in an image is at coor-
dinates [x,y]. Let

E�� � $��
	 be the vector at the location [x,y]
in an image or in a difference image. Suppose we view an
image

E
as a function that takes as an argument a color flow

and that generates a difference image � by placing at each
(x,y) pixel in � the color change vector � � @ � ? � ) � �'� . We
denote this simply as

� � E �%� ��� (6)

Then this “image operator”
E �� � is linear in its argument

since for each pixel (x,y)

� E ��� ���4� � � � $��
	 � ��� ���4� � @A�B? � ) � � � (7)

� � � @A�B?�� ) � � ����� � @ � ?�� ) � �'�'� � (8)

The
�

signs in the first line represent vector field addi-
tion. The

�
in the second line refers to vector addition.

The second line assumes that we can perform a meaningful
component-wise addition of the color flows.

Hence, the difference pixels in a total difference image
can be obtained by adding the difference pixels in the dif-
ference images due to each eigenflow (the difference image
basis. This allows us to compute any of the possible im-
age flows for a particular image and set of eigenflows from
a (non-orthogonal) difference image basis. In particular let
the difference image basis for a particular source image

E
and set of

�
eigenflows

� � $�� 5���5 � , be represented as

� � � E � � � ��� (9)

Then the set of images � that can be formed using a source
image and a set of eigenflows is

� � � � 1 � � E ���� ������ � � � = $ (10)

where the �
�
’s are scalar multipliers, and here

E
is just an

image and not a function. In our experiments, we used
� �

� 3 of the top eigenvectors to define the space � .

4.2 Flowing one image to another

Suppose we have two images and we pose the question of
whether they are images of the same object or scene. We
suggest that if we can “flow” one image to another then the
images are likely to be of the same scene.

We can only flow image
E �

to another image
E F

if it is
possible to represent the difference image as a linear com-
bination of the � � ’s, i.e. if

E F + � . However, we may be
able to get “close” to

EGF
even if

E F
is not an element of � .

6



Fortunately, we can directly solve for the optimal (in the
least-squares sense) �

�
’s by just solving the system

� � �� ������ � � � $ (11)

using the standard pseudo-inverse, where � � E F  E �
.

This minimizes the error between the two images using the
eigenflows. Thus, once we have a basis for difference im-
ages of a source image, we can quickly compute the best
flow to any target image. We point out again that this anal-
ysis ignores truncation effects. While truncation can only
reduce the error between a synthetic image and a target im-
age, it may change which solution is optimal in some cases.

5. Experiments
The goal of our system is to flow one image to another as
well as possible when the images are actually of the same
scene, but not to endow our system with enough capacity to
be able to flow between images that do not in fact match. An
ideal system would thus flow one image to a matching im-
age with zero error, and have large errors for non-matching
images. Then setting a threshold on such an error would
determine whether two images were of the same scene.

We first examined our ability to flow a source image to
a matching target image under different photic parameters.
We compared our system to 3 other methods commonly
used for brightness and color normalization. We shall refer
to the other methods as linear, diagonal, and gray world.
The linear method finds the matrix

@
according to Equa-

tion 4 that minimizes the � F fit between the synthetic image
and the target image. diagonal does the same except that it
restricts the matrix

@
to be diagonal. gray world adjusts

each color channel in the synthetic image linearly so that
the mean red, green, and blue values match the mean chan-
nel values in the target image.

While our goal was to reduce the numerical difference
between two images using flows, it is instructive to examine
one example which was particularly visually compelling,
shown in Figure 1. Part a of the figure shows an image
taken with a digital camera. Part b shows the image ad-
justed by squaring the brightness component (in an HSV
representation) and re-normalizing it to 255. The goal was
to adjust image a to match b as closely as possible (in a
least squares sense). Images c-f represent the linear, di-
agonal, gray world, and eigenflow methods respectively.
While visual results are somewhat subjective, it is clear that
our method was the only method that was able to signifi-
cantly darken the darker side of the face while brightening
the lighter side of the face. The other methods which all im-
plement linear operations in color space (ours allows non-
linear flows) are unable to perform this type of operation. In
another experiment, five images of a face were taken while

a
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Figure 5: a. Original image. b. Errors per pixel component
in the reconstruction of the target image for each method.

Figure 6: Test images. The images in the top row were taken
with a digital camera. The images in the bottom row are the
best approximations of those images using the eigenflows
and the source image from Figure 5.

changing various camera parameters, but lighting was held
constant. One image was used as the source image (Fig-
ure 5a) in each of the four algorithms to approximate each
of the other four images (see Figure 6).

Figure 5b shows the component-wise RMS errors be-
tween the synthesized images and the target image for each
method. Our method outperforms the other methods in all
but one task, on which it was second.

In another test, the source and target images were taken
under very different lighting conditions (Figures 7a and
b). Furthermore, shadowing effects and lighting direction
changed between the two images. None of the methods
could handle these effects when applied globally. To handle
these effects, we used each method on small patches of the
image. Our method again performed the best, with an RMS
error of � � � � per pixel component, compared with errors of
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��� � � $ 7 3 � �:$ and
7 3 � < for the other methods. Figures 7c and

d show the reconstruction of image b using our method and
the best alternative method (linear). There are obvious vi-
sual artifacts in the linear method, while our method seems
to have produced a much better synthetic image, especially
in the shadow region at the edge of the poster.

One danger of allowing too many parameters in map-
ping one image to another is that images that do not actu-
ally match will be matched with low error. By performing
synthesis on patches of images, we greatly increase the ca-
pacity of the model, running the risk of over-parameterizing
or over-fitting our model. We performed one experiment to
measure the over-fitting of our method versus the others.
We horizontally flipped the image in Figure 7b and used
this as a target image. In this case, we wanted the error
to be large, indicating that we were unable to synthesize a
similar image using our model. The RMS error per pixel
component was �	� � 7 for our method versus  � � 8 $ �� � � , and
 � � � for the other methods. Note that while our method had
lower error (which is undesirable), there was still a signif-
icant spread between matching images and non-matching
images.

We believe we can improve differentiation between
matching and non-matching image pairs by assigning a cost
to the change in coefficients �

�
across each image patch.

For images which do not match, we would expect the �
�
’s

to change rapidly to accommodate the changing image. For
images which do match, sharp changes would only be nec-
essary at shadow boundaries or sharp changes in the sur-
face orientation relative to directional light sources. We be-
lieve this can significantly enhance the method, by adding a
strong source of information about how the capacity of the
model is actually being used to match a particular image
pair.

To use this method as part of an object recognition sys-
tem, we clearly have to deal with geometric variation in
addition to photic parameters. We are currently investigat-
ing the utility of our method on images which are out of
alignment, which should aid in the incorporation of such a
method into a realistic object recognition scenario.
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