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Abstract Object identification is a specialized type of
recognition in which the category (e.g. cars) is known and
the goal is to recognize an object’s exact identity (e.g. Bob’s
BMW). Two special challenges characterize object identi-
fication. First, inter-object variation is often small (many
cars look alike) and may be dwarfed by illumination or pose
changes. Second, there may be many different instances of
the category but few or just one positive “training” exam-
ples per object instance. Because variation among object
instances may be small, a solution must locate possibly sub-
tle object-specific salient features, like a door handle, while
avoiding distracting ones such as specular highlights. With
just one training example per object instance, however, stan-
dard modeling and feature selection techniques cannot be
used. We describe an on-line algorithm that takes one im-
age from a known category and builds an efficient “same”
versus “different” classification cascade by predicting the
most discriminative features for that object instance. Our
method not only estimates the saliency and scoring function
for each candidate feature, but also models the dependency
between features, building an ordered sequence of discrim-
inative features specific to the given image. Learned stop-
ping thresholds make the identifier very efficient. To make
this possible, category-specific characteristics are learned
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automatically in an off-line training procedure from labeled
image pairs of the category. Our method, using the same al-
gorithm for both cars and faces, outperforms a wide variety
of other methods.
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1 Introduction

Figure 1 shows six cars. The two leftmost cars were pho-
tographed by one camera; the right four cars were seen
later by another camera from a different angle. Suppose one
wants to determine which images, if any, show the same ve-
hicle. We call this task visual object identification. Object
identification is a specialized form of object recognition in
which the category (e.g. faces or cars) is known, and one
must recognize the exact identity of objects. Most existing
identification systems are aimed at biometric applications
such as identifying fingerprints or faces.

The general term object recognition refers to a whole hi-
erarchy of problems for detecting an object and placing it

Fig. 1 An Identification Problem: Which cars match? The two cars on
the left were photographed from camera 1. Which of the four images
on the right, taken by camera 2, match the cars on the left?



4 Int J Comput Vis (2008) 77: 3–24

Fig. 2 Object Categorization (OC) versus Objection Identification
(OID). This figure highlights the different learning involved in catego-
rization and identification. The training sets for object categorization,
shown on the left side, typically contain many examples of each cat-
egory (e.g. faces and cars), which are then turned into a fixed model
for each in a generative system, or a decision boundary in a discrim-
inative system. A training set for object identification, on the other
hand, contains pairs of images from a known category, with a label

of “same” or “different” (denoted by = and �= in the figure) for each
pair. From these labeled pairs, the system must learn how to generate
an object instance identifier given a single image of a new object (e.g.,
Mr. Carter) from the category. For these identifiers to work well, they
should highlight distinctive regions of the object. That is, the identifiers
should be different for each object

into a group of objects. These problems can be organized
by the generality and composition of the groups into which
objects are placed. The goal of “recognition” can be to put
objects in a very broad group such as vehicles, a narrower
one such as cars, a highly specific group such as red sedans,
or the narrowest possible group, a single element group con-
taining a specific object, such as “Bob’s BMW”.

Here our focus is identification, where the challenge is to
distinguish between visually similar objects of one category
(e.g. cars), as opposed to categorization where the algorithm
must group together objects that belong to the same cate-
gory but may be visually diverse (Amit and Geman 1999;
Fei-Fei et al. 2003; Schneiderman and Kanade 2000; Viola
and Jones 2001). Identification is also distinct from object
localization, where the goal is locating a specific object in
scenes where distractors have little similarity to the target
object (Lowe 2004).

These differences are more than semantic: the object
identification problem poses different challenges than its
coarser cousin, object categorization. Specifically, object
identification problems are characterized by the following
two properties.

1. The inter-instance variation is often small, and this vari-
ation is often dwarfed by illumination or pose changes
(see Fig. 1). For example, many cars look very similar,
but the variability in appearance of a single vehicle, due
to lighting for example, can be quite large.

2. There are many different instances of each category
(many different individual cars), but few (in our case
just one) positive “training” examples per object instance
(e.g. only one image representing “Bob’s BMW”). With
only one example per instance, it is particularly challeng-
ing to build a classifier that identifies such an instance,
which is precisely our goal.

People are good at identifying individual objects from
familiar categories after seeing them only once. Consider
faces. We zero in on discriminative features for a partic-
ular person such as a prominent mole or unusually thick
eyebrows, yet are not distracted by equally unusual but non-
repeatable features such as a messy strand of hair or illumi-
nation artifacts. Domain specific expertise makes this possi-
ble: having seen many faces one learns that a messy strand
of hair is not often a reliable feature.

Human vision researchers report that acquisition of this
expertise is accompanied by significant behavioral and phys-
iological changes. Diamond et al. (Diamond and Carey
1986) showed that dog experts perform dog identification
differently than non-experts; Tarr et al. (Tarr and Gauthier
2000) argued that the brain’s fusiform face area does vi-
sual processing of categories for which expertise has been
gained.

Categorization algorithms such as (Amit and Geman
1999; Berg et al. 2005; Vidal-Naquet and Ullman 2003;
Weber et al. 2000) learn to recognize objects that belong to
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a category. Here, we are attempting to go one step beyond
this by becoming category experts, where instead of having
a fixed set of features that we look for to recognize new ob-
ject instances, we are able to predict the features of the new
object that will be the most informative for distinguishing it
from other objects of the same category. Figure 2 highlights
this difference. Note that categorization is a prerequisite for
identification, because identification systems such as ours
assume that the given objects are from the known category.

1.1 The Three Steps of Object Identification

To clearly characterize the differences between object cate-
gorization and the main subject of this paper, object identifi-
cation, we enumerate the key steps in each process. We com-
pare our object identification method with the traditional su-
pervised learning paradigm of object categorization.

1.1.1 Object Categorization

In the simplest supervised learning framework for object
categorization, the learner is supplied with two sets of ex-
amples: a set of positive examples that are in a category (like
cars), and a set of negative examples that are not in the cat-
egory. The standard procedure of categorization consists of
two steps:

1. Training a classifier using examples labeled positive (in
the category) and negative (not in the category), and

2. Applying the classifier to a new example to label it as
positive or negative.

Theoretically, we could use the same scheme to do object
identification. To recognize a particular individual, such as
George Bush, we could collect sets of positive and nega-
tive examples, and use the traditional supervised learning
method just described. As remarked previously, however,
we would like to be able to identify an individual after see-
ing only a single picture. Traditional categorization schemes
work very poorly when trained on only a single example. To
address this lack of “training” data, we develop an entirely
new scheme, based upon developing category expertise, and
using this expertise to develop a customized identifier for
each instance we wish to recognize.

1.1.2 Object Identification

In our new scheme, there are three steps rather than two. In
the first step, performed off-line on training data, we develop
expertise about the general category, such as faces. This is
done by comparing the corresponding patches of many ex-
ample pairs, some that match and some that do not. The goal
is to analyze patch differences for each type of image pair,
matching and non-matching, to understand under what con-
ditions, we expect patches to be similar or different.

The expectation of the degree of differences between cor-
responding patches can depend upon many factors. Patches
that are not covering the face should not match well even
if it is the same person, while patches from the eye area are
likely to match well if the images are of the same person, but
not for different people. On the other hand, patches from the
cheek area may match well even when the images are not of
the same person (due to the frequent lack of texture in this
region). Finally, forehead images from the same person are
likely to match if there is no hair in the patch, but may not
match well if there is hair, since hair is highly variable from
appearance to appearance. These intuitions translate into a
“scoring function” that relates the appearance similarity of
individual matched patches to an indication of equivalence
of the whole face.

In addition to modeling the appearance differences
among patches conditioned on the type, location and appear-
ance of the patches, we can also estimate the expected util-
ity or discriminativeness of a single patch from this analy-
sis. We rate the discriminativeness of a patch by considering
whether the expected differences with a corresponding patch
depend heavily on whether the faces match or not. For ex-
ample, since a pair of corresponding patches which do not
cover a portion of the face are expected to have large differ-
ences, irrespective of whether the faces match or not, such
patches have low expected utility. On the other hand, patches
near the eye region are expected to have small differences
when the faces match, but to have larger differences when
the faces do not match, and hence are expected to have high
utility. In summary, the first step of our procedure produces
models of patch differences conditioned on a variety of vari-
ables, and also allows us to assess the expected utility of a
given patch based upon the patch difference models.

In the second step, which occurs at “test time”, we use
this expertise to build an identifier (more specifically an
identification cascade) for an object instance given a single
image of that object. For each patch in the given image, we
select a specific model of patch appearance differences from
the global model of patch appearance differences defined in
the first step. Then, using these models of patch appearance
differences for each patch, we analyze the discriminative-
ness of each patch in the given image. Finally, we sort the
patches in order from most discriminative to least discrimi-
native.

In the third step, we use the object specific identifier to
decide whether other instances of the category are the same
as or different than the given instance. This is done by com-
paring patches in the given image (the “model” image) to
corresponding patches in another image (a “database” or
“test” image). The most discriminative patches (as ordered
in the second step) are used first and followed, if still neces-
sary, by those with less discriminative power.

In summary, we define the steps in object identification
as:
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1. Learning a global model of patch1 differences, and as
a result, a model of patch discriminativeness,

2. Building an identification cascade for a specific ob-
ject instance by selecting, from the global model, object-
specific models of patch differences and sorting the
patches by discriminativeness, and

3. Applying the identification cascade to novel images to
assess whether they are the same or different as the spe-
cific object instance for which the cascade was built.

We note that the last step of object categorization and
the last step of our scheme for object identification are es-
sentially the same. In the case of object categorization, we
apply a categorizer to a new example to decide whether it
represents a category of interest. In the case of object iden-
tification, we apply an identifier to a new example to decide
whether it is the same object as the single given training ex-
ample. Other than this last step, however, the two paradigms
are quite different.

While the traditional object categorization scheme en-
codes information at only one level, the level of the object
category, the identification scheme encodes two types of in-
formation. In the first step of object identification, we en-
code information about the entire category. In the second
stage, we encode information about the specific object in-
stance. It is the use of the category expertise learned in
the first step that enables us to build effective identifiers
from just a single example of each object. Without the cat-
egory level information, it would be impossible to tell how
to weight various areas of the image from only a single ex-
ample. Our key contribution is a novel method for encoding
the category information so that we can use it effectively to
define an identifier for a new object instance.

1.1.3 Hyper-features

As stated above, in step 1 of our object identification
process, we analyze corresponding patches in image pairs to
develop a global model of which types of patches are likely
to be useful and which are not, and for the patches that are
useful, to know how to score a correspondence. This model
needs to generalize to whole space of possible patches so
that at test time we can predict the utility and build a scoring
function for patches of new instances (e.g. new car models)
that were not in the training set.

Given that we register objects before analyzing patches,
it should not be surprising that patches from certain parts

1To simplify the exposition, we have described the process of learning
category expertise in terms of learning a model of patch discriminative-
ness, which is how the identifiers in this paper were built. However, it
is straightforward to generalize this general scheme to encode category
information in a way other than modeling patches—for example, by
modeling the distributions of colors in images.

of the image tend to be more informative than patches from
other parts of an image. For example, when faces are reg-
istered to a canonical position by centering them in an im-
age, the patches in the upper corners of the image tend to
represent background, and hence are unlikely to be useful
for discrimination. Hence, the spatial location of a patch is
useful in predicting its future utility in discrimination, even
when we do not yet know the patch we might be comparing
it against. This type of “conditioning” on spatial location to
predict utility is common in computer vision.

In this paper, however, we introduce a novel method for
predicting the utility of image patches that goes beyond
merely conditioning on spatial location. In particular, we
also use appearance features of a patch to predict its utility.
For example, a patch of someone’s cheek that is uniformly
colored is not likely to be very discriminative since there is
a strong possibility the corresponding patch on another dif-
ferent person’s face would be indistinguishable, causing this
patch to be of no value in discrimination. However, if the
patch on someone’s cheek shows a distinctive mole or scar,
its predicted utility dramatically increases, since this feature
would be unlikely to be repeated unless we are comparing
against the same person.

Conditioning on visual features to predict utility, in ad-
dition to spatial location, gives our patch discriminativeness
models much more power. We call these features on which
we condition hyper-features, and their use to model image
differences is the main contribution of this work.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses previous work in a number of areas. Sec-
tion 3 summarizes the three stages of our algorithm: learning
class expertise in training, building an identification cascade
for a specific example, and running the identifier. Section 4
details our model for estimating “same” and “different” dis-
tributions for a patch. Section 5 describes our patch depen-
dency model that allows us to generate a sequence of infor-
mative patches. From this sequence, we build the cascade in
Sect. 6 by finding stopping thresholds for making “same” or
“different” decisions. Section 7 details our experiments on
multiple car and face data sets.

2 Comparison to Previous Work

In this section, we highlight relevant previous papers and
describe how our method differs or improves on them.

2.1 Part-Based Recognition

Breaking an image into local subparts, where each part is
encoded and matched separately, is a popular technique
for object recognition (both categorization and identifica-
tion) (Berg et al. 2005; Bernstein and Amit 2005; Dork and
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Schmid 2005; Heisele et al. 2000; Kadir and Brady 2001;
Lowe 2004; Mori et al. 2001; Vidal-Naquet and Ullman
2003; Viola and Jones 2001; Weber et al. 2000; Wiskott
et al. 1997). This strategy helps to mitigate the effects of
distortion due to pose variation, as local regions are more
likely than the whole object to be related by simple trans-
formations. It also contains the disturbance due to occlusion
and localized illumination effects such as specularities. Fi-
nally, it separates modeling of appearance and position. The
key idea is that the parts, which are allowed to move rela-
tive to one other, can be treated as semi-independent assess-
ments for the recognition task. The classifier then combines
this evidence, optionally using the positional configuration
of the detected parts as an additional cue, to determine the
presence or absence of the object.

Due to the constraints of object identification described
in the introduction, our system differs from previous work in
a fundamental way. In the above systems, a model consist-
ing of informative parts and (optionally) their relationships
is learned from a set of object and background examples.
This “feature selection” step is fundamental to these meth-
ods and is possible because statistics such as the frequency
of appearance of a particular feature (e.g., a quantized SIFT
vector) can be directly computed for the positive and neg-
ative examples of a class. Thus these systems rely on un-
derlying feature selection (and weighting) techniques such
as Conditional Mutual Information (Fleuret 2004) or Ad-
aBoost (Freund and Schapire 1996). In our setting this is not
possible because only one example of a particular category
instance (which plays the role of a “class” in our setting)
will be presented, which is not enough to directly estimate
the discriminativeness of any feature. Our main contribution
is overcoming this fundamental barrier by learning a model
for the space of all possible features tuned to a particular
category (e.g., cars) that then allows us to pick the discrim-
inative features for the given category instance (e.g., Bob’
BMW).

A minor additional difference compared to many of the
above techniques is the choice of part representation. Pop-
ular encodings such as SIFT (Lowe 2004), which are de-
signed to be invariant to significant distortions, are too
coarse for our needs—they often destroy the very infor-
mation that distinguishes one instance from another. Thus
we use a more dense representation of multiple filter chan-
nels. However, we stress that this is not fundamental to our
method, and any part encoding and comparison metric could
be used within our learning framework.

2.2 Interclass Transfer

Because of the lack of training data for a particular in-
stance, the general framework of most object recognition
systems, that of selecting informative features using a set of

object/non-object examples, is impossible to directly apply
to our setting. In view of this difficulty, given a new cate-
gory instance (e.g., Bob’s BMW), how can we pick good
features, and how can we combine them to build an object
instance identifier?

One possible solution is to try to pick universally good
features, such as corners (Kadir and Brady 2001; Lowe
2004), for detecting salient points. However, such features
are not category specific: we expect to use different kinds
of image features when distinguishing Bob’s car from other
cars versus when we are distinguishing Bob’s dog from an-
other dog.

Another possibility is to build generative models for each
class including such characteristics as the typical illumina-
tions, likely deformations, and variation in viewing direc-
tion. With a precise enough model, an algorithm should be
able to find good features for discriminating instances of the
category from each other (Blanz et al. 2002). Alternatively,
good features could be explicitly coded into the algorithm
(Wiskott et al. 1997). However, this tends to be complicated
and time consuming, and must be done individually for a
particular category (see Sect. 2.4 below for examples). Ad-
ditionally, one might hope that given a good statistical model
and a large training data set, an algorithm would actually be
better at finding informative features.

A better option is to attempt to transfer models from pre-
vious classification tasks of the same category (interclass
transfer). Thrun (1996) introduces such an interclass trans-
fer (also referred to as lifelong learning or learning-to-learn)
framework, in which a series of similar learning tasks are
presented, where each subsequent task uses the model that
was built for the previous tasks. More recently (Miller et al.
2000), distributions over parameters of a similarity transfor-
mation learned from one group of classes (letters) are used
to model other classes (digits) for which only a single ex-
ample is provided. In other work (Fei-Fei et al. 2003), priors
for a fixed-degree constellation model are learned from one
set of classes to train a detector for a new class given only a
small number of positive examples of that class.

In all of these works, the set of hidden variables (the fea-
tures used by Thrun 1996, the transformations in Miller et al.
2000, or the parameters of the constellation model in Fei-Fei
et al. 2003) are predefined and the generalization from other
categories can be thought of as learning priors for these fixed
sets of variables. In contrast, we wish to learn how to iden-
tify any number of good features that are present in the sin-
gle “training” example for an object instance that can then be
assembled into a binary classification cascade. This forces
us to learn a model for the space of all possible features (in
our case, image patches).
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2.3 Pairwise Constraints

The machine learning literature provides a different perspec-
tive on our interclass transfer problem. Our problem can be
thought of as a standard learning task where the input is a
pair of images, and the output is a “same” vs. “different”
label. The task is then to learn a “distance metric” between
images, specifically by choosing and weighting relevant fea-
tures.

Recent work on equivalence constraints such as Relevant
Component Analysis (Shental et al. 2002) and others (Shen-
tal et al. 2003; Xing et al. 2002) show how to optimize a
distance metric over the input space of features that maps
the “same” pairs close to one another while keeping “differ-
ent” ones apart. In our setting, the transformations that we
would be interested in are subset selection and weighting
(although our technique does more then weight each fea-
ture). These methods, however, assume that each example is
described by the same predefined set of features, and that the
comparison function is a specific distance metric over these
features (e.g., Euclidean).

In our case, the “features” we are trying to use are sub-
patches of one image, compared to the best corresponding
location in the other image. Thus our feature space is very
high dimensional, and the comparison method is not a sim-
ple distance metric (notice, for example, that it is not sym-
metric due to the local search of best corresponding patch).
Even if this space of features were discretized, it would be
impossible to enumerate all possible such features, and most
would never appear within the training set. These differ-
ences make our algorithm very different from other pairwise
constraint techniques.

A core observation of this paper is that it is not necessary
to enumerate all possible features. Instead, we can model the
space of the features in a way that allows us to estimate the
informativeness of novel features that the algorithm was not
directly trained on (informative means that when this patch
is compared to the best corresponding patch in a test image,
the appearance similarity gives us information about the test
image being the “same” or “different”). Thus we model this
space of features (in our case, each feature is defined by the
size, position and appearance of the image patch) using a
smooth function (actually a pair of them, one based on the
matching to the “same” cars and one based on “different”
pairs). Then, given a new instance, the algorithm can select
the most informative patches among the ones that are actu-
ally present in that image. Furthermore, our pair of functions
gives us a way to convert the patch matching distance to a
score for each selected patch (this is similar to but has more
degrees of freedom then a linear feature weight).

Here our features are image patches. We note, however,
that our technique could be used in any setting where RCA
is used when the features can be embedded into a continu-
ous space. This has the potential advantage of exploiting the

relationship between the features that the above techniques
have no access to.

2.4 Face Identification

Our goal in this work is to develop an identification sys-
tem that is not designed for any particular category, but in-
stead automatically learns category-specific characteristics.
Nonetheless, it is useful to consider previous identification
systems that were designed with a particular category in
mind. Here we highlight a few face identification systems
that are representative and relevant for our work. For an ex-
tensive survey of the field, we refer the reader to Zhao et al.
(2003).

Techniques such as Eigenfaces (Turk and Pentland 1991)
(PCA), Fisherfaces (Belhumeur et al. 1997) (LDA), and
Bayesian face recognition (Moghaddam et al. 2000), like
our method, start with a general face modeling step, and
later make a same/difference determination for a new face.
Bayesian face recognition, which won the 1996 FERET
competition, explicitly uses “same” and “different” equiv-
alence constraints similar to the techniques described in
Sect. 2.3. These are all “holistic” techniques in that they use
the whole face region as raw input to the recognition system.
Specifically, they take registered and intensity normalized
faces (or labeled collections of images in the case of LDA
and Bayesian techniques) and find a lower dimensional sub-
space that, it is hoped, is more conducive to identification.
This is analogous to Step 1 in our procedure. To build a clas-
sifier, the model image is projected into this subspace, and
the classifier compares the model and test images within this
subspace.

More complex, feature-based methods typically use more
face-specific models and hand labeled data. Two techniques
in this category that have had a significant impact are elas-
tic bunch graph matching (Wiskott et al. 1997), where hand
selected fiducial points are matched within a graph that de-
fines their relative positions, and the method of Blanz and
Vetter (Blanz et al. 2002), which maps images onto a 3D
morphable face model.

We now turn to a more detailed description of our
method.

3 Algorithm Overview

In this section, we outline the basic components of our sys-
tem. After discussing initial preprocessing and alignment,
we describe the three stages of our algorithm: global mod-
eling of patch differences, building an identification cascade
from one example, and application of the identification cas-
cade. For clarity of exposition, we describe these stages in
reverse order.
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3.1 Preprocessing: Detection and Alignment

Our algorithm, as most identification systems, assumes that
all images are known to contain objects of the given category
(e.g. cars or faces) and have been brought into rough cor-
respondence. For our algorithm, an approximate alignment
is sufficient, because we search for matching patches in a
small neighborhood (in our data sets 10–20% of image size)
around the expected location. No foreground-background
segmentation is required, as the system learns which fea-
tures within the images (both in terms of position and ap-
pearance) are useful for identification—thus patches that are
off of the object are rejected by the learning algorithm. The
specific detection and alignment methods used for our var-
ious data sets are described in Sect. 7. For example, for the
Cars 2 data set, objects were aligned based only on the cen-
troid of a simple background subtraction based blob detec-
tor.

3.2 Applying the Object Instance Identifier

We now describe the object instance identifier, which is the
final step in our three step identification system. We start by
introducing some notation.

We assume that at test time, we are given a single im-
age of an object instance, known as the model image. The
goal will be to compare it to a large set of database images,
known as test images. For each pair of images (the model
image and one of the test images) we wish to make a deter-
mination about whether the images represent the same spe-
cific object, or two different objects. The variable C will
represent this match/mismatch variable, with C = 1 denot-
ing that the two images are of the same object (i.e., they
match) and C = 0 denoting that the two images are of dif-
ferent objects (i.e., they do not match).

For the purposes of illustration, we will often present
pairs of images side by side, where the image on the left
will be the model image and the image on the right will be
one of the test images (Figs. 3, 4, 10, 14). Thus we use IL to
refer to the model image and IR to refer to the current test
image. Thus, the identifier for a particular object instance
decides if a test image (or “right” image) IR is the same as
(C = 1) or different than (C = 0) the model image (or “left”
image) IL it was trained for.

3.2.1 Patches

Our strategy is to break up the whole image comparison
problem into the comparison of patches (Vidal-Naquet and
Ullman 2003; Weber et al. 2000). The m (possibly overlap-
ping) patches in the left image will be denoted FL

j , with
1 ≤ j ≤ m. The corresponding patches in the right image
are denoted FR

j .

Although the exact choice of features, their encoding and
the comparison metric are not crucial to our technique, we
wanted to use features that were general enough to use in a
wide variety of settings, but informative enough to capture
the relative locality of object markings as well as large and
small details of objects.

For our experiments, our patch sizes ranges from 12×12
pixels to the size of the full image, and are not constrained to
be square. To compute the patch features, we begin by com-
puting a Gaussian pyramid for each image. For each patch,
based on its size, the image pixels are extracted from a level
of the pyramid such that the number of pixels in the rep-
resentation is approximately constant (for our experiments,
all of our patches, except the smallest ones taken from the
lowest level of the pyramid, contained between 500 and 750
pixels). Then we encode the pixels by applying a first deriva-
tive Gaussian odd-symmetric filter to the patch at four orien-
tations (horizontal, vertical, and two diagonal), giving four
signed numbers per pixel. The patch FL

j is defined by its
appearance encoding, position (x, y) and size (w,h).

3.2.2 Matching

To compare a model patch FL
j to an equally encoded area of

the right image FR
j , we evaluate the normalized correlation

and compute

dj = 1 − CorrCoef(FL
j ,FR

j ) (1)

between the arrays of orientation vectors. Thus dj is a patch
appearance distance where 0 ≤ dj ≤ 2.

As the two images to be compared have been processed
to be in rough alignment, we need only search a small area
of IR to find the best corresponding patch FR

j —i.e., the one
that minimizes dj . We will refer to such a matched left and
right patch pair FL

j ,FR
j , together with the derived distance

dj , as a bi-patch. This appearance distance dj is used as
evidence for deciding if IL and IR are the same (C = 1) or
different (C = 0).

In choosing this representation and comparison function,
we compared a number of commonly used encodings, in-
cluding Lowe’s SIFT features (Lowe 2004) and shape con-
texts (Belongie et al. 2001). However, we found that due to
the nature of the problem—where distinct objects can look
very similar except for a few subtle differences—these tech-
niques, which were developed to be insensitive to small dif-
ferences, did not perform well. Specifically, using SIFT fea-
tures as described in Lowe (2004) (without category specific
learning) resulted in false-positive error rates that were an
order of magnitude larger than our best results and a fac-
tor of 2–3 worse than our baseline results (at the same re-
call rate). Among dense patch features, we chose normalized
correlation of filter outputs after experiments comparing this
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distance function to L1 and L2 distances, and the encoding
to raw pixels and edges as described elsewhere (Weber et al.
2000).

3.2.3 Likelihood Ratio Score

We pose the task of deciding if a test image IR is the same
as a model image IL as a decision rule

R = P(C = 1|IL, IR)

P (C = 0|IL, IR)
(2)

= P(IL, IR|C = 1)P (C = 1)

P (IL, IR|C = 0)P (C = 0)
> λ (3)

where λ is chosen to balance the cost of the two types of
decision errors. The prior probability of C is assumed to
be known.2 Specifically, for the remaining equations in this
paper, the priors are assumed to be equal, and hence are
dropped from subsequent equations.

With our image decomposition into patches, the poste-
riors from (2) will be approximated using the bi-patches
F1, . . . ,Fn as

P(C|IL, IR) ≈ P(C|F1, . . . ,Fm) (4)

∝ P(F1, . . . ,Fm|C). (5)

Furthermore, we will assume a naive Bayes model in which,
conditioned on C, the bi-patches are assumed to be indepen-
dent (see Sect. 5 for our efforts to ensure that the selected
patches are, in fact, as independent as possible). That is,

R = P(IL, IR|C = 1)

P (IL, IR|C = 0)
(6)

≈ P(F1, . . . ,Fm|C = 1)

P (F1, . . . ,Fm|C = 0)
(7)

=
m∏

j=1

P(Fj |C = 1)

P (Fj |C = 0)
. (8)

In practice, we compute the logarithm of this likelihood ra-
tio, where each patch contributes an additive term. Modeling
the likelihoods P(Fj |C) in this ratio is the central focus of
this paper.

In our current system, the only information from bi-patch
Fj that we use for scoring is the distance dj . Thus, to con-
vert dj to a score, the object instance identifier must con-
sist of probability distribution functions P(Dj |C = 1) and
P(Dj |C = 0) for each patch in the model image. These
functions encode our expectations about how well we ex-
pect a patch in the test image to match a particular patch

2For our car tracking application (see Sect. 7.3), dynamic models of
traffic flow can supply the prior on P (C).

(j ) in the model image, depending upon whether or not the
images themselves represent the same object instance.

The object instance identifier computes the log likelihood
ratio by evaluating these functions for each dj obtained by
comparing the model image patches to test image patches.
(A comment on notation: dj refers to the specific measured
distance for a given model image patch and the correspond-
ing test image patch, while Dj denotes the random vari-
able from which dj is a sample.) After m patches have been
matched, assuming independence, we score the match be-
tween images IL and IR using the sum of log likelihood
ratios of matched patches:

R =
m∑

j=1

log
P(Dj = dj |C = 1)

P (Dj = dj |C = 0)
. (9)

To compute this quantity, we must evaluate P(Dj =
dj |C = 1) and P(Dj = dj |C = 0). In our system, both of
these will take the form of gamma distributions �(dj ; θC=1

j )

and �(dj ; θC=0
j ), where the parameters θC=1

j and θC=0
j for

each patch and matching condition are defined as part of the
object instance identifier. How we set these parameters using
a single image is discussed in Sect. 3.3.

3.2.4 Making a Decision

The object instance identifier described above compared a
fixed number of patches (m), computed the score R by (9),
and compared it to a threshold λ. R > λ means that IL and
IR are declared to be the same. Otherwise they are declared
different. In Sect. 6, we define a more efficient object in-
stance identifier by building a cascade from the sequence of
patches. This is done by applying early termination thresh-
olds λC=1

k (for early match detection) or λC=0
k (for early

mismatch detection) after the first k patches have been com-
pared. These thresholds may allow the object instance iden-
tifier to stop and declare a result after comparing only k

patches.

3.2.5 Summary of the Object Instance Identifier

To summarize, the object instance identifier is defined by

1. a sequence of patches of varying sizes FL
j taken from the

model image IL,
2. for each patch FL

j , a pair of parameters θC=1
j and

θC=0
j that define the distributions P(Dj |C = 1) and

P(Dj |C = 0), and
3. optionally, a set of thresholds λC=1

k and λC=0
k applied

after matching the kth patch.

For an example, refer to Fig. 3.
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Fig. 3 (Color online) The Object Instance Identifier. On the left, a
model image IL is shown with an identifier composed of three patches
(these would not be the actual top three patches selected by our sys-
tem. To build the identifier, the three patches were analyzed to select
three “same” and “different” distributions from the global model of
patch differences. The red curve in each plot, which for good features
is the left peak, represents the “same” distribution, while the other blue
curve represents the “different” distribution. Our patch encoding using
oriented filter channels is shown for patch 2. The object instance identi-
fier matches the patches to the test images, computes the log likelihood
ratio score for each using the estimated distributions, and makes a same

versus different decision based on the sum R. (The top image is the
correct match.) Looking at the images, compare the informativeness of
patches 1 and 3: matching patch 1 should be very informative, since
the true matching patch (top) is much more similar then the matching
patch in the other “different” image (bottom); matching patch 3 should
be much less informative, as both matching test image patches look
highly dissimilar to the corresponding model patch. The superiority of
patch 1 was inferred correctly by our system based on the position and
appearance of these patches in the model image only, as shown by the
mutual informations I (Dj |C) for each patch, which are functions only
of the model image patches

Fig. 4 (Color online) Estimating the Distributions and Informative-
ness of Patches. The identifier generator takes an object model image
(left), samples patches from it, estimates the same and different distri-
butions and mutual information score for each patch, and selects the
sequence of patches to use for identification. The gamma distributions
(middle) were computed based on 10 selected hyper-features derived
from the position and appearance of each patch FL

j . In the model im-

age (left), each candidate patch is marked by a dot at its center, where
the size and color represent the mutual information score (bigger and
redder means more informative). The estimated distributions for two
patches is shown in the center (red and blue curves), together with
the log likelihood ratio score (light green line). When the patches are
matched to a test image, the resulting appearance distance dj is indi-
cated as a red vertical line

3.3 Generating an Object Instance Identifier

Stepping back one step in the process, we now describe how
an object instance identifier is built, or “generated”, from a
single image of an object instance. Obviously, an identifier
must be generated before it can be used to identify.

The identifier generator must take in a single model im-
age IL of a new object from the given category and pro-
duce a sequence of patches FL

1 , . . . ,FL
m and their associ-

ated gamma distribution parameters, θC=1
1 , . . . , θC=1

m and

θC=0
1 , . . . , θC=0

m , for scoring based on the appearance dis-
tance measurement dj (which is measured when the patch
FL

j is matched to a location in a test image IR).

3.3.1 Estimating P(Dj |C)

Estimating P(Dj |C = 0) and P(Dj |C = 1) means estimat-
ing parameters for two gamma distributions for each patch,
such as the ones shown in Fig. 3. Conceptually, we want
θC=0
j and θC=1

j to be influenced by what patch FL
j looks
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like and where it is on the object. That is, we want a pair
of functions QC=1 and QC=0 that map the position and ap-
pearance of the patch FL

j to the parameters of the gamma

distribution θC=1
j and θC=0

j :

QC=1 : FL
j �→ θC=1

j ,

QC=0 : FL
j �→ θC=0

j .

These functions are estimated in the initial training phase
(Step 1), and how they are estimated is discussed at length
below.

3.3.2 Estimating Saliency

If we define the saliency of a patch as the amount of infor-
mation about the decision likely to be gained if the patch
were to be matched, then it is straightforward to estimate
saliency given P(Dj |C = 1) and P(Dj |C = 0). Intuitively,
if P(Dj |C = 1) and P(Dj |C = 0) are similar distributions,
we do not expect much useful information from a value
of dj . On the other hand, if the distributions are very dif-
ferent, then dj can potentially tell us a great deal about our
decision. Formally, this can be measured as the mutual in-
formation between the decision variable C and the random
variable Dj :

I (Dj ;C) = H(Dj ) − H(Dj |C).

Here H() is Shannon entropy. Notice that this measure can
be computed just from the estimated distributions of Dj ,
which, in turn, were estimated from the position and appear-
ance of the model patch FL

j , before the patch has ever been
matched.

3.3.3 Finding Good Patches

The above mutual information formula allows us to esti-
mate the saliency of any patch. Thus defining a sequence
of patches to examine in order, from among all candidate
patches, seems straightforward:

1. for each candidate patch
(a) estimate the distributions P(Dj |C) from FL

j using

the functions QC

(b) compute the mutual information I (Dj ;C)

2. choose the top m patches sorted by I (Dj ;C).

The problem with this procedure is that the patches are not
independent. Once we have matched a patch FL

j , the amount
of additional information we are expected to derive from
matching a patch FL

i that overlaps FL
j is likely to be less

than the mutual information I (Di;C) would suggest. We
discuss a solution to this problem in Sect. 5.

However, assuming that this dependency problem can be
solved, and given the functions QC , we have a complete al-
gorithm for generating an object instance identifier from a
single image.

3.4 Off-line Training

Finally, we complete our reverse-order discussion by de-
scribing the first major step of our system, learning about
a given category (e.g., cars) from training data. This proce-
dure is done only once, and happens prior to testing.

The off-line training procedure defines the two functions
QC=1 and QC=0 that estimate the parameters of the gamma
distributions P(Dj |C = 1) and P(Dj |C = 0) from the po-
sition and appearance of a model image patch FL

j . Addi-
tionally, it builds a dependency model among patches and
defines the early termination cascade thresholds λC=1

k and
λC=0

k .
This off-line training starts with a large collection of im-

age pairs from the category (see Sect. 7 for details about
our data sets), where each left-right image pair is labeled as
“same” or “different”. A large number of patches FL

j are
sampled from the left images. Each patch is compared to its
corresponding patch in the right image. The correspondence
is defined by finding the best matching patch over a small
search area around the same location in the second image.
Once the corresponding patch is found in the right image,
the resulting value of dj is recorded and associated with the
original patch from the left image.

The functions QC=0 and QC=1 will ultimately be poly-
nomial functions of the hyper-features, that is, the location
and appearance features of each patch. These polynomials
are estimated in a maximum likelihood framework using a
generalized linear model. In short, the functions QC=1 and
QC=0 are optimized to produce gamma distributions which
maximize the likelihoods P(dj |C) of the patch difference
data from training. The details of this estimation are dis-
cussed in the following section.

4 Hyper-features and Generalized Linear Models

In this section, we describe in detail how to estimate, from
training data, the functions QC=0 and QC=1 that map the
position and appearance of a model image patch FL

j to the

parameters θC
j of the gamma distributions for P(Dj |C).

We want to differentiate patches by producing distrib-
utions P(Dj |C = 1) and P(Dj |C = 0) tuned for patch
FL

j . When a training set of “same” (C = 1) and “differ-
ent” (C = 0) images are available for a specific model im-
age, estimating these distributions directly for each patch
is straightforward. But how can we estimate the distribu-
tion P(Dj |FL

j ,C = 1), where FL
j is a patch from a new
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Fig. 5 Identification with Patches. The bottom curve shows the pre-
cision vs. recall for non-patch based direct comparison of rectified
images (the most accurate technique we found was to match a fixed
subrectange of the image by searching for the best normalized correla-
tion of the 4 filter channels). The other curves show the performance
of our algorithm on the Cars 1 data set, using all fixed sized patches
(25 × 25 pixels) sampled from a grid such that each patch overlaps its
neighbors by 50%. Notice that all three patch based models outper-
form the direct method. The three top curves show results for various
models of dj : (1) no dependence on patch characteristics (Baseline),

(2) using hyper-features in discrete bins Sect. 4.1 (Discrete), and (3)
using a generalized linear model with hyper-feature selection from
Sects. 4.2 and 4.3 (Continuous). The linear model significantly outper-
forms all of others. Compared to the baseline patch method it reduces
the error in precision by close to 50% for most values of recall be-
low 90% showing that conditioning the distributions on hyper-features
boosts performance. Note: this figure differs from results presented
later in that no patch selection was performed

model image, when we only have that single positive ex-
ample of FL

j ? The intuitive answer: by finding analogous
patches in the training set of labeled (same/different) image
pairs. However, since the space of all possible patches3 is
very large, the chance of having seen a patch very similar to
FL

j in the training set is small. In the next two subsections
we present two approaches both of which rely on project-
ing FL

j into a much lower dimensional space by extracting
meaningful features from its position and appearance, i.e.,
the hyper-features.

4.1 Discrete Hyper-features

First we explore a binning approach, where we place hyper-
features into a number of pre-specified axis-aligned bins.
For example we might break the x-coordinate of the po-
sition into four bins, the y-coordinate into three bins, and
an appearance feature of the patch, such as contrast, into
two bins. We would then label each patch with its position
in this 4-by-3-by-2 histogram. For each bin, we estimate
P(Dj |FL

j ,C = 1) and P(Dj |FL
j ,C = 0) by computing the

parameters (θC
j ) of the gamma distributions from all of the

bi-patches Fj whose left patch FL
j falls into that bin. More

3For a 25 × 25 patch, appearance plus position (including size) is a
point in �25×25+4.

precisely, we use bi-patches from the “same” image pairs to
estimate θC=1

j and the “different” pairs to find θC=0
j .4

Figure 5 compares the performance of various models on
the Cars 1 data set, which is described in Sect. 7.1. Here, for
simplicity of comparison, we use no patch selection (105
patches are sampled at fixed, equally spaced locations) and
patch sizes are fixed to 25 × 25. The two bottom curves are
baseline experiments. The direct image comparison method
compares the center part of the images using normalized
correlation on a combination of intensity and filter channels
and attempts to overcome slight misalignment. The patch-
based baseline assumes a global distribution for Dj that is
the same for all patches.

The cyan “Discrete” curve in Fig. 5 shows the perfor-
mance improvement from conditioning on discrete hyper-
features.

4.2 Continuous Hyper-features

When too many hyper-feature bins are introduced, the per-
formance of the discrete model degrades. The problem is
that the amount of data needed to populate the histograms

4Using the same binning of hyper-features, but modeling the resulting
conditional distributions as normalized histograms, rather than gamma
distributions, produces very similar results when enough data is avail-
able in each bin.
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Fig. 6 (Color online) Fitting a generalized linear model to the gamma
distribution. We demonstrate our approach by fitting a gamma dis-
tribution, through the latent variables θ = (μ,σ ), to the y position
of the patches (in practice, we use the parameterization θ = (μ,γ )).
Here we allowed μ and σ to be a 3rd degree polynomial function of y
(i.e. Z = [y3,y2,y,1]T). Each row of the images labeled (a) displays
the empirical density of d conditioned on the y position of the left
patch (FL) for all bi-patches sampled from the training data (darker
means higher density). There are two of these: one for bi-patches taken
from matching vehicles (the pairs labeled “same”); the other from mis-
matched data (“different” pairs). Row (b) shows the ordinary linear
model fit, where the curve represents the mean. The outer curves in

(c) show the ±σ (one standard deviation) range fit by the GLM. On
the bottom left, the centers of patches from a model object are labeled
with a dot whose size and color corresponds to the mutual information
score I (D;C). For two selected rows, each representing a particular y

position, the empirical distributions are displayed as a histogram. The
gamma distributions as fit by the GLM are superimposed on the his-
tograms. Notice that this model has learned that the top portion of the
vehicles in the training set is not very informative, as the two distribu-
tions (the red and blue lines in the top histogram plot) are very similar.
That is, Dj will have low mutual information with C. In contrast, the
bottom area is much more informative

grows exponentially with the number of dimensions. In or-
der to add additional appearance-based hyper-features, such
as mean intensity, oriented edge energy, etc., we moved to a
polynomial model to describe how hyper-features influence
the choice of gamma distribution parameters.

Specifically, as before, we model the distributions P(Dj |
FL

j ,C = 1) and P(Dj |FL
j ,C = 0) as gamma distributions

�(θC) parameterized by the mean and shape parameter θ =
{μ,γ }. See the left side of Fig. 6 for examples of the gamma
approximations to the empirical distributions.

The smooth variation of θ with respect to the hyper-
features can be modeled using a generalized linear model
(GLM). Ordinary (least-squares) linear models assume that
the data for each conditional distribution is normally dis-
tributed with constant variance. GLMs are extensions to or-
dinary linear models that can fit data which is not normally

distributed and where the dispersion parameter also depends
on the covariates. See McCullagh and Nelder (1989) for
more information on GLMs.

Our goal is to fit gamma distributions to P(Dj |FL
j ,C =

1) and P(Dj |FL
j ,C = 0) for various patches by maximiz-

ing the probability density of data under gamma distrib-
utions whose parameters are simple polynomial functions
of the hyper-features. Consider a set X1, . . . ,Xk of hyper-
features such as position, contrast, and brightness of a patch.
Let Z = [Z1, . . . ,Zl]T be a vector of l pre-chosen monomi-
als of those hyper-features, like squares, cubes, cross terms,
or simply copies of the variables themselves. Then each bi-
patch distance distribution has the form

P(d|X1,X2, . . . ,Xk,C) = �(d; α
μ

C · Z, α
γ

C · Z), (10)
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where the second and third arguments to �() are mean and
shape parameters. Note that both the mean and shape pa-
rameters are linear functions of the hyper-feature monomi-
als Z, which is what makes this model a generalized linear
model.

For our GLM, we use the identity link function5 for both
μ and γ . While the identity is not the canonical link func-
tion for μ, its advantage is that our ML optimization can
be initialized by solving an ordinary least squares prob-
lem. We experimentally compared it to the canonical inverse
link (μ = (α

μ
C · Z)−1), but observed no noticeable change

in performance on our data set. Each α (there are four of
these: α

μ
C=0, α

γ

C=0, α
μ
C=1, α

γ

C=1) is a vector of parameters of
length l that weights each hyper-feature monomial Zi . The
α’s are adapted to maximize the joint data likelihood over
all patches for C = 1 (using patches from the “same” im-
age pairs) and for C = 0 (from the “different” image pairs)
within the training set. These ideas are illustrated in detail
in Fig. 6, where, for demonstration purposes, we let our co-
variates Z = [y3,y2,y,1]T be a polynomial function of the
y position.

4.3 Automatic Selection of Hyper-features

While it is certainly possible to select the basic hyper-
features X and their monomials Z manually, we make ad-
ditional improvements to our system by considering larger
potential sets of hyper-feature monomials and using feature
selection techniques to select only those that are most useful.

Recall that in our GLM model we assumed a linear rela-
tionship between Z and μ. By ignoring the dispersion para-
meter, this allows us to use standard feature selection tech-
niques, such as Least Angle Regression (LARS) (Efron et
al. 2004), to choose a few (around 10) hyper-features from a
large set of candidates. In order to use LARS (or most other
feature selection methods) “out of the box”, we use regres-
sion based on an L2 loss function. While this is not opti-
mal for non-normal data, from experiments we have verified
that it is a reasonable approximation for the feature selection
step.

To use LARS for feature selection, we start with a large
set of candidate hyper-feature monomials: (a) the x and y
positions of FL, (b) the intensity and contrast within FL

and the average intensity of the entire object, (c) the average
energy in each of the four oriented filter channels, and (d)
derived quantities from the above such as square, cubic, and
cross terms as well as meaningful derived quantities such as
the direction of the maximum edge energy. LARS is used
to selected a subset of these, which act as the final set of
hyper-features Z. Once Z is set, we proceed as in Sect. 4.2.

5“Link function” and “canonical link function” are terms related to
generalized linear models. The reader should refer to GLM references
for discussions of these terms (McCullagh and Nelder 1989).

Running an automatic feature selection technique on this
large set of possible conditioning features gives us a princi-
pled method of reducing the complexity of our model. Re-
ducing the complexity is important not only to speed up
computation, but also to mitigate the risk of over-fitting to
the training set. The top curve in Fig. 5 shows results when
Z includes the first 10 features found by LARS. Even with
such a naive set of features to choose from, the performance
of the system improves significantly. We believe that further
improvement in our results is possible by designing more
sophisticated hyper-features.

5 Modeling Pairwise Relationships between Patches

In Sects. 3 and 4, we described our method for scoring a
model image patch FL

j and its best match FR
j by modeling

the distribution of their difference in appearance, dj , condi-
tioned on the match variable C. Furthermore, in Sect. 3.3,
we described how to infer the saliency of the patch FL

j for
matching based on these distributions. As we noted in that
section, this works for picking the first patch, but is not op-
timal for picking subsequent patches. Once we have already
matched and recorded the score of the first patch, the amount
of information gained from a nearby patch is likely to be
small, because their scores are likely to be correlated. In-
tuitively, the next chosen patch would ideally be a highly
salient patch whose information about C is as independent
as possible from the first patch. Similarly, the third patch
should consider both the first and the second patches.

Let FL
(k) represent the kth patch picked for the cascade

and let FL
(1...n) denote the first n of these patches. Assume we

have already picked patches FL
(1...n)

and we wish to choose

the next one, FL
(n+1), from the remaining set of FL

j ’s. We
would like to pick the one that maximizes the information
gain or the conditional mutual information:

I (D(n+1);C|D(1...n)) = I (D(1...n+1);C) − I (D(1...n);C).

This quantity is difficult to estimate, due to the need to
model the joint distribution of all D(1...n) patches. However,
note that the information gain of a new feature is upper
bounded by the information gain of that feature relative to
any single feature that has already been chosen. That is,

I (D(n+1);C|D(1...n)) ≤ min
1≤i≤n

I (D(n+1);C|D(i)). (11)

Thus, rather than maximizing the full information gain,
Vidal-Naquet and Ullman (2003) (see Fleuret 2004 for a
comparison to other feature selection techniques) proposed
the following heuristic that maximizes this upper bound on
the amount of “additional” information:

arg max
j

min
i

I (Dj ;C|D(i)), (12)
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where i varies over the already chosen patches, and j varies
over the remaining patches.

We use a related, but slightly different heuristic. When
Dj and D(i) are completely correlated (that is, D(i) predicts
Dj ) then I (Dj ;C|D(i)) = 0. However, even when Dj and
D(i) are completely independent given C, I (Dj ;C|D(i))

does not equal I (Dj ;C). This somewhat counterintuitive
result is due to the fact that there is only a total of 1 bit of
information in C, some of which has already been discov-
ered by matching patch Fj . This property causes problems
for the above pairwise approximation, as in some circum-
stances it might lead to choosing a suboptimal next patch
F(i). In particular, a patch that is highly correlated with an
uninformative patch might win out against another patch
that is lightly correlated with a very informative one. Hence,
in order to find the best next patch, we use a quantity re-
lated to I (Dj ;C|D(i)), but one which varies between 0 and
I (Dj ;C) depending only on the correlation:

arg max
j

min
i

I (Dj ;C|D(i)) × I (Dj ;C)

I (D∗
j ;C|D(i))

. (13)

Here D∗
j is a random variable with the same marginal dis-

tribution as Dj but is independent of D(i) when conditioned
on C. This formulation also turns out to be easier to approx-
imate within our framework (see Sect. 5.3).

5.1 Dependency Model

To compute (13), we need to estimate conditional mutual
informations of the form

I (Dj ;C|D(i)) = I (Dj ,D(i);C) − I (D(i);C).

In Sect. 3.3, we showed that we can determine the second
term, I (D(i);C), from the estimated gamma distributions
for P(D(i)|C = 1) and P(D(i)|C = 0). Similarly, to calcu-
late I (Dj ,D(i);C), we need to estimate the bivariate distri-
butions P(D(i),Dj |C = 1) and P(D(i),Dj |C = 0).

Because there is relatively little data for each pair of
patch locations, and because we want to evaluate the de-
pendence of patches conditioned not only on location but
also appearance-based hyper-features, we again use a gen-
eralized linear model to gain statistical leverage, this time
to model the joint distributions of pairs of patch dis-
tances. The central goal in choosing a parameterization of
the conditional joint distributions P(D(i),Dj |C = 1) and
P(D(i),Dj |C = 0) is to choose a form for the distributions
such that, when the parameters are estimated, the resulting
computation of the joint mutual information is as accurate
as possible. In order to achieve this, we adopt the follow-
ing strategy for parametric estimates of the conditional joint
distributions.

• We constrain each joint distribution to be an instance
of Kibble’s bivariate gamma distribution (Kibble 1941),
a generalization of the one-dimensional gamma distri-
bution that is constrained to have gamma distributions
as marginals. A Kibble distribution has four parameters:
μ1,μ2, γ , and ρ, with 0 < ρ < 1. μ1 and μ2 are mean
parameters for the marginals. γ is a dispersion parame-
ter for both marginals. ρ is the correlation between d(i)

and dj , and varies from 0, indicating full independence of
the marginals, to 1, in which the marginals are completely
correlated (see Fig. 7).

• We further constrain each distribution to have the same
mean parameter for each marginal, i.e. μ1 = μ2 for each
joint distribution. The shared mean parameter and the
shared dispersion parameter γ are set to the parameters of
the marginal distribution P(dj |C = 0) and P(dj |C = 1)

in the respective cases.
• Finally, we constrain the pair of distributions P(D(i),Dj |C =

1) and P(D(i),Dj |C = 0) to share the same correlation
parameter ρ.

Thus we use Kibble’s bivariate distribution with 3 parame-
ters, which we write as K(μ,γ,ρ) (see Appendix 2).

5.2 Predicting Patch Correlations from Hyper-feature
Differences

Given the above formulation, we have reduced the problem
of finding the next best patch, FL

(n+1), to the problem of es-
timating the correlation parameter ρ of Kibble’s bivariate
gamma distribution for any pair of patches FL

(i) (one of the

n patches already selected) and FL
j (a candidate for FL

(n+1)).
The intuition is that patches that are nearby and overlapping
or that lie on the same underlying image features (for exam-
ple the horizontal line on the side of the car in Fig. 8) are
likely to be highly correlated, whereas two patches that are
of different sizes and far away from one another are likely
to be less so.

We model ρ, the last parameter of K(μC=1
j , γ C=1

j , ρ)

and K(μC=0
j , γ C=0

j , ρ), similarly to our GLM estimate of
its other parameters (see Sect. 3.3): we let ρ be a linear
function of the difference of various hyper-features of the
two patches, FL

(i) and FL
j . Clear candidates for these co-

variates are the difference in position and size of the two
patches, as well as some image-based features such as the
difference in the amount of contrast within each patch. To
ensure 0 < ρ < 1, we use a sigmoid link function

ρ = (1 − exp(β · Y))−1, (14)

where Y is our vector of hyper-feature differences and β is
the GLM parameter vector.

Given a data set of patch pairs FL
(i)

and FL
j and asso-

ciated distances d(i) and dj (found by matching the “left”
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Fig. 7 Bivariate Gamma Distributions. We demonstrate our tech-
nique by plotting the empirical and modeled joint densities of all patch
pairs from the training set which are a fixed distance away from each
other. On the left side, the two patches are far apart, thus they tend
to be uncorrelated for both “same” (C = 1) and “different” (C = 0)
pairs. This is evident from the empirical joint densities d1 vs. d2 (la-
beled dfar), computed by taking all pairs of “same” and “different”
25 × 25 pixel bi-patches from the training set that were more than 60
pixels apart. The great mismatch between the P (d1, dfar|C = 1) and
P (d1, dfar|C = 0) distributions implies that the joint mutual informa-
tion between (d1, dfar) and C is high. Furthermore, the mismatch in
the joint distributions is significantly larger (as measured in bits) than
the mismatch between the marginal conditional distributions shown
below them in row (c). This means that the information gain, the joint
mutual information less the marginal mutual information, is high. In

contrast, the right side shows the case where the patches are very close
(overlap 50% horizontally). Here d1 vs. d2 (labeled dnear) are very
correlated. While there is still some disagreement between the joint
distributions for C = 0 and C = 1, the information contained in this
discrepancy (as measured in bits) is almost equal to the information
contained in the discrepancy between the marginal distributions shown
beneath them in row (c). That is, the joint distributions provide no
additional information, or information gain, over the marginal distrib-
utions. Our parametric model for these joint densities are shown at the
bottom (d). Notice that the modeled marginal distributions of d2 (c)
are gamma and are unaffected by the correlation parameter. The lines
superimposed on the bivariate plots show the mean and variance of d1
conditioned on d2: notice that these are very similar for the empirical
(b) and model (d) densities

patches to a “right” image of the same or of a different ob-
ject), we estimate the linear coefficients β . This is done by
maximizing the likelihood of K(μC=1

j , γ C=1
j , ρ) using data

taken from image pairs that are known to be the “same”6 and
K(μC=0

j , γ C=0
j , ρ) using data taken from “different” image

pairs. Also similarly to Sect. 3.4, we choose the encoding of
Y automatically, by the method of forward feature selection
(John et al. 1994) over candidate hyper-feature difference

6μC=1
j and γ C=1

j are estimated from FL
j by the method of Sect. 3.4

and are fixed for this optimization.

variables. As anticipated, the top ranked variables encoded
differences in position, size, contrast, and orientation energy.
Our final model uses the top 10 variables.

5.3 Online Estimation of Patch Order

As we described in Sect. 5.1, we wish to select patches in
a greedy fashion based on (13). In the previous section, we
have shown how to estimate I (Dj ;C|D(i)). Based on this,
computing I (D∗

j ;C|D(i)) is straightforward: use the same
Kibble densities as with Dj but just set the correlation para-
meter ρ = 0.
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Unfortunately, computing these quantities online is very
expensive (notice that the formula for the Kibble distrib-
ution contains an infinite sum). However, we noticed that
k = I (Dj ;C|D(i))

I (D∗
j ;C|D(i))

, which varies from 0 < k < 1, is well ap-

proximated by k = (1−ρ). Thus in practice, to find the next
best patch, our algorithm finds the patch j such that

arg max
j

min
i

I (Dj ;C) × (1 − ρj(i)) (15)

where ρj(i) is computed by (14) from the hyper-feature dif-
ferences between patch Fj and F(i).

6 Building the Cascade

Now that we have a model for patch dependence, we can
create a sequence of patches FL

j (see Sect. 3.3) that, when
matched, collectively capture the maximum amount of in-
formation about the decision C (same or different?). The
sequence is ordered so that the first patch is the most infor-
mative, the second slightly less so and so on. The final step
of creating a cascade is to define early stopping thresholds

Fig. 8 Patch Correlations. On each image, the patches most corre-
lated with the white-circled patch are shown. Notice that in the left
image, where the patch sits in an area with a highly visible horizontal
structure, the most correlated patches all lie along the horizontal fea-
tures. Contrast this with the right image, showing correlation of patches
with a patch sitting on a wheel, where the most correlated patches are
those that strictly overlap the white-circled patch

on the log likelihood ratio sum R that can be applied after
each patch in the sequence has been matched and its score
added to R (see Sect. 3.2).

We assume that we are given a global threshold λ (see
Sect. 3.2) that defines a global choice between selectivity
and sensitivity. What remains is the definition of thresholds
at each step, λC=1

(k) and λC=0
(k) , which allow the system to ac-

cept (declare “same”) if R > λC=1
(k) or reject (declare “differ-

ent”) if R ≤ λC=1
(k) . If neither of these conditions is met, the

system should continue by comparing the k + 1th patches of
each image.

To learn these thresholds, we generate identifiers on the
left training images and run the resulting identifier compar-
ing against the right images of our training data set. This
will produce a performance curve for each choice of k, the
number of patches included in the classification score, in-
cluding k = m, the sum for which λ is defined. Our goal
for the cascade is to make decisions as early as possible but
to avoid increasing the error on the training set. These two
constraints exactly define the thresholds λC=1

(k) and λC=0
(k) :

1. For each “same” and “different” pair in the training set
(a) generate an identifier with a sequence of m patches

based on IL

(b) classify IR by evaluating

R =
m∑

j=1

log
P(Dj = dj |C = 1)

P (Dj = dj |C = 0)
> λ.

2. Let IC=1 be the set of correctly classified “same” pairs
(where label is “same” and R > λ). Set the rejection
threshold λC=0

(k) by

λC=0
(k) = min

IC=1

k∑

j=1

log
P(Dj = dj |C = 1)

P (Dj = dj |C = 0)
.

Fig. 9 (Color online) The Ten Most Informative Patches. The ten rec-
tangles on each object show the top ten patches our identifier generator
selected for the identification cascade for that object. The face model
seems to prefer features around the eyes, while the two car models
tend to both like the side and wheels but differ in their interest in the
roof region. Notice, however, that even within a category each cascade

is unique, highlighting interesting appearance features for that object;
this is because the patches are selected based on both position and ap-
pearance characteristics (hyper-features). The patches are color coded
according to their cascade order, from most informative (red) to least
(blue) (see color-bar on the right)
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That is, we want λC=0
(k) to be as large as possible without

misclassifying any additional “same” pairs over the base
identifier which uses all patches.

3. Similarly define IC=0, and set λC=1
(k) using the max.

7 Results

The goal of this work is to create an identification system
that could be applied to different categories, where the algo-
rithm would automatically learn (based on off-line training
examples) how to select category-specific salient features
from a new image. In this section, we demonstrate that after
category training, our algorithm is in fact able take a single
image of a novel object and solely based on it create a highly
effective “same” vs. “different” classification cascade of im-
age patches. Specifically, we wish to show that for visual
identification each of the following leads to an improvement
in performance in terms of accuracy and/or computational
efficiency:

1. breaking the object up into patches, matching each one
separately and combining the results,

2. differentiating patches by estimating a scoring and sa-
liency function for each patch (based on its hyper-
features),

3. modeling the dependency between patches to create a se-
quence of patches to be examined in order, and

4. applying early termination thresholds to the patch se-
quence to create the cascade.

We tested our algorithm on three different data sets: (1)
cars from two cameras with significant pose differential, (2)
faces from news photographs, and (3) cars from a wide-area
tracking system with 33 cameras and 1000’s of unique ve-
hicles. Examples from these three data sets are shown in
Fig. 9, with the top 10 patches of the classification cascade.
Notice that the sequence of patches for each object reflects
both category knowledge (for cars, the system tends to select
descriptive patches on the side with strong horizontal gradi-
ents and around the wheels, while for faces the eyes and
eyebrows are preferred) and object specific characteristics.

For each data set, a different automatic preprocessing
step was applied to detect objects and approximately align
them. After this, the same identification algorithm was ap-
plied to all three sets. For lack of space, we detail our ex-
periments on data set 1, enumerate the results of data set 2,
and only summarize our experience with data set 3. Qualita-
tively, our results on the three are consistent in showing that
each of the above aspects of our system improves the per-
formance, and that the overall system is both efficient and
effective.

7.1 Cars 1

358 unique vehicles (179 training, 179 test) were extracted
using a blob tracker from 1.5 hours of video from two cam-
eras located one block apart. The pose of the cameras rela-
tive to the road (see Fig. 1) was known from static camera
calibration, and alignment included warping the sides of the
vehicles to be approximately parallel to the image plane. Ad-
ditionally, by detecting the wheels, we rescaled each vehicle
to be the same length (inter-wheel distance of 150 pixels).
This last step actually hurts the performance of our system,
as it throws away size as a cue (the camera calibration gives
us a good estimate of actual size). However, we wanted to
demonstrate the performance when such calibration infor-
mation is not available (this is similar to our face data set,
where each face has been normalized to a canonical size).

Within training and testing sets, about 2685 pairs (true
to false ratio of 1:15) of mismatched cars were formed from
non-corresponding images, one from each camera. These in-
cluded only those car pairs that were superficially similar in
intensity and size. Using the best whole image comparison
method we could find (normalized correlation on blurred fil-
ter outputs) on this set produces 14% false positives (29%
precision) at a 15% miss rate (85% recall). Example cor-
rect and incorrect classification results using our cascade are
shown in Fig. 10. This data set together with more example
results are available from our web site.

Figure 12 compares several versions of our model by
plotting the false-positive rate (y-axis) with a fixed miss rate
of 15% (85% recall), for a fixed budget of patches (x-axis).
The 85% recall point was selected based on Fig. 11, by pick-
ing the equal precision-recall point given the 1 to 15 true-to-
false ratio.

The Random Order curve uses our hyper-feature model
for scoring, but chooses the patches randomly. By com-
paring this curve to its neighbors, notice the performance
gain associated with differentiating patches based on hyper-
features both for scoring (No Hyper-Features vs. Random
Order) and for patch selection (Random Order vs. Full
Model). Comparing Mutual Information vs. Full Model
shows that modeling patch dependence is important for
choosing a small number of patches (see range 5-20) that to-
gether have high information content (Sect. 5). Comparing
Position Only (which only uses positional hyper-features)
vs. Full Model (which uses both positional and appearance
hyper-features) shows that patch appearance characteristics
are significant for both scoring and saliency estimation. Fi-
nally, the cascade performs (1.02% error, with mean of 4.3
patches used) as well as the full model and better than any
of the others, even when those are given an unlimited com-
putation budget.

Figure 11 shows another way to look at the performance
of our full model given a fixed patch (computation) budget
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Fig. 10 (Color online) Model-Test Car Image Pairs. Each pair of im-
ages shows a model and a test image, which has been labeled as “same”
or “different” (see upper left corner of test image) by our algorithm.
The patches that were used in the cascade for that test image are indi-
cated for each pair, where the order is color coded from red to blue.
The first 3 rows show correct classification results, while the last 2
demonstrate errors. False-negative errors primarily occur with darker
cars where the main source of features are the illumination artifacts
that can vary greatly between the images. False-positive errors tend to
involve very similar cars

(the Conditional MI curve of Fig. 12 represents the intersec-
tion of these curves with the 85% recall line). The cascade
performance is also plotted here (follow the black arrow).
The distribution of the number of patches it took to make a
decision in the cascade model is plotted in Fig. 13.

7.2 Faces

We used a subset of the “Faces in the News” data set de-
scribed in Berg et al. (2004), where the faces have been au-
tomatically detected from news photographs and registered
by their algorithm. Our training and test sets each used 103
different people, with two images per person. This is an ex-
tremely difficult data set for any identification algorithm,
as these face images were collected in a completely uncon-
trolled manner (news photographs).

Table 1 summarizes our results for running the same al-
gorithm as above on this set. Note the same pattern as above:
the patch based system generally outperforms whole ob-

Fig. 11 Precision vs. Recall Using Different Numbers of Patches
(Cars 1). These are precision vs. recall curves for our full model. Each
curve represents the performance tradeoff between precision and recall,
when the system uses a fixed number of patches. The lowest curve uses
only the single most informative patch, while the top curve uses up to
100 patches. The 85% recall rate, where the different models of Fig. 12
are compared, is noted by a vertical black dashed line. A magenta X,
at recall = 84.9 and precision = 84.8, marks the performance of the
cascade model

Table 1 Precision vs. recall for faces

Recall Rate 60% 70% 80% 90%

PCA + MahCosine 82% 73% 62% 59%

Filter + NormCor 83% 73% 67% 57%

No Hyper-Features 86% 73% 68% 62%

Random 10 Patches 79% 71% 64% 60%

Top 1 CMI Patch 86% 76% 69% 63%

Top 50 CMI Patches 92% 84% 75% 67%

CMI Cascade 92% 84% 76% 66%

Each column denotes the precision associated with a given recall rate
along the P-R curve. PCA + MahCosine and Filter + NormCor are
whole face comparison techniques. PCA + MahCosine is the best curve
produced by (Bolme et al. 2003), which implements PCA and LDA
algorithms with face-specific preprocessing. Filter + NormCor uses
the same representation and comparison method as our patches, but
applied to the whole face. The last four all use our patch based system
with hyper-features. The last three use conditional mutual information
based patch selection, where the number of patches allowed is set to 1,
50, and variable (cascade), respectively. These cascades use between 4
and 6 patches on average to make a decision.

ject systems (here we compare against state of the art PCA
and LDA algorithms with face specific preprocessing us-
ing CSU’s implementation Bolme et al. 2003); estimating a
scoring and saliency function through hyper-features greatly
improves the performance of the patch based system; the
cascades, using less than 6 patches on average, performs as
well as always using the best 50 patches (performance ac-
tually declines above 50 patches). Refer to Fig. 14 for ex-
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Fig. 12 (Color online) Comparing Performance of Different Models
(Cars 1). The curves plot the performance of various models, as mea-
sured by the false-positive rate (fraction of different pairs labeled incor-
rectly as same), at a fixed recall rate of 85%. The y-axis shows the log
error rate, while the x-axis plots the log number of patches the models
were allowed to use (up to a max of 100). As the number of patches
increases, the performance improves until a point, after which it lev-
els off and, for the models that order patches according to information
gain, even decreases (when non-informative patches begin to pollute
the score). The top line uses no hyper-features (i.e. uses the same dis-
tributions for all patches) and hence performs very poorly compared to
the hyper-feature versions, even when it is allowed to use 100 patches.
The second curve from the top uses our hyper-feature model to score
the patches, but random selection to pick the patch order. The dark
blue position only model uses only position (including size: x, y,w,h)
based hyper-features for selecting patch order (i.e. it computes a fixed
patch order for all cars but using the same conditional mutual infor-
mation algorithm as the full model). The light blue line uses all the
hyper-features used by the full model, but sorts the patches by mutual
information, without considering dependencies (instead, it uses a sim-
ple heuristic to prevent selected patches from overlapping too much).
The magenta curve shows our full model based on selecting patches ac-
cording to their conditional mutual information, using both positional
and image-based hyper-features. Finally, the magenta X at 4.3 patches
and 1.02% error shows the performance of the cascade model

ample classification results. As part of an extension of this
current paper (Jain et al. 2006), we have also compared this
algorithm to Bayesian face recognition (Moghaddam et al.
2000), which won the 1996 FERET face identification com-
petition, and found our algorithm to perform significantly
better on this difficult data set. Our more recent work further
improves on the results reported here by training a discrim-
inative model on top of the hyper-features.

7.3 Cars 2

We are helping to develop a wide-area car tracking system
where this component must re-identify vehicles when they
pass by a camera. Detection is performed by a blob tracker
and the images are registered by aligning the centroid of the
object mask (the cameras are located approximately perpen-

Fig. 13 How many patches does it take to make a decision? This his-
togram shows the number of patches that were matched by the clas-
sification cascade before a decision could be made. On average, 4.2
patches were required to make a negative (declaring a difference) de-
cision, and 6.7 patches to make a positive one

Fig. 14 Model-Test Face Image Pairs. The first two rows of images
show correct results, while the bottom two demonstrate errors. The
large variations in pose, lighting, expression and image resolution
make this data set very difficult. Our algorithm prefers eyes and seems
to have learned that when the face is partially in profile, the eye that is
more frontal is more informative (probably because it is more likely to
be consistent)

dicular to the road). We tested our algorithm on a subset of
data collected from 33 cameras and 1000’s of unique vehi-
cles, by learning an identifier generating function for each
camera pair. In this fashion, the system incorporates the typ-
ical distortions that a vehicle undergoes between these cam-
eras.

Equal error rates for our classification cascade were
3–5% for near lane (vehicle length ∼140 pixels) and 5–7%
for far lane (∼60 pixels), using 3–5 patches on average.
Whole object comparison methods (we tested several dif-



22 Int J Comput Vis (2008) 77: 3–24

ferent techniques) and using patches without hyper-features
resulted in error rates that were 2 to 3 times as large.

7.4 Algorithm Complexity

This algorithm was designed to be able to perform real-time
object identification. The most computationally expensive
part is the off-line training, as many patches must be sam-
pled and matched using normalized correlation (3–800,000
in our experiments above). For the on-line step, our obser-
vation is that a model will be built only once for each cate-
gory instance (Step 2 of our algorithm), but that model will
then be applied (matched) many times to incoming images
(Step 3). Thus we choose to pay the one-time cost of scan-
ning over all candidate patches to build the most efficient
classification cascade possible.

Evaluating the informativeness of all patches within an
image is, however, not as computationally daunting as it
sounds: computing all of our hyper-features for a patch can
be performed using integral images, making their compu-
tation time independent of patch size. Given the vector of
hyper-features for a patch, computing the “same” and “dif-
ferent” gamma distributions used by the information mea-
sure involves computing 2 dot products (one for each degree
of freedom of the distribution). Finally, the mutual informa-
tion measure is computed using a table-lookup based on the
gamma parameters.

The most expensive on-line step (by far) is matching the
patches of the cascade in Step 3 by searching for the most
similar patch in terms of normalized correlation. Therefore
the on-line running time of our algorithm is directly a func-
tion of the average number of patches that must be matched
before a decision can be made, and the size of the area that
needs be searched for the best matching patch. Given the
care with which we pick the patches of our cascade, the av-
erage number of patches is typically less then 5 (see above).
The search area, on the other hand, depends not on our algo-
rithm but the accuracy of object detection method used.

Our current implementation is in Matlab. We estimate
that an optimized implementation of our algorithm would be
able to perform the vehicle identification component of the
system described above with up to five new vehicle reports
per second, and 15 candidate ids per report, in real time on
a single processor.

8 Conclusion

We have described a new object identification system that
is general in that it can be applied to different categories of
objects. We have shown that the key step is to teach the sys-
tem to be able to pick informative features for new objects
within the given category given an off-line labeled category

Fig. 15 Selecting Unusual Features. For each image, the first (most
informative) patch of the cascade is displayed

training set. Our main contribution is a novel learning algo-
rithm that actually models the space of possible features for
the category, allowing it to select and score features that it
has never seen before, based on a single new example.

In the introduction, we have argued that our goal was to
build an algorithm that has the potential to recognize the use-
fulness of a mole on a person’s cheek for identification, even
when it had never seen another person with such a mole. The
hope is that the system would be able to generalize from
having seen other similar facial blemishes in other locations
(that is, in our case, image patches with mole-like appear-
ance characteristics), and recognize that such patches, wher-
ever they are located, make good features.

While we have no faces with obvious moles in our data
set, Fig. 15 shows two example results that make us hope-
ful that we are on the right track. In both, the algorithm has
picked a very atypical patch as its top most informative fea-
ture, due to an unusual image characteristic. The left image
contains the only person in the our data set who is wear-
ing sunglasses and it is the only image for which the algo-
rithm has decided not to pick a patch near the eyes as its top
feature. The right example shows a truck towing a flatbed
trailer, where the unique connecting area is chosen as the
best feature. We can only hypothesize how the algorithm
made these seemingly correct yet unusual choices.

In both cases the appearance of the features dominated
the decision: the homogeneous area of the sunglasses re-
placed the usually informative eye features, while the elon-
gated lines of the trailer are reminiscent of the type of fea-
tures that are found to be informative elsewhere. While ac-
curacy of these unusual choices are quantitatively very dif-
ficult to measure, we believe that the overall performance of
our algorithm is due to this ability to pick the right patches
for most objects.
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Appendix 1: Gamma Distribution

Gamma distributions are non-zero in the range 0 < x < ∞
and have two degrees of freedom, most commonly parame-
terized as a shape parameter γ and a scale parameter β . In
this work, we typically use the parameters γ and the mean
μ, where μ = β × γ . With this parameterization, the proba-
bility density function has the form

f (x;μ,γ ) = γ γ ( x
μ
)(γ−1) exp(

−x γ
μ

)

μ�(γ )
,

where �() is the gamma function. For examples of gamma
distributions, refer to Figs. 3 and 6. In this paper we use the
notation �(μ,γ ) for the gamma distribution.

Appendix 2: Kibble’s Bivariate Distribution

Kibble’s bivariate gamma distribution is non-zero in the
range 0 < x,y < ∞ and has up to four degrees of freedom:
the marginal parameters μx,μy, γ, and a correlation term
ρ. Such a distribution has gamma marginals, where μx and
γ define the x marginal and μy and γ define the y marginal.
The parameter ρ , which ranges 0 ≤ ρ < 1, is the correlation
coefficient between the variables x and y: when ρ is small,
x and y are close to independent; when ρ is large, x and y

are highly correlated. If we let tx = xγ
μx

and ty = yγ
μy

, then
this bivariate distribution has the form

f (x, y;μx,μy, γ,ρ) = (tx × ty)(γ − 1) exp(− tx+ty
1−ρ

)

(1 − ρ)γ �(γ )

×
∞∑

j=0

ρj (tx × ty)
j

(1 − ρ)2j�( γ + j)j ! .

The rate of convergence of the infinite series depends heav-
ily on the ρ parameter, where values of ρ close to 1 converge
much more slowly. Examples of Kibble’s distribution can be
found in Fig. 7(d). In this paper, we always set μx = μy , and
thus denote Kibble’s distribution as K(μ,γ,ρ).
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