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Abstract

Recent work on background subtraction has shown de-
velopments on two major fronts. In one, there has been
increasing sophistication of probabilistic models, from mix-
tures of Gaussians at each pixel [7], to kernel density esti-
mates at each pixel [1], and more recently to joint domain-
range density estimates that incorporate spatial informa-
tion [6]. Another line of work has shown the benefits of
increasingly complex feature representations, including the
use of texture information, local binary patterns, and re-
cently scale-invariant local ternary patterns [4]. In this
work, we use joint domain-range based estimates for back-
ground and foreground scores and show that dynamically
choosing kernel variances in our kernel estimates at each
individual pixel can significantly improve results. We give a
heuristic method for selectively applying the adaptive ker-
nel calculations which is nearly as accurate as the full pro-
cedure but runs much faster. We combine these modeling
improvements with recently developed complex features [4]
and show significant improvements on a standard back-
grounding benchmark.

1. Introduction

Background modeling is often an important step in de-
tecting moving objects in video sequences [7, 3, 1]. A
common approach to background modeling is to define and
learn a background distribution over feature values at each
pixel location and then classify each image pixel as belong-
ing to the background process or not. The distributions at
each pixel may be modeled in a parametric manner using
a mixture of Gaussians [7] (MoG) or using non-parametric
kernel density estimation [1] (KDE). More recently, models
that allow a pixel’s spatial neighbors to influence its distri-
bution have been developed by joint domain-range density
estimation [6]. These models that allow spatial influence
from neighboring pixels have been shown to perform better
than earlier neighbor-independent models.

Sheikh and Shah [6] also show that the use of an explicit
foreground model along with a background model can be
useful. In a manner similar to theirs, we use a kernel es-
timate to obtain the background and foreground scores at
each pixel location using data samples from a spatial neigh-
borhood around that location from previous frames. The
background score is computed as a kernel estimate depend-
ing on the distance in the joint domain-range space between
the estimation point and the samples in the background
model. A similar estimate is obtained for the foreground
score. Each pixel is then assigned a (soft) label based on
the ratio of the background and foreground scores.

The variance used in the estimation kernel reflects the
spatial and appearance uncertainties in the scene. On ap-
plying our method to a data set with wide variations across
the videos, we found that choosing suitable kernel variances
during the estimation process is very important. With vari-
ous experiments, we establish that the best kernel variance
could vary for different videos and more importantly, even
within a single video, different regions in the image should
be treated with different variance values. For example, in
a scene with a steady tree trunk and leaves that are wav-
ing in the wind, the trunk region can be explained with a
small amount of spatial variance. The leaf regions may be
better explained by a process with a large variance. Inter-
estingly, when there is no wind, the leaf regions may also
be explained with a low variance. The optimal variance
hence changes for each region in the video and also across
time. This phenomenon is captured reasonably in MoG [7]
by use of different parameters for each pixel which adapt
dynamically to the scene statistics, but the pixel-wise model
does not allow a pixel’s neighbors to affect its distribution.
Sheikh and Shah [6] address the phenomenon by updating
the model with data samples from the most recent frame.
We show that using location-specific variances in addition
to updating the model greatly improves background model-
ing. Our approach with pixel-wise variances, which we call
the variable kernel score (VKS) method results in signifi-
cant improvement over uniform variance models and state
of the art backgrounding systems.



The idea of using a pixel-wise variance for background
modeling is not new. Although Sheikh and Shah [6] use
a uniform variance, they discuss the use of variances that
change as a function of the data samples or as a func-
tion of the point at which the estimation is made. Vari-
ance selection for KDE is a well studied problem [9] with
common solutions including mean integrated square error
(MISE), asymptotic MISE (AMISE), and the leave-one-out-
estimator based solutions. In the background subtraction
context, there has been work on using a different covariance
at each pixel [5, 8]. While Mittal and Paragios [5] require
that the uncertainties in the feature values can be calculated
in closed form, Tavakkoli et al. [8] learn the covariances for
each pixel from a training set of frames and keep the learned
covariances fixed for the entire classification phase. We use
a maximum-likelihood approach to select the best variance
at each pixel location. For every frame of the video, at each
pixel location, the best variance is picked from a set of vari-
ance values by maximizing the likelihood of the pixel’s ob-
servation under different variances. This makes our method
a balloon estimator [5]. By explicitly selecting the best vari-
ance from a range of variance values, we do not require the
covariances to be calculable in closed-form and also allow
for more flexibility at the classification stage.

Selecting the best of many kernel variances for each
pixel means increased computation. One possible trade-off
between accuracy and speed can be achieved by a caching
scheme where the best kernel variances from the previous
frame are used to calculate the scores for the current frame
pixels. If the resulting classification is overwhelmingly in
favor of either label, there is no need to perform a search
for the best kernel variance for that pixel. The expensive
variance selection procedure can be applied only to pix-
els where there is some contention between the two labels.
We present a heuristic that achieves significant reduction
in computation compared to our full implementation while
maintaining the benefits of adaptive variance.

Development and improvement of the probabilistic mod-
els is one of the two main themes in background modeling
research in recent years. The other theme is the develop-
ment of complex features like local binary [2] and ternary
patterns [4] that are more robust than color features for the
task of background modeling. Scale-invariant local ternary
patterns [4] (SILTP) are recently developed features that
have been shown to be very robust to lighting changes and
shadows in the scene. By combining color features with
SILTP features in our adaptive variance kernel model, we
bring together the best ideas from both themes in the field
and achieve state of the art results on a benchmark data set.

The main contributions of this paper are:
1. A practical scheme for pixel-wise variance selection

for background modeling.
2. A heuristic for selectively updating variances to im-

prove speed further.
3. Incorporation of complex SILTP features into the joint

domain-range kernel framework to achieve state of the
art results.

The paper is organized as follows. Section 2 discusses
our background and foreground models. Dynamic adapta-
tion of kernel variances is discussed in Section 3. Results
and comparisons are in Section 4. An efficient algorithm is
discussed in Section 5. We end with a discussion in Sec-
tion 6.

2. Background and foreground models
In a video captured by a static camera, the pixel values

are influenced by the background phenomenon, and new or
existing foreground objects. We refer to any phenomenon
that can affect image pixel values as a process. Like Sheikh
and Shah [6], we model the background and foreground
processes using data samples from previous frames. The
scores for the background and foreground processes at each
pixel location are calculated using contributions from the
data samples in each model. One major difference between
Sheikh and Shah and our model is that we allow “soft label-
ing”, i.e. the data samples contribute probabilistically to the
background score depending on the samples’ probability of
belonging to the background.

Let a pixel sample a = [axayaragab], where (ax, ay) are
the location of the pixel and (ar, ag, ab) are the red, green,
and blue values of the pixel. In each frame of the video,
we compute background and foreground scores using pixel
samples from the previous frames. The background model
consists of the samples B = {bi : i ∈ [1: nB ]} and fore-
ground samples are F = {fi : i ∈ [1 : nF ]}, with nB and
nF being the number of background and foreground sam-
ples respectively, and bi and fi being pixel samples obtained
from previous frames in the video. Under a KDE model [6],
the likelihood of the sample under the background model is

P (a|bg;σB) =
1

nB

∑
i=1:NB

G(a− bi;σB), (1)

where G(x;σ) is a multivariate Gaussian with zero mean
and covariance σB .

G(x;σ) = (2π)
−D
2 |σ|

−1
2 exp(

−1
2

xT σ−1x), (2)

where D is the dimensionality of the vector x.
In our model, we approximate the background score at

sample a as

SB(a;σB
d , σB

rgb)=
1

NB

nB∑
i=1

{
G([aragab]−

[birbigbib];σB
rgb)×G([axay]−[bixbiy];σB

d )× P (bg|bi)
}
.

(3)



NB is the number of frames from which the background
samples have been collected, σB

d and σB
rgb are two and three

dimensional background covariance matrices in spatial and
color dimensions respectively. A large spatial covariance
allows neighboring pixels to contribute more to the score at
a given pixel location. Color covariance allows for some
color appearance changes at a given pixel location. Use
of NB in the denominator compensates for the different
lengths of the background and foreground models.

The above equation basically sums the contribution from
each background sample based on its distance in color
space, weighted by its distance in spatial dimensions and
the probability of the sample belonging to the background.

The use of P (bg|bi) in Equation 3 and normalization by
the number of frames as opposed to the number of samples
means that the score does not sum to 1 over all possible val-
ues of a. Thus, the score, although similar to the likelihood
in Equation 1, is not a probability distribution.

A similar equation holds for the foreground score:

SF (a;σF
d , σF

rgb)=
1

NF

nF∑
i=1

{
G([aragab]−

[firfigfib];σF
rgb)×G([axay]−[fixfiy];σF

d )× P (fg|fi)
}
.

(4)

NF is the number of frames from which the foreground
samples have been collected, σF

d and σF
rgb are the covari-

ances associated with the foreground process.
However, for the foreground process, to account for

emergence of new colors in the scene, we mix in a constant
contribution independent of the estimation point’s and data
samples’ color values. We assume that each data sample in
a pixel’s spatial neighborhood contributes a constant value
u to the foreground score. The constant contribution UF (a)
is given by

UF (a;σF
d ) =

1
NF

nF∑
i=1

{u×G([axay]−[f1xf1y];σF
d )}.

(5)

We get a modified foreground score by including the
constant contribution:

ŜF (a;σF
d , σF

rgb) =

αF × UF (a;σF
d ) + (1− αF )× SF (a;σF

d , σF
rgb).

(6)

αF is a parameter that represents the amount of mixing
between the constant contribution and the color dependent
foreground score. u is set to 10−6 and α is set to 0.5 for our
experiments.

To classify a particular sample as background or fore-

ground, we can use a Bayes-like formula:

P (bg|a) =
SB(a;σB

d , σB
rgb)

SB(a;σB
d , σB

rgb) + ŜF (a;σF
d , σF

rgb)

P (fg|a) = 1− P (bg|a).

(7)

Adding the constant factor U to the foreground score
(and hence to the denominator of the Bayes-like equation)
has the interesting property that when either one of the fore-
ground or background scores is signifcantly larger than U ,
U has little effect on the classification. However, if both
the background and foreground scores are less than U , then
Equation 7 will return a low value as P (bg|a). Hence, an
observation that has very low background and foreground
scores will be classified as foreground. This is desirable be-
cause if a pixel observation is not well explained by either
model, it is natural to assume that the pixel is a result of a
new object in the scene and is hence foreground. In terms
of likelihoods, adding the constant factor to the foreground
likelihood is akin to mixing it with a uniform distribution.

2.1. Model initialization and update

To initialize the models, it is assumed that the first few
frames (typically 50) are all background pixels. The back-
ground model is populated using pixel samples from these
frames. In order to improve efficiency, we sample 5 frames
at equal time intervals from these 50 frames. The fore-
ground model is initialized to have no samples. The mod-
ified foreground score (Equation 6) enables colors that are
not well explained by the background model to be classified
as foreground, thus bootstrapping the foreground model.
Once the pixel at location (ax, ay) from a new frame is
classified using Equation 7, the background and foreground
models at the location (ax, ay) can then be updated with
the new sample a. Background and foreground samples at
location (ax, ay) from the oldest frame in the models are
replaced by a. Samples from the previous 5 frames are
maintained in memory as the foreground model samples.
The label probabilities of the background/foreground from
Equation 7 are also saved along with the sample values for
subsequent use in the Equations 3 and 4.

One consequence of the update procedure described
above is that when a large foreground object occludes a
background pixel at (ax, ay) for more than 50 frames, all
the background samples in the spatial neighborhood of
(ax, ay) are replaced by these foreground samples that have
very low P (bg|bi) values. This causes the pixel at (ax, ay)
to be misclassified as foreground even when the occlud-
ing foreground object has moved away (because the back-
ground score will be extremely low due to the influence of
P (bg|bi) in Equation 3). To avoid this problem, we replace
the background sample from location (ax, ay) in the oldest
frame in the background model with the new sample a from



the current frame only if P (bg|a) estimated from Equation 7
is greater than 0.5.

In our chosen evaluation data set, there are several videos
with moving objects in the first 50 frames. The assumption
that all these pixels are background is not severely limiting
even in these videos. The model update procedure allows us
to recover from any errors that are caused by the presence
of foreground objects in the initialization frames.

2.2. Using MRF to clean the classification

Similar to Sheikh and Shah [6], we use a Markov random
field (MRF) defined over the posterior label probabilities of
the 4-neighbors of each pixel and perform the min-cut pro-
cedure to post-process the labels. The λ interaction factor
between the nodes was set to 1 for all our experiments.

3. Pixel-wise adaptive kernel variance selection
Background and foreground kernels. Sheikh and Shah

use the same kernel parameters for background and fore-
ground models. Given the different nature of the two pro-
cesses, it is reasonable to use different kernel parameters.
For instance, foreground objects typically move between 5
and 10 pixels per frame in the I2R [3] data set, whereas
background pixels are either stationary or move very little.
Hence, it is useful to have a larger spatial variance for the
foreground model than for the background model.

Optimal kernel variance for all videos. In the results
section, we show that for a data set with large variations like
I2R [3], a single value for kernel variance for all videos is
not sufficient to capture the variability in all the videos.

Variable kernel variance for a single video. As ex-
plained in the introduction, different parts of the scene may
have different statistics and hence need different kernel vari-
ance values. For example, in Figure 1a to 1d, having a high
spatial dimension kernel variance helps in accurate classifi-
cation of the water surface pixels, but doing so causes some
pixels on the person’s leg to become part of the background.
Ideally, we would have different kernel variances for the
water surface pixels and the rest of the pixels. Similarly
in the second video (Figure 1e to 1h), having a high ker-
nel variance allows accurate classification of some of the
fountain pixels as background at the cost of misclassifying
many foreground pixels. The figure also shows that while
the medium kernel variance may be the best choice for the
first video, the low kernel variance may be best for the sec-
ond video.

Optimal kernel variance for classification. Having dif-
ferent variances for the background and foreground models
reflects the differences between the expected uncertainty in
the two processes. However, having different variances for
the two processes could cause erroneous classification of
pixels. Figure 2 shows a 1-dimensional example where us-
ing a very wide kernel (high variance) or very narrow kernel

Figure 1. Two video sequences classified using increasing values
of spatial kernel variance. Column 1: Original image. Column
2: σB

d = 1/4. Column 3: σB
d = 3/4. Column 4: σB

d = 12/4.

Figure 2. 1-dimensional example shows the effect of the kernel
variance in classification. Using a higher or lower variance at point
‘a’ compared to point ‘b’ can cause misclassification of the inter-
mediate point between them.

for the background process causes misclassification. As-
suming that the red point (square) is a background sample
and the blue point (triangle) is a foreground sample, having
a very low variance kernel (dashed red line) or a very high
variance (solid red line) for the background process makes
the background likelihood of the center point ‘x’ lower than
the foreground likelihood. Thus, it is important to pick the
optimal kernel variance for each process during classifica-
tion.

In order to address all four issues discussed above, we
propose the use of location-specific variances. For each lo-
cation in the image, a range of kernel variances is tried and
the variance which results in the highest score is chosen for
the background and the foreground models separately.

The background score with location-dependent vari-
ances is

SB(a;σB
d,ax,ay

, σB
rgb,ax,ay

) =

1
NB

nB∑
i=1

{G([aragab]− [birbigbib];σB
rgb,ax,ay

)

×G([axay]−[b1xb1y];σB
d,ax,ay

)× P (bg|bi)},

(8)

where σB
d,x,y and σB

rgb,x,y represent the location-specific



spatial and color dimension variances at location (x, y).
For each pixel location (ax, ay), the optimal variance for

the background process is selected by maximizing the score
of the background label at sample a under different variance
values:

{σB∗
d,ax,ay

, σB∗
rgb,ax,ay

} =

argmax
σB

d,ax,ay
,σB

rgb,ax,ay

SB(a;σB
d,ax,ay

, σB
rgb,ax,ay

). (9)

Here, σB
d,ax,ay

∈ RB
d and σB

rgb,ax,ay
∈ RB

rgb. RB
d and RB

rgb

represent the set of spatial and color dimension variances
from which to choose the optimal variance.

A similar procedure may be followed for the foreground
score. However, in practice, it was found that the variance
selection procedure yielded large improvements when ap-
plied to the background model and little improvement in the
foreground model. Hence, our final implementation uses
an adaptive kernel variance procedure for the background
model and a fixed kernel variance for the foreground model.

4. Results
For comparisons, we use the I2R data set [3] which con-

sists of 9 videos taken using a static camera in various en-
vironments. The data set offers various challenges includ-
ing dynamic background like trees and waves, gradual and
sudden illumination changes, and the presence of multiple
moving objects. Ground truth for 20 frames in each video is
provided with the data set. The F-measure is used to mea-
sure accuracy [4].

The effect of choosing various kernel widths for the
background and foreground models is shown in Table 1.
The table shows the F-measure for each of the videos in
the data set for various choices of the kernel variances. The
first 5 columns correspond to using a constant variance for
each process at all pixel locations in the video. Having iden-
tical kernel variances for the background and foreground
models (columns 1, 2) is not as effective as having different
variances (all other columns). Comparing columns 2 and 3
shows that using a larger spatial variance for the foreground
model than for the background model is beneficial. Chang-
ing the spatial variance from 3 (column 3) to 1 (column 4)
helps the overall acccuracy in one video (Fountain). Us-
ing a selection procedure where the best kernel variance is
chosen from a set of values gives the best results for most
videos (column 6) and frames.

Comparison of our selection procedure to a baseline
method of using a standard algorithm for variance selec-
tion in KDE (AMISE criterion1) shows that the standard
algorithm is not as accurate as our method (column 7). Our
choice for the variance values for spatial dimension reflects

1We use the publicly available implementation from
http://www.ics.uci.edu/ ihler/code/kde.html.

no motion (σB
d = 1/4) and very little motion (σB

d = 3/4)
for the background, and moderate amount of motion (σF

d =
12/4) for the foreground. For the color dimension, the
choice is between little variation (σB

rgb= 5/4), moderate
variation (σB

rgb= 15/4), and high variation (σB
rgb= 45/4)

for the background, and moderate variation (σF
rgb= 15/4)

for the foreground. These choices are based on our intu-
ition about the processes involved. For videos that differ
significantly from the videos we use, it is possible that the
baseline AMISE method would perform better.

We would like to point out that ideally the variance value
sets should be learned automatically from a separate train-
ing data set. In absence of suitable training data for these
videos in particular and for background subtraction research
in general, we resort to manually choosing these values.
This also appears to be the common practice among re-
searchers in this area.

Benchmark comparisons are provided for selected exist-
ing methods - MOG [7], the complex foreground model [3]
(ACMMM03), and SILTP [4]. To evaluate our results, the
posterior probability of the background label is thresholded
at a value of 0.5 to get the foreground pixels. Following
the same procedure as Liao et al. [4], any foreground 4-
connected components smaller than a size threshold of 15
pixels are ignored.

Figure 3 shows qualitative results for the same frames
that were reported by Liao et al. [4]. We present results
for our kernel method with uniform variances and adaptive
variances with RGB features (Uniform-rgb and VKS-rgb
respectively), and adaptive variances with a hybrid feature
space of LAB color and SILTP features (VKS-lab+siltp).
Except for the Lobby video, the VKS results are better than
other methods. The Lobby video is an instance where there
is a sudden change in illumination in the scene (turning a
light switch on and off). Due to use of an explicit fore-
ground model, our kernel methods misclassify most of the
pixels as foreground and take a long time to recover from
this error. A possible solution for this case is presented later.
Compared to the uniform variance kernel estimates, we see
that VKS-rgb has fewer false positive foreground pixels.

Quantitative results in Table 3 compare the F-measure
scores for our method against MoG, ACMMM03, and
SILTP results as reported by Liao et al. [4]. The table shows
that methods that share spatial information (uniform ker-
nel and VKS) with RGB features give significantly better
results than methods that use RGB features without spa-
tial sharing. Comparing the variable kernel method to a
uniform kernel method in the same feature space (RGB),
we see a significant improvement in performance for most
videos. Scale-invariant local ternary pattern (SILTP) [4] is
a recent texture feature that is robust to soft shadows and
lighting changes. We believe SILTP represents the state of
the art in background modeling and hence compare our re-



Column num (1) (2) (3) (4) (5) (6) (7)
4*σB

d −→ 3 3 3 1 3 [1 3] AMISE
4*σB

rgb−→ 15 45 45 45 15 [5 15 45] AMISE
4*σF

d −→ 3 3 12 12 12 [12] [12]
4*σF

rgb−→ 15 45 45 45 15 [15] [15]
AirportHall 40.72 59.53 67.07 63.53 47.21 70.44 53.01
Bootstrap 49.01 57.90 63.04 58.39 51.49 71.25 63.38
Curtain 66.26 83.33 91.91 89.52 81.54 94.11 52.00
Escalator 20.92 30.24 34.69 28.58 22.65 48.61 32.02
Fountain 41.87 51.89 73.24 74.58 67.60 75.84 28.50
ShoppingMall 55.19 60.17 64.95 62.18 63.85 76.48 70.14
Lobby 22.18 23.81 25.79 25.69 25.06 18.00 36.77
Trees 30.14 58.41 73.53 47.03 67.80 82.09 64.30
WaterSurface 85.82 94.04 94.93 92.91 94.64 94.83 30.29
Average 45.79 57.70 65.46 60.27 52.98 70.18 47.82

Table 1. F-measure for different kernel variances. Using our selection procedure ( Column 6) results in the highest accuracy.

Figure 3. Qualitative comparison of algorithms on image results
reported in Liao et al. [4].

sults to this method. Scale-invariant local states [11] is a
slight variation in the representation of the SILTP feature.
For comparison, we use SILTP results from Liao et al. be-
cause in Yuk and Wong [11], human judgement2 was used
to vary a size threshold parameter for each video. We be-
lieve results from the latter fall under a different category

2This was learned via personal communication with the authors.

of human-assisted backgrounding and hence do not com-
pare to our method where no video-specific hand-tuning of
parameters was done. Table 3 shows that SILTP is very
robust to lighting changes and works well across the en-
tire data set. Blue entries in Table 3 correspond to videos
where our method performs better than SILTP. VKS with
RGB features (VKS-rgb) performs well in videos that have
few shadows and lighting changes. Use of color features
that are more robust to illumination change, like LAB fea-
tures in place of RGB helps in successful classification of
the shadow regions as background. Texture features are ro-
bust to lighting changes but not effective on large texture-
less objects. Color features are effective on large objects,
but not very robust to varying illumination. By combin-
ing texture features with LAB color features, we expect to
benefit from the strengths of both feature spaces. Such a
combination has proved useful in earlier work [10]. Aug-
menting the LAB features with SILTP features (computed
at 3 resolutions) in the VKS framework (VKS-lab+siltp) re-
sults in an improvement in 7 out of 9 videos (last column).
The variance values used in our implementation are given
in Table 2.

We also compare our results (VKS-lab+siltp) to the 5
videos that were submitted as supplementary material by
Liao et al. [4]. Figure 4 highlights some key frames that
highlight the strengths and weaknesses of our system ver-
sus the SILTP results. The common problems with our
algorithm are shadows being classified as foreground (row
e) and initialization errors (row e shows a scene where the
desk was occluded by people when the background model
was initialized. Due to the explicit foreground model, VKS
takes some time to recover from the erroneous initializa-
tion). A common drawback with SILTP is that large texture-
less objects have “holes” in them (row a). Use of color fea-



4∗σB
d 4∗σF

d 4∗σB
rgb 4∗σF

rgb 4∗σB
l 4∗σF

l 4∗σB
ab 4∗σF

ab 4∗σB
siltp 4∗σF

siltp

VKS-rgb [1,3] 12 [5, 15, 45] 15 - - - - - -
VKS-lab+siltp [1,3] 12 - - [5, 10, 20] 15 [4,6] 4 3 3

Table 2. Parameter values for VKS implementation.

tures helps avoid these errors. The SILTP system also loses
objects that stop moving (rows b, c, d, f). Due to the explicit
modeling of the foreground, VKS is able to detect objects
that stop moving.

The two videos in the dataset where our algorithm per-
forms worse than SILTP are the Escalator video (rows g, h)
and the Lobby video (rows i, j). In the Escalator video, our
algorithm fails at the escalator steps due to large variation
in color in the region.

In the Lobby video, at the time of sudden illumination
change, many pixels in the image get classified as fore-
ground. Due to the foreground model, these pixels continue
to be misclassified for a long duration (row j). The problem
is more serious for RGB features (Figure 3 column 2). One
method to address the situation is to observe the illumina-
tion change from one frame to the next. If more than half
the pixels in the image change in illumination by a thresh-
old value of TI or more, we throw away all the background
samples at that instance and begin learning a new model
from the subsequent 50 frames. This method allows us to
address the poor performance in the Lobby video with re-
sulting F-measure values of 86.77 for uniform-rgb, 78.46
for VKS-rgb, and 77.76 for VKS-lab+siltp. TI of 10 and
2.5 were used for RGB and LAB spaces respectively. The
illumination change procedure does not affect the perfor-
mance of VKS on any other video in the data set.

5. Caching optimal kernel variances from pre-
vious frame

A major drawback with trying multiple variance values
at each pixel to select the best variance is that the amount
of computation per pixel increases significantly. In order
to reduce the complexity the algorithm, we use a scheme
where the current frame’s optimal variance values for each
pixel location for both the background and foreground pro-
cesses is stored (σ∗Bcache

x,y , σ∗Fcache
x,y ) for each location (x, y)

in the image. When classifying pixels in the next frame,
these cached variance values are first tried. If the result-
ing scores are very far apart, then it is very likely that the
pixel has not changed its label from the previous frame.
The expensive variance selection procedure is performed
only at pixels where the resulting scores are close to each
other. Algorithm 1 for efficient computation results in a re-
duction in computation in about 80% of the pixels in the
videos when τBF is set to 2, with a slight reduction in the
F-measure by about 1 to 2% on most videos when compared

Figure 4. Comparison of VKS and SILTP results. Column 1:
Original video. Column 2: SILTP [4]. Column 3: VKS-lab+siltp.

to the full implementation. The efficient variance selection
procedure however still performs significantly better than
the uniform variance model by 2 to 10% on most videos.

6. Discussion
By applying kernel estimate method to a large data set,

we have established, as do Sheikh and Shah [6], that the
use of spatial information is extremely helpful. Some of the



Video ACMMM03 MoG SILTP [4] uniform VKS VKS
rgb rgb lab+siltp

AirportHall 50.18 57.86 68.02 67.07 70.44 71.28
Bootstrap 60.46 54.07 72.90 63.04 71.25 76.89
Curtain 56.08 50.53 92.40 91.91 94.11 94.07
Escalator 32.95 36.64 68.66 34.69 48.61 49.43
Fountain 56.49 77.85 85.04 73.24 75.84 85.97
ShoppingMall 67.84 66.95 79.65 64.95 76.48 83.03
Lobby 20.35 68.42 79.21 25.79 18.00 60.82
Trees 75.40 55.37 67.83 73.53 82.09 87.85
WaterSurface 63.66 63.52 83.15 94.93 94.83 92.61

Table 3. F-measure on I2R data. VKS significantly outperforms other color feature-based methods and improves on SILTP texture features
on most videos. Blue color indicates performance better than SILTP.

Algorithm 1 Efficient variance selection
for each pixel sample a = (ax, ay, ar, ag, ab) in the cur-
rent frame do

if
SB(a;σ∗Bcache

ax,ay
)

ŜF (a;σ∗F cache
ax,ay

)
> τBF then

Compute the label scores resulting from use of the
cached variance values.

else
Search over the values in the variance sets to pick
the optimal variances.
Compute the label scores using the optimal vari-
ances.

end if
end for

important issues pertaining to the choice of kernel parame-
ters for data sets with wide variations have been addressed.
Having a uniform kernel variance for the entire data set and
for all pixels in the image results in a poor overall system.
Dynamically adapting the variance for each pixel results in
a significant increase in accuracy.

Using color features in the joint domain-range kernel
estimation approach can complement complex background
model features in settings where the latter are known to be
inaccurate. Combining robust color features like LAB with
texture features like SILTP in a VKS framework yields a
highly accurate background classification system.

For future work, we believe our method could be ex-
plained more elegantly in a probabilistic framework where
the scores are replaced by likelihoods and informative pri-
ors are used in the Bayes rule classification.
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