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Abstract. While deep face recognition has benefited significantly from
large-scale labeled data, current research is focused on leveraging unla-
beled data to further boost performance, reducing the cost of human
annotation. Prior work has mostly been in controlled settings, where the
labeled and unlabeled data sets have no overlapping identities by construc-
tion. This is not realistic in large-scale face recognition, where one must
contend with such overlaps, the frequency of which increases with the vol-
ume of data. Ignoring identity overlap leads to significant labeling noise, as
data from the same identity is split into multiple clusters. To address this,
we propose a novel identity separation method based on extreme value
theory. It is formulated as an out-of-distribution detection algorithm, and
greatly reduces the problems caused by overlapping-identity label noise.
Considering cluster assignments as pseudo-labels, we must also overcome
the labeling noise from clustering errors. We propose a modulation of
the cosine loss, where the modulation weights correspond to an estimate
of clustering uncertainty. Extensive experiments on both controlled and
real settings demonstrate our method’s consistent improvements over
supervised baselines, e.g., 11.6% improvement on 1JB-A verification.

1 Introduction

Deep face recognition has achieved impressive performance, benefiting from large-
scale labeled data. Examples include DeepFace [38], which uses 4M labeled faces
for training and FaceNet [32], which is trained on 200M labeled faces. Further
improvements in recognition performance using traditional supervised learning
may require tremendous annotation efforts to increase the labeled dataset volume,
which is impractical, labor intensive and does not scale well. Therefore, exploiting
unlabeled data to augment the labeled data, i.e., semi-supervised learning, is an
attractive alternative. Preliminary work on generating pseudo-labels by clustering
unlabeled faces has been shown to be effective in improving performance under
controlled settings [37,42,44].

* Now at Amazon, work done prior to joining, while interning at NEC Labs America.
** Now at Google, work done prior to joining.
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Fig. 1: Given a face recognition model trained on labeled faces (X*), we wish to cluster
unlabeled data (X“) for additional training samples to further improve recognition
performance. Key challenges include overlapping identities between labeled and
unlabeled data (George W Bush images present in both X% and XY) as well as noisy
training labels arising from incorrect cluster assignments (a picture of George Bush
Sr. is erroneously assigned to a cluster of George W Bush images).

However, although learning from unlabeled data is a mature area and theo-
retically attractive, face recognition as a field has yet to adopt such methods in
practical and realistic settings. There are several obstacles to directly applying
such techniques that are peculiar to the setting of large-scale face recognition.
First, there is a common assumption of semi-supervised face recognition methods
is that there is no class or identity overlap between the unlabeled and the labeled
data. This seemingly mild assumption, however, violates the basic premise of
semi-supervised learning — that nothing is known about the labels of the unla-
beled set. Thus, either practitioners must manually verify this property, meaning
that the data is no longer “truly” unlabeled, or proceed under the assumption
that identities are disjoint between labeled and unlabeled training datasets,
which inevitably introduces labeling noise. When such overlapping identities
are in fact present (Fig. 1), a significant price is paid in terms of performance,
as demonstrated empirically in this work. A further practical concern in face
recognition is the availability of massive labeled face datasets. Most current work
using unlabeled faces focus on improving the performance of models trained
with limited labeled data [42,44], and it is unclear if there are any benefits from
using unlabeled datasets when baseline face recognition models are trained on
large-scale labeled data.

In this paper, we present recipes for exploiting unlabeled data to further
improve the performance of fully supervised state-of-the-art face recognition
models, which are mostly trained on large-scale labeled datasets. We demonstrate
that learning from unlabeled faces is indeed a practical avenue for improving deep
face recognition, also addressing important practical challenges in the process —
accounting for overlapping identities between labeled and unlabeled data, and
ameliorating the effect of noisy labels when training on pseudo-labeled data.

We begin with Face-GCN [42], a graph convolutional neural network (GCN)
based face clustering method, to obtain pseudo-labels on unlabeled faces. To
deal with the overlapping identity problem, we observe that the distribution of
classification confidence on overlapping and disjoint identities is different — since
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our initial face feature is provided by a recognition engine trained on known
identities, the confidence score of the overlapping identity images should be higher
than those of non-overlapping identity images, as visualized in Fig. 3. Based on this
observation, we approach the problem as out-of-distribution detection [9,18,20],
and propose to parameterize the distribution of confidence scores as a mixture
of Weibulls, motivated by extreme value theory. This results in an unsupervised
procedure to separate overlapping identity samples from unlabeled data on-the-fly.

After resolving the overlapping identity caused label noise, the systematic
label noise from the clustering algorithm remains, which is another prime cause
for deteriorating performance in face recognition [40]. Instead of an additional
complicated pruning step to discard noisy samples, e.g. as done in [42], we deal
with the label noise during the re-training loop using the joint data of both
labeled and clustered faces, by introducing a simple clustering uncertainty based
modulation of the training loss to reduce the effect of erroneous gradients caused
by the noisy labeled data. This effectively smoothes the re-training procedure
and has shown clear performance gains in our experiments. Our contributions
are summarized as the following:

— To our knowledge, we are the first to tackle the practical issue of overlap-
ping identities between labeled and unlabeled face data during clustering,
formulated as an out-of-distribution detection.

— We successfully demonstrate that jointly leveraging large scale unlabeled data
along with labeled data in a semi-supervised fashion can indeed significantly
improve over supervised face recognition performance, i.e., substantial gains
over a supervised CosFace [41] model across multiple public benchmarks.

— We introduce a simple and scalable uncertainty-modulated training loss into
the semi-supervised learning setup, which is designed to compensate for the
label noise introduced by the clustering procedure on unlabeled data.

— We provide extensive and ablative insights on both controlled and real-world
settings, serving as a recipe for the semi-supervised face recognition or other
large scale recognition problems.

2 Related Work

Face Clustering: Jain [12] provides a survey on classic clustering techniques.
Most recent approaches [14,21,22,26,36] work on face features extracted from
supervisedly-trained recognition engines. “Consensus-driven propagation” (CDP) [44]
assigns pseudo-labels to unlabeled faces by forming a graph over the unlabeled
samples. An ensemble of various network architectures provides multiple views of
the unlabeled data, and an aggregation module decides on positive and negative
pairs. Face-GCN [42] formulates the face clustering problem into a regression for
cluster proposal purity, which can be fully supervised. Re-training the recognition
engine with the clustered “pseudo-identities” and the original data improves
performance, however, CDP [44] and Face-GCN re-training assumes the “pseudo-
identities” and the original identities have no overlap, which does not always
hold true. Meanwhile, their investigation stays in a controlled within-distribution
setting using the MS-Celeb-1M dataset [7], which is far from realistic. In contrast,
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Fig.2: Our approach trains a deep neural network [41] jointly on labeled faces X* and
unlabeled faces XY. Unlabeled samples with overlapping and disjoint identities w.r.t.
X% are separated into XYC and XYP | respectively (Sec. 3.1). The unlabeled faces in
XYP are clustered using a graph conv-net or GCN (Sec. 3.2). Estimates of cluster
uncertainty p~ (x;) are used to modulate the cosine loss during re-training (Sec. 3.3).

we demonstrate that these considerations are crucial to achieve gains for practical
face recognition with truly large-scale labeled and unlabeled datasets.
Out-Of-Distribution Detection: Extreme value distributions have been used
in calibrating classification scores [29], classifier meta-analysis [31], open set
recognition robust to adversarial images [2] and as normalization for score fusion
from multiple biometric models [30], which is quite different from our problem.
Recent approaches to out-of-distribution detection utilize the confidence of the
predicted posteriors [9,20], while Lee et al. [18] use Mahalanobis distance-based
classification along with gradient-based input perturbations. [18] outperforms
the others, but does not scale to our setting — estimating per-subject covariance
matrices is not feasible for the typical long-tailed class distribution in face
recognition datasets.

Learning with Label Noise: Label-noise [24] has a significant effect on the
performance of the face embeddings obtained from face recognition models
trained on large datasets, as extensively studied in Wang et al. [40]. Indeed, even
large scale human-annotated face datasets such as the well-known MS 1 Million
(MS-1M) are shown to have some incorrect labeling, and gains in recognition
performance can be attained by cleaning up the labeling [40]. Applying label-noise
modeling to our problem of large-scale face recognition has its challenges — the
labeled and unlabeled datasets are class-disjoint, a situation not considered by
earlier methods [10,19,27]; having ~100k identities, typically long-tailed, make
learning a label-transition matrix challenging [10, 27]; label-noise from clustering
pseudo-labels is typically structured and quickly memorized by a deep network,
unlike the uniform-noise experiments in [1,39,45]. Our unsupervised label-noise
estimation does not require a clean labeled dataset to learn a training curriculum
unlike [13,28], and can thus be applied out-of-the-box.

3 Learning from Unlabeled Faces

Formally, let us consider samples X = {xi}ie[n], divided into two parts: X< and
XY of sizes | and u respectively. Now X% := {xi,...,x;} consist of faces that
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are provided with identity labels Y* := {y1, ..., }, while we do not know the
identities of the unlabeled faces XY := {x;11,...,X; 44 }. Our approach aims to
improve the performance of a supervised face recognition model, trained on (X%,
V¥), by first clustering the unlabeled faces XY, then re-training on both labeled
and unlabeled faces, using the cluster assignments on X* as pseudo-labels. Fig. 2
visually summarizes the steps — (1) train a supervised face recognition model on
(X%, YE); (2) separate the samples in XY having overlapping identities with the
labeled training set; (3) cluster the disjoint-identity unlabeled faces; (4) learn
an unsupervised model for the likelihood of incorrect cluster assignments on
the pseudo-labeled data; (5) re-train the face recognition model on labeled and
pseudo-labeled faces, modulating the training loss for pseudo-labeled samples
using the estimated clustering uncertainty. In this section, we first describe the
separation of overlapping identity samples from unlabeled data (Sec. 3.1), followed
by an overview of the face clustering procedure (Sec. 3.2) and finally re-training
the recognition model with an estimate of clustering uncertainty (Sec. 3.3).

3.1 Separating Overlapping Identities

Overlapping identities. We typically have no control over the gathering
of the unlabeled data XY, so the same subject S may exist in labeled data
(thus, be a class on which the baseline face recognition engine is trained)
and also within our unlabeled dataset, i.e. XY = X400 U XYP where A4Y°
and XYP denote the identity overlapped and identity disjoint subsets of X¥.
By default, the clustering will as-
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Fig. 3: Extreme value theory (EVT) pro-
vides a principled way of setting thresholds
on the max-logits z; for x; € XY to sepa-
ods [37,42,44]. rate disjoint and overlapping identities (red
Out-of-distribution detection. The and blue vertical lines). An initial thresh-
problem of separating unlabeled data old is determined by Otsu’s method (black
into samples of disjoint and overlap- vertical line). This plot uses splits from the
ping classes (w.r.t. the classes in the MS-Celeb-1M dataset [7].

labeled data) can be regarded as an “out-of-distribution” detection problem. The
intuition is that unlabeled samples with overlapping identities will have higher
confidence scores from a face recognition engine, as the same labeled data is used
to train the recognition model [9]. Therefore, we search for thresholds on the

mounted cameras, which to our knowl-
edge has not been directly addressed
by most recent pseudo-labeling meth-
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recognition confidence scores that can separate disjoint and overlapping identity
samples. Note, since the softmax operation over several thousand categories can
result in small values due to normalization, we use the mazimum logit z; for
each sample x; € XY as its confidence score. Since the z; are the maxima over
a large number of classes, we can draw upon results from extreme value theory
(EVT) which state that the limiting distribution of the maxima of i.i.d random
variables belongs to either the Gumbel, Fréchet or Weibull family [4]. Specifically,
we model the z; using the Weibull distribution,

(3) 7 ez,
z; < 0,

(1)

S >

f(zi;)‘7k) = {

where £ > 0 and A > 0 denote the shape and scale parameters, respectively. We
use Otsu’s method [25] to obtain an initial threshold on the z; values, then fit
a two-component mixture of Weibulls, modeling the identity-overlapping and
identity-disjoint sets XY© and XYP | respectively. Selecting values corresponding
to 95% confidence under each Weibull model provides thresholds for deciding if
x; € XY9 or x; € XYP with high confidence; we reject samples that fall outside
of this interval. This approach does not require setting any hyper-parameters a
priori, and can be applied to any new unlabeled dataset.

3.2 Clustering Faces with GCN

We use Face-GCN [42] to assign pseudo-labels for unlabeled faces in XYP,
which leverages a graph convolutional network (GCN) [15] for large-scale face
clustering. We provide a brief overview of the approach for completeness. Based on
features extracted from a pre-trained face recognition engine, a nearest-neighbor
graph is constructed over all samples. By setting various thresholds on the edge
weights of this graph, a set of connected components or cluster proposals are
generated. During training, the aim is to regress the precision and recall of the
cluster proposals arising from a single ground truth identity, motivated by object
detection frameworks [8]. Since the proposals are generated based on labeled
data, the Face-GCN is trained in a fully supervised way, unlike regular GCN
training, which are typically trained with a classification loss, either for each
node or an input graph as a whole. During testing, a “de-overlap” procedure uses
predicted GCN scores for the proposals to partition an unlabeled dataset into a
set of clusters. Please see [42] for further details.

3.3 Joint Data Re-training with Clustering Uncertainty

We seek to incorporate the uncertainty of whether a pseudo-labeled (i.e. clustered)
sample was correctly labeled into the face recognition model re-training. Let a
face drawn from the unlabeled dataset be x; € XYP. The feature representation
for that face using the baseline supervised model is denoted as @(x;). Let cluster
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assignments obtained on X“P be {C,Ca,...,Cx}, for K clusters. We train a
logistic regression classifier to estimate P(Cy, | P(x;)), for k =1,2,..K,

exp(wy P(xi))
> exp(w; P(x;))

where wy are the classifier weights for the k-th cluster. Intuitively, we wish
to determine how well a simple linear classifier on top of discriminative face
descriptors can fit the cluster assignments. We compare the following uncertainty
metrics: (1) Entropy of the posteriors across the K clusters, i.e. >, P(Cy |
D(x;))log P(Ck | D(x:)); (2) Max-logit: the largest logit value over the K clusters,
(3) Classification margin: difference between the max and the second-max logit,
indicating how easily a sample can flip between two clusters.

We consider two kinds of incorrect clustering corresponding to notions of precision
and recall: (1) Outliers, samples whose identity does not belong to the identity
of the cluster; (2) Split-ID, where samples from the same identity are spread
over several clusters (Fig. 4(a)). In a controlled setting with known ground-
truth identities, we validate our hypothesis that the uncertainty measures can
distinguish between correct and incorrect cluster assignments (Fig. 4(b)). Note
that Split-ID makes up the bulk of incorrectly-clustered samples, while outliers
are about 10%. Fig. 4 (c) shows the distribution of class-margin on pseudo-labeled
data on one split of the MS-1M dataset. Intuitively, samples that do not have a
large classification margin are likely to be incorrect pseudo-labels, resulting in a
bi-modal distribution — noisily labeled samples in one mode, and correctly labeled
samples in the other. Notice that similar to overlapping v.s. disjoint identity, this
is another distribution separation problem. A Weibull is fit to the lower portion
of the distribution (orange curve), with an initial mode-separating threshold
obtained from Otsu’s method (black vertical line). The probability of sample x;
being incorrectly clustered is estimated by:

P~ (xi) = P(9(x:) | Op) (3)

where 6, are the parameters of the learned Weibull model, g(.) denotes the
measure of uncertainty, e.g.class-margin. Note, ground-truth labels are not re-
quired for this estimation. We propose to associate the above uncertainty with
the pseudo-labeled samples and set up a probabilistic face recognition loss.

The large margin cosine loss [41] is used for training:

P(Cr | 2(xi)) =

(2)

exp(a(w, £; —m))

L(xi) = —1
(i) o8 exp(a(w] f; —m)) + 32, explaw) f;)

(4)

where f; is the deep feature representation of the i-th training sample x;, w; is
the learned classifier weight for the j-th class, m € [0,1] is an additive margin
and « is a scaling factor; ||f;|| and ||w;|| are set to 1. For x; € XY, we modulate
the training loss with the clustering uncertainty p~(x;), where 7 controls the
weighting curve shape:

LP(xi) = (1= p~ (%)) L(xi), ()



8 A. RoyChowdhury et al.

i --- Otsu=0.2925
0.025 H Weibull (p~)
H = cls-margin

.i o

—~

/

/
7
o
&

frequency (normalized)

0.0 0.2 0.4 06 0.8 1.0 ) 0.0 02 0.4 0.6 0.8 10
NS — recall class margin

~— L, 07
:}‘ P —— cls-margin (AP: 95.16)
2 2 /) 061 max-logit (AP: 94.80)
»@ “ \ —— entropy (AP: 88.29)

(a) (b) (c)

Fig.4: Clustering uncertainty. (a) Illustration of incorrect pseudo-labels — an image
of George Bush Sr. is included in a cluster of George W Bush images (outlier circled in
blue); some George W Bush images are spread across multiple clusters (“split ID” circled
in red). (b) Precision-recall curves showing Average Precision (AP) of predicting if a
cluster assignment is correct using class-margin, max-logit and entropy. (c¢) Estimating
clustering error p~ (x;) from the distribution of class-margin ( curve).

4 Experiments

We augment supervised models trained on labeled data with additional pseudo-
labeled data under various scenarios. We summarize the main findings first —
(i) the baseline supervised model benefits from additional pseudo-labeled training
data; (%) re-training on clustering without handling overlapping IDs can hurt
performance, and our approach of separating overlaps is shown to be effective
empirically; (%i2) increasing diversity of training data by using unlabeled data
from outside the distribution of the labeled set helps more than comparable
amounts of within-domain unlabeled data; (iv) scaling up to using the entire
MS-Celeb-1M [7] dataset (or MS1M for short) as labeled training set, as typically
done by most deep face models, we see significant gains in performance only
when the volume of unlabeled samples is comparable to the size of MS1M itself.
Experimental setup. Table 1 summarizes the training data sources. The cleaned
version of MS1M dataset contains 84,247 identities and 4,758,734 samples in
total. Partitioning on the identities, the full MS1M dataset is split into 10 parts
with approximately 8.4k identities and 470k samples per split. We create the
following settings:

— Controlled disjoint (Sec. 4.1): Both labeled and unlabeled data are drawn
from splits of MS1IM (Table 1 MSIM splits 1 and 2, respectively). Thus, they
have the same distribution and have no overlapping identities by construction,
similar to the setting in [42]. We compare baseline clustering methods and
the effect of clustering uncertainty on re-training the face recognition model.

— Controlled overlap (Sec. J.2): we introduce simulated identity overlap
between the two datasets (Table 1 MS-Celeb-1M splits 1-O and 2-0), showing
the detrimental effect of naively clustering and re-training in this case, and
the efficacy of our proposed approach.

— Semi-controlled (Sec. 4.3): we have limited labeled data (split-1 of MS1M)
with unlabeled data from another dataset, i.e., VGGFace2 [3], containing
8.6k identities and 3.1 million images. This is closer to the realistic scenario,
with potential identity overlaps and distribution shift between data sources.
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Table 1: Statistics for training datasets. Table 2: Controlled: Face cluster-

Dataset #IDs Images ing baselines. Comparing the GCN-
based method with standard clustering

MS—Celeb—full. 84k 4.TM algorithms. The GCN is trained on MS-
MS:-Celeb-split-1 8.4k 505k Celeb-1M split 1, tested on split 2

MS-Celeb-split-2 8.4k 467k P P2

MS-Celeb-split-1-O  16.8k 729k Method Prec Rec F1 #Clstr
MS-Celeb-split-2-O  16.8k 705k K-means 55.77 87.56 68.14 5k
VGGPFace2 [3] 8.6k 3.1M FastHAC 99.32 64.66 78.32 117k
CASIA-WebFace [43]  10.5k 455k DBSCAN 99.62 46.83 63.71 352k
IMDB-SenseTime [40] 51k M GCN 95.87 79.43 86.88 45k
GlintAsian [5] 94k 2.8M GCN-iter2 97.94 87.28 92.30 32k

— Uncontrolled (Sec. 4.5): close to the real-world setting, we use all the labeled
data at our disposal (entire MS-Celeb-1M) and try to improve performance
further by including unlabeled data from other datasets — VGGFace2 [3],
IMDB-SenseTime [40], CASIA [43] & GlintAsian [5], by completely ignoring
their ground truth labels. Note, this setting is not addressed in prior art on
pseudo-labeling faces [42,44].

Evaluation. We report results on the following: verification accuracy on Labeled
Faces in the Wild (LFW) [11,17] and Celebrity Frontal to Profile (CFP) [35];
identification at rank-1 and rank-5, and True Accept Rate (TAR) at False Accept
Rates (FAR) of 1le-3 and le-4 on the challenging JARPA Janus benchmark
(IJB-A) [16]. For clustering metrics we adopt the protocol used in [42].
Training details. We use the high-performing CosFace model [41] for face
recognition, with a 118-layer ResNet backbone, trained for 30 epochs on labeled
data. Re-training is done from scratch with identical settings. Face-GCN uses
the publicly available code of GCN-D [42]. For further details please refer to the
supplementary materials.

4.1 Controlled Disjoint: MS-Celeb-1M splits

In controlled setting, Split-1 of MS-Celeb-1M is used as the labeled dataset to
train the face recognition model in a fully supervised fashion. The face clustering
module is also trained in a supervised way on the labeled Split-1 data. The
unlabeled data is from Split-2 of MS-Celeb-1M: ground truth labels are ignored,
features are extracted on all the samples and the trained GCN model provides
the cluster assignments.

Clustering. The performance of various clustering methods are summarized
in Table 2, i.e., K-means [34], FastHAC [23] and DBSCAN [6,33], with
optimal hyper-parameter settings . The GCN is clearly better than the baseline
clustering approaches. GCN typically provides an over-clustering of the actual
number of identities — the precision is comparably higher than the recall (95.87%

4 K-means: K=5k, FastHAC: dist=0.85, DBSCAN: minsize=2, eps=0.8
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Table 3: Controlled disjoint: Re-training CosFace on the union of labeled and
pseudo-labeled data (+GCN), pseudo-label on second iteration (+GCN-iter-2), with
an upper bound from ground truth (GT-2). 1 indicates improvement from baseline.

Model LFW 1 CFP-fp 1 LIBA-idt. 4 LIBA-vrf. +
Rank-1, 5 FARQle-3,-4
Baseline GT-1 99.20 - 92.37 - 92.66, 96.42 - 80.23, 69.64 -
+K-means 99.47 0.27 94.11 1.74 93.80, 96.79 1.14, 0.37 87.03, 78.00 6.80, 8.36
+FastHAC 99.42 0.22 93.56 0.90 93.84, 96.81 1.18, 0.39 84.78, 75.21 4.55, 5.57
+GCN 99.48 0.28 95.51 3.14 94.11, 96.55 1.45, 0.13 87.60, 77.67 7.37, 7.93
+GCN-iter-2  99.57 0.37 94.14 1.77 94.46, 96.40 1.80, -0.02 88.00, 78.78 7.77, 9.14
+GT-2 (bound) 99.58 0.38 95.56 3.19 95.24, 97.24 2.58, 0.82 89.45, 81.02 9.22, 11.38

Table 4: Controlled overlaps: Re-training with overlapping identity unlabeled data.

Model LFW {1 CFP-fp 1 LJBA-idt. + LIBA-vrf. +
Rank-1, 5 FAR@Q1le-3,-4
Baseline 99.45 - 95.17 - 94.52, 96.60 - 87.36, 75.06 -

+GCN(naive) 99.37 -0.08 93.17 -2.0 93.72, 96.65 -0.80, 0.05 87.02, 79.39 -0.34, 4.33
+GCN(disjoint) 99.57 0.12 95.01 -0.16 94.83, 96.98 0.31, 0.38 89.29, 82.64 1.93, 7.58
+GCN(overlap) 99.58 0.13 94.30 -0.87 94.47, 96.64 -0.05, 0.04 86.93, 78.42 -0.43, 3.36
+GCN(both) 99.58 0.13 95.36 0.19 94.81, 97.05 0.29, 0.45 89.43, 82.86 2.07, 7.80

versus 79.43%), indicating high purity per cluster, but samples from the same
identity end up being spread out across multiple clusters (“split ID”).

Re-training. The results are summarized in Table 3. Re-training CosFace on
labeled Split-1 and pseudo-labeled Split-2 data (+GCN) improves over training on
just the labeled Split-1 (Baseline GT-1) across the benchmarks. The performance
is upper-bounded when perfect labels are available on Split-2 (+GT-2). Note
that re-training on cluster assignments from simpler methods like K-Means and
HAC also improve over the baseline.

Re-train w/ iterative clustering. We perform a second iteration of clus-
tering, using the re-trained CosFace model as feature extractor. The re-trained
CosFace model has more discriminative features, resulting in better clustering
(Table 2 GCN-iter2 versus GCN). However, another round of re-training Cos-
Face on these cluster-assignments yields smaller gains (Table 3 +GCN-iter2 v.s.
+GCN).

Insights. With limited labeled data, training on clustered faces significantly
improves recognition performance. Simpler clustering methods like K-means are
also shown to improve recognition performance — if training Face-GCN is not
practical, off-the-shelf clustering algorithms can also provide pseudo-labels. A
second iteration gives small gains, indicating diminishing returns.

4.2 Controlled Overlap: Overlapping Identities

We simulate the real-world overlapping-identity scenario mentioned in Sec. 3.1
to empirically observe its impact on the “pseudo-labeling by clustering” pipeline.
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Table 5: Disjoint/overlap cluster- Tlable 6: Semi-controlled: clustering.
ing. Results of clustering the entire un- Comparing performance on “within-domain”
labeled X (“Split-2-0”) and clustering splits of MS-Celeb-1M vs. VGGFace2 data.

the estimated ID—dlSJOlHt pOI‘tiOH XMD Train Test Prec. Rec. F1 #Clstr

Data Prec. Rec. F1 #IDs #Clstr #lmg (150 1 plit-2  95.87 79.43 86.88 45k

AY 987 84.891.216.8k 60k 693k  split-1 VGG2 97.65 59.62 74.04 614k
AYP 988 852 91.5 11.7k 39k 464k full VGG2 98.88 72.76 83.83 224k

We create two subsets of MS1IM with around 16k identities each, having about
8.5k overlapping identities (suffix “O” for overlaps in Table 1). The labeled subset
X% contains around 720k samples (Split-1-O). The unlabeled subset, Split-2-O,
contains approximately 467k disjoint-identity (XUP) and 224k overlapping-
identity (XV°) samples.

Disjoint /Overlap. Modeling the disjoint/overlapping identity separation as
an out-of-distribution problem is an effective approach, especially on choosing
the max-logit score as the feature for OOD. A simple Otsu’s threshold provides
acceptably low error rates, i.e., 6.2% false positive rate and 0.69% false negative
rate, while using 95% confidence intervals from Weibulls, we achieve much lower
error rates of 2.3% FPR and 0.50% FNR.

Clustering. Table 5 shows the results from clustering all the unlabeled
data (Naive) versus separating out the identity disjoint portion of the unlabeled
data and then clustering (Disjoint). On both sets of unlabeled samples, the
GCN clustering achieves high precision and fairly high recall, indicating that the
clusters we use in re-training the face recognition engine are of good quality.

Re-training. The results are shown in Table 4. Naively re-training on the
additional pseudo-labels clearly hurts performance (Baseline v.s. GCN(naive)).
Adding pseudo-labels from the disjoint data improves over the baseline across
the benchmarks. Merging the overlapping samples with their estimated identities
in the labeled data is done based on the softmax outputs of the baseline model,
causing improvements in some cases (e.g. LFW and IJBA verif.) but degrading
performance in others (e.g. IJBA ident. and YTF). Merging overlapping identities
as well as clustering disjoint identities also shows improvements over the baseline
across several benchmarks.

Insights. Overlapping identities with the labeled training set clearly has a
detrimental effect when retraining and must be accounted for when merging
unlabeled data sources — the choice of modeling max-logit scores for this separation
is shown to be simple and effective. Overall, discarding overlapping samples from
re-training, and clustering only the disjoint samples, appears to be a better
strategy. Adding pseudo-labeled data for classes that exist in the labeled set
seems to have limited benefits, versus adding more identities.

4.3 Semi-controlled: Limited Labeled, Large-scale Unlabeled Data

MS-Celeb-1M Split 1 forms the labeled data, while the unlabeled data is from
VGGFace2 (Table 1). We simply discard VGGFace2 samples estimated to have



12 A. RoyChowdhury et al.

Table 7: Semi-controlled: MS-Celeb-1M split 1 and VGGFace2. Note that
similar volume of pseudo-labeled data from MS-Celeb-1M split 2 (+MS1M-GCN-2)
gives lower benefits compared to data from VGGFace2 (+VGG-GCN) in challenging
settings like IJB-A verification at FAR=1e-4, IJB-A identification Rank-1.

Model LFW + CFP-fp 1 IJBA-idt. 1t IJBA-vrf. 1
Rank-1, 5 FARQ1le-3,-4
MS1M-GT-1 99.20 - 92.37 - 92.66, 96.42 - 80.23, 69.64 -

+MS1IM-GCN-2 99.48 0.28 95.51 3.14 94.11, 96.55 1.45, 0.13 87.60, 77.67 7.37, 12.03
+VGG-GCN (ours) 99.550.35 94.60 2.23 94.72, 96.97 2.06, 0.55 88.12, 82.48 7.89, 12.84
+VGG-GT (bound) 99.70 0.50 97.81 5.44 96.93, 98.25 4.27, 1.83 93.20, 84.67 12.97, 15.03

overlapping identities with MS-Celeb-1M Split-1. Out of the total 3.1M samples,
about 2.9M were estimated to be identity-disjoint with MS-Celeb-1M Split-1.

Clustering. The same GCN model trained on Split-1 of MS-Celeb-1M in
Sec. 4.1 is used to obtain cluster assignments on VGGFace2. Table 6 compares
the clustering on MS-Celeb-1M Split2 (controlled) v.s. the current setting. The
F-score on VGGFace2 is reasonable — 74.04%, but lower than the F-score on
Split-2 MS-Celeb-1M (86.88%) — we are no longer dealing with within-dataset
unlabeled data.

Re-training. To keep similar volumes of labeled and pseudo-labeled data we
randomly select 50 images per cluster from the largest 8.5k clusters of VGGFace2.
Re-training results are in Table 7. We generally see benefits from VGGFace2 data
over both baseline and MS1M-split-2: YTF: 93.82% — 94.64% — 95.14%, IJBA
idnt. rank-1: 92.66% — 94.11% — 94.72%, IJBA verif. at FAR le-4: 69.635%
— 77.665% — 82.484%. When the full VGGFace2 labeled dataset is used to
augment MS1M-split-1, VGG-GT(full), we get the upper bound performance.

Insights. Ensuring the diversity of unlabeled data is important, in addition
to other concerns like clustering accuracy and data volume: pseudo-labels from
VGGFace2 benefit more than using more data from within MS1M.

4.4 Soft Labels for Clustering Uncertainty

Table 8 shows results of re-training the face recognition model with our pro-
posed cluster-uncertainty weighted loss (Sec. 3.3) on the pseudo-labeled samples
(GCN-soft). We set v = 1 (ablation in supplemental). We empirically find that
incorporating this cluster uncertainty into the training loss improves results in
both controlled and large-scale settings (3 out of 4 evaluation protocols). In
the controlled setting, the soft pseudo-labels, MS1M-GCN-soft, improves over
MS1IM-GCN (hard cluster assignments) on challenging IJB-A protocols (77.67%
— 78.78% QFAR le-4) and is slightly better on LFW. In the large-scale setting,
comparing VGG-GCN and VGG-GCN-soft, we again see significant improvements
on IJB-A (81.85% — 90.16% QFAR 1le-4) and gains on the LEW benchmark as
well. Qualitative analyses of clustering errors and uncertainty estimates p~(x;)
are included in the supplemental.
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Table 8: Effect of Cluster Uncertainty: Re-training CosFace with the proposed
clustering uncertainty (GCN-soft) shows improvements in both controlled (MS1M-GT-
split1) and large-scale settings, MS1M-GT-full (CosFace [41]).

Model LFW 1 CFP-fp 1 1JBA-idt. T IJBA-vrf. T
Rank-1, 5 FARQle-3,-4
MSI1M-GT-split1 99.20 - 92.37 - 92.66, 96.42 - 80.23, 69.64 -

+MSIM-GCN (ours) 99.48 0.28 95.51 3.14 94.11, 96.55 1.45, 0.13 87.60, 77.67 7.37, 12.03
+MS1IM-GCN-soft (ours) 99.500.30 94.71 2.34 94.76, 97.10 2.10, 0.68 87.97, 79.43 7.74, 9.79

MSIM-GT-full (CosFace) 99.70 - 98.10 - 95.47, 97.04 - 92.82, 80.68 -
+VGG-GCN (ours) 99.73 0.03 97.63 -0.47 95.87,97.45 0.40, 0.41 93.88, 81.85 1.06, 1.17
+VGG-GCN-soft (ours) 99.750.05 97.57 -0.5396.37, 97.700.90, 0.66 93.94, 90.16 1.12, 9.48

Table 9: Uncontrolled: pseudo-labels. Showing the clusters and samples in the
uncontrolled setting with full-MS1M and unlabeled data of increasingly larger volume —
(1) VGG2 [3]; (2) merging CASIA [43] & IMDB-SenseTime [40] with VGG2; (3) merging
GlintAsian [5] with all the above.

Dataset: VGG2  +(CASIA, IMDB) +Glint
True classes 8631 57,271 149,824
Clusters 224,466 452,598 719,722
Samples 1,257,667 2,133,286 3,673,517
Prec. 98.88 91.35 88.16
Rec. 72.76 77.53 66.93
F-score 83.83 83.88 76.09

4.5 Uncontrolled: Large-scale Labeled and Unlabeled Data

The earlier cases either had limited labeled data, unlabeled data from an identical
distribution as the labeled data by construction, or both aspects together. Now,
the entire MS-Celeb-1M is used as labeled training data for training the baseline
CosFace model as well as the GCN. We gradually add several well-known face
recognition datasets (ignoring their labels) to MS-Celeb-1M labeled samples
during re-training (Table 9) °. Along with more data, these datasets bring in
more varied or diverse samples (analysis in supplemental).

Re-training. The re-training results are shown in Table 10. As expected,
we get limited benefits from adding moderate amounts of unlabeled data when
the baseline model is trained on a large labeled dataset like MS-Celeb-1M.
When incorporating data from only VGGFace2, there are improvements on LEW
(99.7% — 99.73%), and on IJBA, ident. (95.47% — 95.87%) and verif. (80.68%
— 81.85%). There are however some instances of decreased performance on
the smaller scale dataset CFP-fp. When the volume of unlabeled data is of
comparable magnitude (4.7M labeled versus 3.6M unlabeled) by merging all the
other datasets (VGGFace2, CASIA, IMDB-SenseTime and GlintAsian), we get

5 In particular, we estimated a 40% overlap in identities between MS-Celeb and VGG2.
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Table 10: Uncontrolled: re-training. Merging unlabeled training samples with the
entire MS-Celeb-1M labeled data consistently surpasses the fully-supervised MS1M-GT-
full (CosFace [41]) trained on the entire labeled MS-Celeb-1M dataset.

Model LFW 1 CFP-fp 1 IJBA-idt. + IIBA-vrf. 1
Rank-1, 5 FAR@le-3,-4

MSIM-GT-full (CosFace) 99.70 -  98.10 -  95.47, 97.04 , 92.82, 80.68 ;

+VGG-GCN (ours) 99.730.03 97.63 -0.47 95.87,97.45 0.40, 0.41 93.88, 81.85 1.06, 1.17

+CASIA-IMDB (ours) 99.730.03 97.81 -0.29 96.66, 97.89 1.19, 0.85 93.79, 89.58 0.97, 8.90
+GlintAsian (ours final) 99.730.03 98.24 0.14 96.94, 98.21 1.47, 1.17 94.89, 92.29 2.07, 11.61

a clear advantage on the challenging IJBA benchmarks (rank-1 identification:
95.47% — 96.94%, verification TAR at FAR le-4: 80.68% — 92.29%).

Insights. The crucial factors in improving face recognition when we have
access to all available labeled data from MSIM appear to be both diversity
and volume — it is only when we merged unlabeled data from all the other data
sources, reaching comparable number of samples to MS1M, that we could improve
over the performance attained from training on just the ground-truth labels of
MS1M, suggesting that current high-performing face recognition models can
benefit from even larger training datasets. While acquiring datasets of such scale
purely through manual annotation is prohibitively expensive and labor-intensive,
using pseudo-labels is shown to be a feasible alternative.

5 Conclusion

The pseudo-labeling approach described in this paper provides a recipe for im-
proving fully supervised face recognition, i.e., CosFace, leveraging large unlabeled
sources of data to augment an existing labeled dataset. The experimental results
show consistent performance gains across various scenarios and provide insights
into the practice of large-scale face recognition with unlabeled data — (1) we
require comparable volumes of labeled and unlabeled data to see significant
performance gains, especially when several million labeled samples are available;
(2) overlapped identities between labeled and unlabeled data is a major concern
and needs to be handled in real-world scenarios; (3) along with large amounts of
unlabeled data, greater gains are observed if the new data shows certain domain
gap w.r.t. the labeled set; (4) incorporating scalable measures of clustering
uncertainty on the pseudo-labels is helpful in dealing with label noise. Overall,
learning from unlabeled faces is shown to be an effective approach to further
improve face recognition performance.
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