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Abstract—In this paper, we address the interactions among
robot perceptions, memories, and actions. We suggest that
the ability to predict action consequences based on current
perceptions and the memories of previous action consequences
is essential for robots to behave intelligently in unstructured
environments. Traditional approaches generally represent per-
ception and action separately—as computer vision modules that
recognize objects and as planners that execute actions based
on labels and poses. We propose a more integrated approach
in which a memory model integrates action and perception
hierarchically and captures what the environment affords. This
model can be learned efficiently through demonstrations. As more
demonstrations are recorded and more interactions are observed,
the robot becomes more capable of predicting the consequences
of actions and thus better at planning sequences of actions to
solve tasks in novel situations.

I. INTRODUCTION

Humans and animals are remarkably adept at solving tasks

in novel situations by generalizing past experiences to current

observations in unstructured environments. This requires a

joint understanding of perception, action, and memory. How-

ever, traditional approaches in robotics generally represent per-

ception and action separately—as object models in computer

vision and as action templates in robot controllers. Due to this

separation, the robot can only interact with objects based on

learned models when the object label is identified. Interacting

based on object labels is not only vulnerable to recognition

errors but also limits how past experiences can be generalized

to novel situations.

In the book “On Intelligence”, Jeff Hawkins asserts that

“Your brain receives patterns from the outside world, stores

them as memories, and makes predictions by combining what it

has seen before and what is happening now”. The framework

proposed here extends this concept and shows the capability

of a memory model that integrates action and perception. This

memory model represents how actions change observations

and can be used to capture the affordances of the environment.

With this integrated model, a robot would be capable of

solving tasks by predicting perceptual action consequences

based on memory and observation. This paper gives a broad

overview of the proposed framework, and reviews our previous

work that has investigated various components of it.

II. RELATED WORK

The Memory-Prediction framework, a brain model that

is consistent with neurological discoveries, is proposed by

Hawkins in his book “On intelligence” [11]. This model

emphasizes prediction from sequence memory based on the

observation that humans recognize quotations and songs based

on their sequences stored in memory. George and Hawkins

further propose the Hierarchical Temporal Memory model

that gives the Memory-Prediction framework mathematical

foundations in Bayesian terms [8]. Lee and Mumford also

suggest that based on findings on the early visual cortex

activation, particle filtering and Bayesian-belief propagation

algorithms might be used in cortical computations [25]. In

this work, the concept of sequential memories is extended

to recognizing objects. The relationship between a sequence

of actions and a sequence of views are modeled not only to

recognize objects, but also to provide robots with the capability

to plan actions based on prediction. Next, we address the

representation of objects in memory, and its relevance to

actions.

In human psychophysics and neurophysiology, two models

have been proposed to explain how objects are stored in

human memory [42]. The object centered model represents

each object by a small number of view-invariant primitives

in an object centered reference frame [29]. Alternatively,

viewer centered models represent each object as collections

of viewpoint-specific local features. Since the development of

these models, experiments in human psychophysics and neu-

rophysiology have provided converging evidence for viewer

centered models [5] [1]. Experiments on monkeys done by

Logothetis et al. further confirm that a significant percentage

of neurons in the inferior temporal cortex respond selectively

to a subset of views of a known object [28]. The Aspect

Transition Graph (ATG) used in our framework is a viewer

centered memory model. In addition to distinctive views, an

ATG summarizes how actions change viewpoints or the state

of the object and thus, the observation. Besides visual sensors,

extensions to tactile, auditory and other sensors also become

possible with this representation. ATGs were first introduced

in Sen’s work [38] as an efficient way of storing knowledge

of objects hierarchically. This work redefines the ATG as

a directed multigraph composed of a set of aspect nodes

connected by a set of action edges that capture the probabilistic

transition between aspect nodes.

This ATG model in the proposed framework can memorize

action outcomes and capture affordances of the environment.

The term affordance has many definitions. We adopt the defini-



tion of afforadances as “the opportunities for action provided

by a particular object or environment” [9]. Affordance can

be used to explain how the “value” or “meaning” of things

in the environment is perceived. The proposed framework is

based on this interactionist view of perception and action that

focuses on learning relationships between objects and actions

specific to the robot. Some recent work in computer vision

and robotics extended this concept of affordance and applied it

to object classification and object manipulation [10] [14] [41]

[43]. The proposed framework is based on affordances that are

grounded in the robot’s own actions and perceptions. Instead

of defining object affordances from a human perspective, they

are learned through direct interaction with objects from the

robot’s perspective.

Planning based on belief was introduced by Sondik and

Smallwood for solving the optimal control problem character-

ized by the Partially Observable Markov Decision Processes

(POMDPs) [40] [39]. The value iteration algorithm for solving

POMDP was further improved by many authors such as

[13] and [33] to solve larger problems. POMDP and the

ATG memory model used in our framework have similar

components. However, an ATG does not consider a reward

function and is not used for finding optimal actions. The

actions in an ATG are executed based on information in the

states and do not belong to a fixed set of actions.

This proposed framework is tested on manipulation tasks

that involve grasping. A lot of previous work has also been

done on generating robotic grasp plans from visual informa-

tion. In work done by Saxena et al., a single grasp point was

identified using a probabilistic model on a set of visual features

such as edges, textures, and colors [36]. Similar work uses

contact, center of mass, and force closure properties based on

point cloud and image information to calculate the probability

of a hand configuration successfully grasping a novel object

[37]. Platt et al. used online learning to associate different

types of grasps with the object’s height and width [35]. A

shape template approach for grasping novel objects was also

proposed by Herzog et al. [12]. A shape descriptor called a

height map that captures local object geometry was used for

matching part of a point cloud generated by a novel object

to a known grasp template. Another work used a geometric

approach for grasping novel objects based on point clouds

[30]. An antipodal grasp was determined by finding cutting

planes that satisfy geometric constraints. A similar approach

based on local object geometry was also introduced [45]. In

the work done by Lenz et al., a deep network trained on 1035

examples was used to determine a successful grasp based on

RGB-D data [26]. Grasp positions were exhaustively searched

and evaluated. Next, we discuss some of the relevant related

work in neural networks.

Convolutional neural networks (CNNs) are a class of deep

neural networks that contain more than one convolutional

layer, and were introduced by Lecun and Bengio [24]. In the

2012 ImageNet Challenge, the CNN based approach proposed

by Krizhevsky et al. generated results that surpassed other

methods by a large margin [15]. CNN based approaches have

since outperformed other approaches on most benchmarks in

computer vision. Several authors have also applied CNNs to

robotics. In the work done by Levine et al., visuomotor policies

were learned using an end-to-end neural network that takes

images and outputs joint torques [27]. A three layer CNN

was used without any max pooling layer to maintain spatial

information. In our framework, multiple convolution layers

are also used; but unlike the previous work, relationships

between layers are used to define a feature. Finn et al. used

an autoencoder to learn spatial information of features of a

neural network and demonstrate that the robot can learn tasks

with reinforcement learning [7]. In [6], Finn and Levine further

demonstrated that robots can learn to predict the consequences

of pushing objects from different orientations and execute

pushing actions to reach a given object pose based on a neural

network structure with nine convolutional layers. In research

done by Pinto and Gupta, a CNN was used to learn what

features are graspable through 50 thousand trials collected

using a Baxter robot [34]. The final CNN layer was used to

select 1 out of 18 grasp orientations. The hierarchical CNN

features used in our framework are based on CNNs trained on

image classification, and hence require relatively little robot

training data. This feature captures the hierarchical relationship

between filters and can model local parts of a larger structure.

III. FRAMEWORK

Figure 1 shows a modified conceptual diagram of the

neocortex taken from the book “On Intelligence”. Blocks

with the same vertical positions represent neurons of the

same cortex layer and arrows represent the direction of the

information flow based on neuron connections. A neuron in a

higher layer represents more abstract notions while a neuron

in a lower layer represents simpler features. For example,

visual neurons in a higher layer have larger receptive fields,

represent object categories, and change more slowly over time.

In this figure, memory regions that connect sensory neurons

and motor neurons of the same layer are added to the original

diagram. These memory regions associate neurons across

modalities and can be used to infer bottom up signals that are

missing. The connection loops within memory regions indicate

predictions made based on observations, motor commands,

and past memories. These memory regions have connections

similar to the pyramidal neurons in the neocortex that have

many connections within the same layer and an extended

axon that sends signal to distant regions. However, these

conjectured connections of the memory region are not based

on neurological discoveries but on computational structures

that have been shown to be practical in solving robotic tasks.

The colored blocks and connections are implemented in the

proposed framework and tested on robotic systems. In the

following, we describe the memory model and the hierarchical

structure in this diagram and show how they can be learned

from demonstrations efficiently.



Fig. 1. A modified conceptual diagram of layers and connections in the neocortex where the highlighted memory regions are added to the original diagram
introduced in the book “On Intelligence” [11]. The filled layers and red connections are implemented in the proposed framework.

A. Memory Model

In computer vision, there are two common types of object

models used for identification. One represents objects in 2D

and the other in 3D. However, neither of these incorporates

information regarding how perceptions of objects change in

response to actions. A robot that recognizes objects with

traditional models knows nothing more than the label of the

object. It is clear that humans have a different kind of object

understanding—they can often predict the state and appearance

of an object after an action.

Instead of an independent object recognition system, the

proposed framework uses an integrated model called an aspect

transition graph (ATG) that fuses information acquired from

sensors and robot actions to achieve better recognition and

understanding of the environment. An ATG is a memory model

that memorizes past experiences about how actions change

aspects (or observations stored in the model), and thus, maps

observable states and actions to predicted future observable

states.

An ATG is represented by a directed multigraph G =
(X ,U), composed of a set of aspect nodes X connected by a

set of action edges U that capture the probabilistic transition

between aspects. An action edge u is a triple (x1, x2, a)
consisting of a source node x1, a destination node x2 and an

action a that transitions between them. Note that there can be

multiple action edges (associated with different actions) that

transition between the same pair of nodes. Figure 2 shows a

sample ATG model of a cube.

This memory model can be used to plan actions in partially

observed environments. In previous work, we consider a

simultaneous object modeling and recognition (SOMAR) task,

where the robot has to model a given object while trying to

recognize it [16]. An information theoretic planner that reduce

uncertainty over objects by executing actions that maximally

Fig. 2. Example of an incomplete aspect transition graph (ATG) of a cube
object that has a pattern on each face. Each aspect is consists of observations
of two faces of the cube. Each edge represents an action that transitions
between observations.

reduce the expected object entropy is proposed. The expected

entropy is calculated based on the predicted action outcome

stored in the ATG memory models. We showed that this

approach outperforms a random action planner.

The ATG model is also shown to be able to handle un-

certainties in stochastic environments in previous work [19].

Through fine-grained transitions, we show that errors can be

detected early by comparing observations with the predicted

action outcomes. Transition probabilities are added to action

edges in an ATG for actions that may result in random

observations and errors can be handled accordingly. Surprising

events that are not modeled in the memory are also handled

by resetting the belief among aspects to the prior distribution;

the robot would then re-examine the situation and identify



possible solutions. We show that this approach results in more

efficient actions and more robust results on a task that requires

the robot to manipulate a box until it sees certain faces.

In [18], we introduced an ATG that considers a continuous

observation space. Aspects are redefined as the set of obser-

vations within ǫ difference of a stored observation and the

region of attraction is the set of observations that a closed-

loop controller can converge to an aspect. Based on the funnel

metaphor for closed-loop controllers introduced by Burridge

[2], we introduce the slide metaphor for open-loop controllers

that are used to represent action edges in an ATG model. A

funnel may converge from a large set of robot states to a

smaller subset, while a slide may end up in many different

states due to noise. However, if a funnel-slide-funnel structure

is constructed carefully such that the end of the slide is

within the mouth of a funnel, we can guarantee a sequence of

actions to succeed even when open-loop actions are included.

Figure 3 shows the funnel-slide-funnel structure metaphor.

This structure is tested on a tool grasping task where visual

servoing is used to represent the funnel. We show that this

structure reduces error significantly.

Fig. 3. Funnel-slide-funnel structure. The funnel metaphor is used to
describe a closed-loop controller that converges to a subset of states, while the
slide metaphor is used to describe an open-loop controller that causes state
transitions.

Traditional grasping approaches such as the Willow Garage

grasping pipeline [44] usually separates action planning from

object recognition, where actions are executed based on object

poses and labels generated from the vision module. In [17],

we propose an alternative grasping approach where the ob-

servation is matched to the most similar aspect in the ATG

memory model; actions are then executed based on action

edges connected from this aspect. This approach does not

require an explicit object pose of the object and allows the

robot to act directly based on observation. We tested on a drill

grasping task based on memorized grasping examples. Figure

4 shows that the robot grasps the drill differently based on the

orientation.

B. Hierarchical Structure

Neural networks with hierarchical structures, such as Con-

volutional Neural Networks (CNNs), have outperformed other

Fig. 4. Robonaut-2 grasping the drill posed at different orientations. Image
pairs in the same row represents the intermediate and final states of one drill
grasping trial.

approaches on many benchmarks in computer vision. However

applying them to robotics is nontrivial for two reasons. First,

the final output of a CNN contains little location information,

which is essential for manipulation. Second, collecting the

quantity of robot data required to train a CNN is quite difficult.

The proposed framework tackles these challenges using the

hierarchical CNN feature introduced in our previous work

[21]. Hierarchical CNN features are extracted from a CNN

trained on image classification therefore only require a small

set of action examples. Instead of representing a feature with a

single filter in a certain CNN layer, hierarchical CNN features

use a tuple of filter indices to represent a feature. These

features capture the hierarchical relationship between filters

in different layers and can represent local parts of an object

such as the right edge of the lower right corner of a box’s

top face. Hierarchical CNN features can be localized by back

propagating filter responses along a single path to the input

image and then mapped to a 3D point in the point cloud. This

process traces backward recursively and yields a tree structure

of hierarchical CNN features.

We consider a grasping task where the goal is to posture an

anthropomorphic hand and arm for grasping based on visual

information. A dataset consists of 120 grasping examples

of six cylindrical and six cuboid objects is collected. Each

example consists of the image, input point cloud, and joint

configuration of the pregrasp pose. To map hierarchical CNN

features to grasp pose, features that fire consistently are

first identified among objects of the same class (cuboids or

cylinders.) Features that have low offset variances to end

effectors (index finger, thumb, and hand) among examples

are then selected. By restricting the selected hierarchical CNN

features to have the same high level filter, features will all be

associated with the same object. Figure 5 show that without

considering the hierarchical relationship, low level filters will

fire on different objects in a cluttered scenario.

These selected hierarchical CNN features are then asso-

ciated with a hierarchical controller that controls different

kinematic subchains hierarchically. In this work, hierarchical

CNN features in the fourth convolutional layer is associated

with the arm controller and hierarchical CNN features in the

third convolutional layer is associated with the hand controller.



Fig. 5. Comparison in a cluttered scenario. The red, green, and blue dots
represent proposed grasp points for the hand frame, thumb tip, and index
finger tip of the left robot hand. Notice that the colored dots are scattered
around in the baseline approach since the highest response filter in conv-3 or
conv-4 layer are no longer restricted to the same high level structure.

The intuition behind these relations is that when moving the

arm, a rough location of the object is sufficient and the detail

object information is only needed when placing fingers. We

evaluated this approach on 50 grasping trials on 10 novel

objects and show significant improvement over a point cloud

based approach.

This hierarchical CNN feature is further combined with pro-

prioceptive feedback and force feedback to form a hierarchical

aspect representation in [20]. This aspect representation is used

to represent the stored observation in an ATG model and can

be used to model the appearance, pose, and location of an

object and the force feedback that the robot have perceived.

This aspect representation is evaluated on the Washington

RGB-D Objects dataset [23] on instance pose recognition and

achieved state of the art result.

C. Learning from Demonstration

Learning from demonstration (LfD) is an attractive approach

due to its similarity to how humans teach each other. However,

most work on LfD has focused on learning the demonstrated

motion [31], action constraints [32], and/or trajectory segments

[4] [3] and has assumed that object poses can be identified

correctly. This assumption may be true in industrial settings,

but does not in general hold in unstructured environments.

In previous work [22], we present an integrated approach

that treats identifying informative features as part of the

learning process. This gives robots the capacity to manipulate

objects without fiducial markers and to learn actions focused

on salient parts of the object. Instead of defining actions

as relative movements with respect to the object pose, our

actions are based on spatial relationships between features.

We classify demonstrations into three types: a) robot-visual

action that specifies the target pose of a set of robot end

effectors with respect to a set of 3-D visual feature locations,

b) robot-proprioceptive action that specifies the target pose

of a set of robot end effectors with respect to a set of

current robot frames based on proprioceptive feedback, c)

visual-visual action that specifies the goal position of a set

of controllable visual features relative to another set of visual

Fig. 6. The sensorimotor architecture driving transitions in the ATG
framework. The aspect representation stored in an aspect node x is based
on visual, force, and proprioceptive feedback. These information is used to
parameterize action a for controlling the arm and hand motors.

features on a different object. Based on the demonstration type

provided by the operator, informative features that support

actions can be identified automatically. Figure 6 shows the

overall architecture. Through learning from demonstration,

the ATG memory model, hierarchical aspect representation,

and connections to the hierarchical controller can be learned

together efficiently.

However, the intent of the demonstrator may be ambiguous

with a single demonstration. With multiple demonstrations,

we show that ambiguities may be resolved by identifying

consistent relationships between features. Figure 8 shows that

through multiple demonstrations of mating the socket with

the bolt, the robot is able to comprehend that the head of the

ratchet should be aligned with the bolt autonomously.

This framework is demonstrated on a challenging bolt

tightening task where the robot has to grasp the ratchet, tighten

a bolt, and put the ratchet back into a tool holder with a small

set of demonstrations. We show that the accuracy of mating the

socket with the bolt can be increased with multiple examples.

Figure 9 shows Robonaut-2 accomplishing this ratchet task.

This learning from demonstrations approach is also tested on

a drill grasping task in [20], where the goal is to grasp the drill

on the handle with the robot’s left hand. If the drill is out of

reach, the robot has to plan a sequence of actions using both

arms to extend its reachability based on grasping, rotating,

and dragging actions learned from demonstrations. Figure 7

shows one of the trials that the robot executed both turning

and dragging before grasping the drill.



Fig. 7. Sequence of actions in one grasping test trial. The images are ordered from left to right then top to bottom. The initial pose of the drill is not
graspable and located too far right for the left hand to reach. Therefore, the robot turns the drill then drags it to the center before grasping with its left hand.

Fig. 8. Identifying informative features from multiple demonstrations. The
two rows represent two demonstrations that place the socket of the ratchet
on top of the bolt. The columns from left to right show the aspect nodes
representing the tool, the target object, and the interaction. The green and red
circles represent the most informative visual features selected for modeling
the action.

IV. CONCLUSIONS

The goal of this work is to present a framework that

allows robots to solve tasks in an unstructured environment by

predicting perceptual action consequences based on memory

and observation. We have provided an overview of a series of

works that explore parts of this framework.

A key component is the ATG memory model that mem-

orizes action consequences through a directed multigraph

composed of aspect nodes and action edges. By predicting

action outcomes with this memory model, the robot can

perform actions that help distinguish objects, detect errors

early, reach goals reliably with a sequence of open-loop and

closed-loop actions, and grasp objects without explicit pose

estimation. We also presented a hierarchical structure that can

be combined with this memory model based on hierarchical

CNN features that are capable of representing local parts

that belong to a high level structure. These features can

be localized in 3D and are associated with a hierarchical

controller to support grasping. We also explained how to

combine ATG models with the proposed hierarchical structure

Fig. 9. The ratchet task sequence performed by Robonaut-2. The images
from left to right, then top to bottom, show a sequence of actions where
Robonaut-2 grasps the ratchet, tightens a bolt on a platform, and puts the
ratchet back into a tool holder.

by learning efficiently from demonstrations. We showed that

through multiple demonstrations, informative visual features

and consistent spatial relationships can be identified and used

to model actions with higher accuracy.

Throughout this paper, we show that by predicting percep-

tual action consequences based on memory and perception, the

proposed framework can accomplish a variety of challenging

tasks under a unified framework. These results can be seen

as support for the conjectured connections between sensory

neurons, motor neurons, and memory regions in the proposed

neocortex model of Figure 1. However, only a small part of this

conceptual diagram is implemented. In future work, we would

like to investigate the addition of more hierarchical relations

in the memory model, consider cross modality inference, and

learn models autonomously based on intrinsic motivation.
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