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Abstract

Event cameras, inspired by biological vision systems,
provide a natural and data efficient representation of vi-
sual information. Visual information is acquired in the form
of events that are triggered by local brightness changes.
However, because most brightness changes are triggered
by relative motion of the camera and the scene, the events
recorded at a single sensor location seldom correspond
to the same world point. To extract meaningful informa-
tion from event cameras, it is helpful to register events that
were triggered by the same underlying world point. In this
work we propose a new model of event data that captures
its natural spatio-temporal structure. We start by develop-
ing a model for aligned event data. That is, we develop
a model for the data as though it has been perfectly reg-
istered already. In particular, we model the aligned data
as a spatio-temporal Poisson point process. Based on this
model, we develop a maximum likelihood approach to reg-
istering events that are not yet aligned. That is, we find
transformations of the observed events that make them as
likely as possible under our model. In particular we extract
the camera rotation that leads to the best event alignment.
We show new state of the art accuracy for rotational veloc-
ity estimation on the DAVIS 240C dataset [20]. In addition,
our method is also faster and has lower computational com-
plexity than several competing methods. Code: https:
//github.com/pbideau/Event-ST-PPP

1. Introduction

Inspired by biological vision systems, event cameras [14,
25, 33, 4, 5] mimic certain biological features of the hu-
man vision system, such as recording brightness changes
as events, asynchronously, and at high temporal resolution.

(a) Method overview

(b) Video frame (c) Unaligned events,
‘blurred’ event image.

(d) Aligned events, sharp
event image.

Figure 1. Alignment of event data by maximizing the joint prob-
ability of a set of events pA(Rω(O)). Top row: Events are plotted
in red/blue depending on their polarity. The projection of events
onto the 2D image plane is shown in black - indicating the qual-
ity of their alignment over time. Aligned events projected onto
2D lead to sharp edge map, where as unaligned events are dis-
persed over the image plane. Bottom row: video frame, accumu-
lated events, accumulated aligned events.

This relatively new way of acquiring visual information dif-
fers significantly from classical frame-based video record-
ings, leading to new research directions in computer vision
and drawing close connections to robotics and the cogni-
tive sciences. Prior work has shown that event data is rich
enough to recover high quality brightness images, even in
high-speed and high dynamic range (HDR) scenarios [26],
and it allows early stage information processing such as mo-
tion perception and recognition [35, 12]. Despite these ad-
vantages, current vision algorithms still struggle to unlock
the benefits of events cameras.

https://github.com/pbideau/Event-ST-PPP
https://github.com/pbideau/Event-ST-PPP


The problem of aligning event camera data. In this pa-
per we focus on event camera data that comes from a mov-
ing camera in a static or nearly static environment. Because
of the camera motion, as the camera records events through
time, the events at a fixed camera pixel correspond to differ-
ent points in the world. Conversely, many events recorded
at different sensor pixel locations are corresponding to the
same world point. This makes it more difficult to interpret
event camera data. Finding transformations of the events
that map each event triggered by the same world point to
the same pixel location of the camera sensor can be called
alignment or registration of the events. In this paper, we
propose a method for alignment based on a new probabilis-
tic model for event camera data.

Panoramas of events. To describe our model and al-
gorithm, we draw analogies with image panoramas created
using RGB images. By warping a set of images taken from
different camera positions into the same shared set of co-
ordinates, a set of images may be combined into a larger
composite image, or panorama, of a scene.

The same idea can be applied to event data: transforming
the location of each individual event so that it is transformed
into a shared coordinate system [27, 11].1 Doing this with
event data is challenging, since it is more difficult to estab-
lish correspondences in event data than among images.

Instead, many approaches to registering event camera
data are based upon a simple intuitive observation [19, 30,
15, 21, 7]. If we form an “aggregate” event camera image
by simply recording the number of events at each pixel over
some period of time, then these aggregate images tend to be
sharper when the events are well-aligned (Figure 1(d)), and
blurrier when the events are less well-aligned (Figure 1(c)).
Leveraging this observation, one tries to find a set of trans-
formations that maximize the sharpness of the aggregate
image. These methods, discussed in detail in the related
work section, mostly differ in their definition of defining
sharpness, i.e., in their loss functions.

Congealing and probabilistic models of alignment. In
this paper, we introduce a new, more effective method for
event alignment. It is related to a probabilistic method
for aligning traditional images known as congealing [13],
which does not use any explicit correspondences. Instead,
one measures the degree to which a set of images are jointly
aligned. To measure the quality of the joint image align-
ment, one considers the entropy of the set of pixels at each
image location. If a location has the same pixel value across
all of the images, it has minimum entropy. If it has many
different pixel values, it has high entropy. By transform-
ing the images so that the sum of these pixelwise entropies

1In the event camera literature, the term ‘panorama’ is usually applied
to alignment over sequences in which the camera has large displacements,
resulting in a panorama much larger than a single camera frame. However,
the same term can be applied to registering short sequences of event camera
data, which creates panoramas only slightly larger than a single frame.

is minimized, the images naturally move into alignment.
Since minimizing entropies is equivalent to maximizing
pixel likelihoods under a non-parametric distribution, con-
gealing can also be seen as a maximum likelihood method
(see [13] for more details).

Contributions. We present a novel probabilistic model
for event camera data. It allows us to evaluate the likeli-
hood of the event data captured at a particular event camera
pixel. By introducing transformations to move the data into
a common coordinate system, we show that by maximiz-
ing the likelihood of the data under this model with respect
to these transformations, we naturally retrieve an accurate
registration of the event data. That is, we develop a prob-
abilistic, maximum likelihood method for the joint align-
ment of event data. We support this novel approach by pro-
viding new state-of-the-art results. We have substantially
higher accuracy than recently published methods, and are
also among the fastest. In addition, we reassess how eval-
uations on these de facto benchmarks are done, and argue
that a new approach is needed.

2. Related Work
Rotational velocity estimation from event data has

been an active research topic since an Inertial Measurement
Unit (IMU) was integrated on the Dynamic Vision Sensor
(DVS) event camera [14] to yield a combined visual and
vestibular device [3] (the precursor of the DAVIS240 event
camera [1]). Sensor fusion between the IMU’s gyroscope
(measuring angular velocity) and the DVS output allowed
the stabilization of events for a short amount of time. How-
ever, IMUs are interoceptive sensors that suffer from biases
and drift (as error accumulates), so exteroceptive solutions
using the events were investigated as alternative means to
estimate rotational motion and therefore to stabilize event-
based output during longer time periods.

Early work on rotational motion estimation (i.e., camera
tracking) from event data includes [2, 11, 27, 8]. Some of
these works arose as 3-DOF (degrees of freedom) Simulta-
neous Localization and Mapping solutions [11, 27]. Since
depth cannot be estimated in purely rotational motions, the
“mapping” part refers to the creation of a panoramic image
(either of edges [27] or of reconstructed brightness [11]).
The method in [8] proposed to estimate rotational mo-
tion by maximizing the contrast of an image of displaced
(warped) events. This contrast measure was the highest
quality metric for event alignment in terms of accuracy and
computation time among 24 loss functions that were ex-
plored in [6]. The event alignment technique was later ap-
plied to other problems (depth, optical flow and homog-
raphy estimation) in [7]. Since then, the idea of event
alignment has been gaining popularity and extended, via
different alignment metrics and optimization algorithms,
for several motion estimation and segmentation problems
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(b) Aligned events

Figure 2. The spatio-temporal Poisson point process. Events arise due to the movement of the camera relative to the scene. Here, events
are pictured in red. Events with the same shape are triggered by the same scene point. Each row indicates different sensor pixel locations
over time. (a): As the camera moves, events capturing the same scene point in the world are recorded at different sensor locations - we
call them ‘de-registered’. (b): Events that can be associated with the same scene point in the world are registered to each other and are
modeled as aligned Poisson point processes. Ironically aligned events are a useful representation of event data to extract scene information,
but actually events are only triggered if the camera is moving. Thus event data can only be acquired in its de-registered form (a).

in [6, 19, 30, 31, 21, 15, 24, 23, 22].
The closest work to us are [21, 7]. In [21] event align-

ment is expressed via a family of entropy functions over all
pairs of warped events. Entropy measures dispersion and
our approach can also be interpreted as an entropy mini-
mization [13]. In contrast, we propose a framework that
maximizes the likelihood of events at each pixel location,
as opposed to using pairwise event measures. This directly
corresponds to minimizing the entropy per pixel, indepen-
dently. Assuming pixel-wise independence allows to derive
an event alignment approach that is computationally effi-
cient (reduced complexity) and achieves high performance,
as shown in the experiments (Section 4). In addition, inde-
pendent modeling of each pixel leads to a simple theoretical
formulation with clear properties and dependencies.

Congealing and probabilistic models for alignment.
Our event alignment method is inspired by congealing [18]
–a probabilistic approach for joint alignment of image data.
Congealing aligns images by maximizing their joint prob-
ability under a set of transformations to make the images
as similar as possible to each other. Congealing has been
successfully applied to align binary images (e.g., MNIST),
medical MRI volumes [36], complex real-world images like
faces [9, 10] and 1D curves [17]. In this work, we further
develop the principles of congealing to align the unconven-
tional visual data produced by event cameras. The result is a
new probabilistic approach that, while being developed for
rotational motion estimation, also extends to related event
alignment problems [7, 21, 23].

3. A probabilistic model for event data

In this section, we present our probabilistic model for
event data. We start by defining two types of ‘event pro-
cesses’. These processes are models for the observed event
data, which is unaligned, and data that has been perfectly
aligned using ground truth transformations. These two pro-

cesses are illustrated in Figure 2.

3.1. The observed data

The observed data is a set of N events recorded by a
moving event camera over a time period ∆T . We denote
the observed events as

O = [o1,o2, ...,oN ], (1)

where oi = (oxi , o
t
i) comprises the pixel location oxi and the

time oti at which the event occurred on the image plane.

3.1.1 The observed pixel processes

Consider the set of all events recorded at the same pixel
location x in the event camera. Among the events O, the
subset of events Ox that occur at a specific pixel is

Ox = {oi : o
x
i = x}. (2)

We refer to such a set of observed events generated at a par-
ticular event camera location as an observed pixel process.
Each row of events in Figure 2(a) shows such a process. The
different shapes in each row illustrate that these pixel pro-
cesses were generated by different scene points. However,
to the camera, the events look the same, irrespective of what
world point they were generated from.

We can define an observed pixel process for each of the
NP pixels in the event camera, resulting in a set of NP ob-
served pixel processes. We define an observed pixel pro-
cess for a pixel even if there were no events observed at that
pixel. That is, some observed pixel processes may not have
any events associated with them.

3.2. The aligned data

Next, we consider the events as though they have been
perfectly aligned with a set of ideal or ground truth trans-
formations. We describe this as the set of events

A = [a1,a2, ...,aN ].



Here, ai = (axi , a
t
i) represents an event whose location has

been transformed according to

axi = TGT (o
x
i ; t)

where TGT (·; t) is a ground truth transformation that ex-
actly inverts the camera motion. We define this ground truth
transformation function TGT to be one that maps each event
caused by a particular world point P to the same location in
the pixel camera coordinate system.

This set of aligned events can be thought of as an event
panorama in which all of the events have been registered.2

That is, any events that emanated from the same world point
should now have the same coordinates.

Note that like a traditional image panorama, the registra-
tion of points is likely to create an ‘image’ which is larger
than the original camera image, since we are effectively
overlaying a bunch of different images into the same co-
ordinates. Thus, while events are being registered into the
same coordinate frame, the actual coordinates may extend
beyond the limits of the original image.

3.2.1 The aligned pixel processes

Now for the case of the aligned data, consider the set of all
events with the same transformed pixel location x. That is,
among the events A, we define the subset of events Ax that
occur at a specific pixel location x:

Ax = {ai : axi = x}.

We refer to such a set of aligned events at a particular lo-
cation as the output of an aligned pixel process. By defini-
tion, each event o that originates at world point P is trans-
formed to the same image point (with location rounded to
the nearest pixel center) ax by the ground truth transforma-
tion ax = TGT (o

x; t). Collectively, the aligned data can be
viewed as a set of aligned pixel processes.

3.3. A probabilistic model for aligned data

We now introduce our probabilistic model for aligned
event camera data and describe how it can be used to align
observed (i.e., unaligned) data.

First consider a model for a single aligned pixel process,
representing all of the events associated with a particular
pixel location x. We model this as a Poisson process [32]
with a rate parameter λx. Henceforth, assume for simplicity
that time is rescaled so the observation interval length is
∆T = 1. This implies that the number of events kx = |Ax|
occurring at location x is a Poisson random variable with
parameter λx:

p(kx) = Pois(kx|λx) =
λkx
x e−λx

kx!
. (3)

2If the camera motion contains translations, then this can only be done
approximately.

Next, we model the entire aligned data set as the out-
put of a collection of independent Poisson point processes,
each with a separate rate λx depending upon its location. By
standard properties of Poisson processes [32], this is equiva-
lent to a single Poisson point process over space and time—
i.e., a spatio-temporal Poisson point process (ST-PPP)—
with intensity function λ(x, t)

.
= λx. By definition, the

events of an ST-PPP at one spatial location are independent
of those at other locations. Fig. 2(b) illustrates such an ST-
PPP.

Let X be the set of locations at which events occur in the
aligned event camera data. Then, due to independence over
spatial locations, we can write the probability of the entire
aligned data set under the ST-PPP model as3

pA(A)
.
=

∏
x∈X

Pois(kx|λx), kx = |Ax|. (4)

3.4. An optimization problem

The model above leads naturally to an optimization prob-
lem. We shall seek a set of transformations, one applied
to each event, that maximizes the likelihood of the trans-
formed data under our model. Because the interval ∆T over
which we are considering camera motions is very small (just
a fraction of a second), we adopt the typical assumption that
our transformations are smooth with respect to time. While
we consider other families of transformations in the experi-
ments section, we describe our optimization with respect to
sets of constant angular velocity rotations:

Rt
ω = exp(S(ω) · t), (5)

where S(ω) is a skew-symmetric matrix that encodes the
3-parameter angular velocity ω and whose exponentiation
leads to a rotation matrix. Here t is the time of the recorded
event, which is set to 0 for the beginning of the sequence and
∆T at the end of the sequence. Since t scales the angular
velocity ω, it controls the amount of rotation, and hence the
amount of rotation is a linear function of t.

To transform events, we define Rt
ω as the mapping

(x, t) 7→ (Rt
ωx, t) that applies the time-dependent rotation

to the event location x and preserves the event time t. In
this way, each event is rotated an amount proportional to
the time at which it occurred.

To optimize the alignment of events over this set of
choices for transformations, we solve for

ω̂ = argmax
ω∈Ω

pA
(
Rω(O)

)
, (6)

where Rω(O) = [Rt0
ω (o1), . . . , R

∆T
ω (oN )]. Here, we have

implicitly defined the likelihood pO(O|ω) of the observed

3We slightly abuse notation with the notation pA(A); our expression
gives the probability of the counts kx, which differs from the density of
the point set A by a factor of kx!.



data through the mapping pO(O|ω) = pA
(
Rω(O)

)
. This

can be formally justified through the Poisson mapping the-
orem [32]. We give more background on this in the supple-
mentary material.

The formula in (4) assumes knowledge of the Poisson
rate parameter λx at each location x. One option would
be to estimate these parameters via maximum likelihood
jointly with ω. Instead, we adopt a partially Bayesian ap-
proach by maximizing the marginal likelihood of kx under
the prior λx ∼ Gamma(r, q−1(1− q)), for fixed parameters
r > 0 and q ∈ [0, 1]. Then, by the well-known construction
of the negative binomial distribution as a Gamma-Poisson
mixture, the marginal distribution of kx is NB(r, q), which
we can compute and optimize directly. Our final model for
aligned data, which we will use in place of Eq. (4), is

pA(A) =
∏
x∈X

NB(kx|r, q), kx = |Ax|. (7)

We discuss approaches to estimate the parameters r and q
in the experiments section.

3.4.1 Transformations

Another choice in event camera alignment algorithms is the
choice of transformations. In the most general setting T (·)
could be any smooth and invertible map from coordinates
(x, t) to new coordinates (x′, t) describing the new spatial-
temporal location of events. Here we focus on camera ro-
tations Rt

ω as the set of possible transformations, however
other transformations such as translations and their combi-
nations are possible. Possible extensions are discussed in
the experiments section in further detail.

3.5. Implementation details

Event polarity. Until now, we have been considering a
single uniform type of event, but most event cameras output
either positive or negative events depending upon the sign
of brightness changes. There are various ways to deal with
the diversity of events. One option would be to treat all
events as equivalent, irrespective of their polarity, but this
would discard information. Instead, we treat positive and
negative events as arising from independent ST-PPPs— in
other words, the number of positive events k+x and negative
events k−x at pixel x in the aligned process are independent
Poisson random variables with rates λ+

x and λ−
x , respec-

tively. With λ+
x , λ

−
x ∼ Gamma(r, q−1(1 − q)), this gives

the likelihood

pA(A) =
∏
x∈X

NB(k+x ; r, q) · NB(k−x ; r, q). (8)

Operationally, this corresponds to separately computing the
log loss for positive and negative events and adding them
together to get a total loss.

Optimization. We optimize the loss function (8) using
the Adam algorithm implemented in the Python package
torch.optim with a learning rate of 0.05 and a maximum
number of iterations set to 250. No learning rate decay is
applied. Similar to [7, 8] we sequentially process packets
of N = 30000 events, and like [8] we smooth the image
of warped (IWE) events using a Gaussian filter with a small
standard deviation (σ = 1) making the algorithm less sus-
ceptible to noise. We apply a padding of 100 pixels, such
that in most cases all recorded events originating from the
same world point are aligned with each other and are taken
into account for the computation of the loss function. The
loss function is normalized by the number of events present
on the image plane.

4. Experiments

We evaluate our approach on publicly available data
[20]. We discuss the results and show an ablation study
to support the understanding of our proposed approach for
motion estimation from the output of an event camera. Our
approach is based on the event data only and does not re-
quire any other additional information such as video frames.

4.1. Dataset and Evaluation Metrics

The DAVIS 240C Dataset [20] is the de facto standard
to evaluate event camera motion estimation [8, 15, 21, 27,
34, 28]. Each sequence comprises an event stream, video
frames, a calibration file, and IMU data from the camera
as well as ground truth camera poses from a motion cap-
ture system. The gyroscope and accelerometer of the IMU
output measurements at 1kHz. The motion capture system
provides ground truth camera poses at 200Hz. The spatial
resolution of the DAVIS camera [1] used is 240×180 pixels.
The temporal resolution is in the range of microseconds. We
evaluate our approach on sequences boxes, poster, dynamic
and shapes. All sequences have 1 minute duration, 20–180
million events and an increasing camera motion over time.

Evaluation metrics. The dataset [20] does not come with
an associated evaluation protocol. We therefore define an
evaluation protocol in accordance to previous work for an-
gular velocity estimation. Typically algorithms for angular
velocity estimation estimate a constant velocity ω over a
fixed set of N events. Let tstart be the time stamp of the
first event within the set of N events and tend be the time
stamp of the last event. We compare the estimated veloc-
ity ω with the ground truth at time tmid = (tend − tstart)/2.
Similar to [21] we evaluate all methods using four different
error measurements: angular velocity error (eωx , eωy , eωz )
in degrees/s, their standard deviation σeω , the RMS-error in
degrees/s. The RMS error compared to the maximum ex-
cursions of ground truth is presented as a percentage (%).



Method ewx ewy ewz σew RMS RMS%

bo
xe

s

CMax [7] 7.38 6.66 6.03 9.04 9.08 0.66
AEMin [21] 6.75 5.19 5.78 7.77 7.81 0.56
EMin [21] 6.55 4.40 5.00 7.00 7.06 0.51
Poisson Point-Proc. 6.72 3.93 4.55 6.64 6.73 0.49

po
st

er

CMax [7] 13.45 9.87 5.56 13.39 13.45 0.74
AEMin [21] 12.57 7.89 5.63 12.35 12.36 0.68
EMin [21] 11.83 7.31 4.37 10.85 10.86 0.60
Poisson Point-Proc. 11.78 6.33 3.67 10.30 10.37 0.57

dy
na

m
ic CMax [7] 4.93 4.82 4.95 7.11 7.13 0.71

AEMin[21] 5.02 3.88 4.55 6.16 6.19 0.62
EMin [21] 4.78 3.72 3.73 5.33 5.39 0.54
Poisson Point-Proc. 4.42 3.61 3.49 5.15 5.19 0.52

sh
ap

es

CMax [7] 31.19 26.83 38.98 55.86 55.87 3.94
AEMin [21] 22.22 18.78 35.41 55.43 55.44 3.91
EMin [21] 21.22 15.87 25.57 42.22 42.22 2.98
Poisson Point-Proc. 20.73 13.95 17.69 25.88 25.89 1.83

Table 1. Angular velocity estimation. Accuracy comparison on
the rotation sequences from dataset [20].

We also show results on linear velocity estimation of the
camera. Since the depth of the scene is not provided [20],
linear velocity with a single camera can only be estimated
up to scale. In this case we compare the estimated and
ground truth linear velocities by computing a scale factor
between them (via linear regression).

Ground truth. The built-in gyroscope of the DAVIS’
IMU [3] provides accurate measurements of the camera’s
orientation and therefore is used in this paper to evaluate the
camera’s angular velocity. As reported by [20], measure-
ments of the IMU come with a temporal lag of ≈ 2.4ms,
which we take into account in our evaluation pipeline. On
the other hand, the quality of the data produced by the
DAVIS’ IMU accelerometer does not match the high po-
sitional accuracy of the motion capture system. Hence we
use the latter for linear velocity assessment.

4.2. Results

Angular velocity estimation. We compare our method
(maximization of likelihood (8)) to the most recent work
for angular velocity estimation [7, 21]. Gallego et al. [7, 6]
estimate motion by maximizing the contrast (e.g., variance)
of an image of warped events (IWE). Nunes et al. [21] es-
timate motion by minimization of an entropy (e.g. Tsallis’)
defined between pairs of events in the spatio-temporal vol-
ume. They provide an exact entropy calculation, which is
expensive, and an approximate one, which is faster. We
compare against both, in terms of accuracy and runtime.

Table 1 shows the quantitative comparison of accuracy
among all event-based angular velocity estimation methods
on all four rotational motion sequences. Our Poisson point
process method consistently outperforms the baseline meth-
ods. On poster rotation and boxes rotation our approach
shows an improvement of about 5% measured based on the

Method evx evy evz σev RMS RMS%

CMax [7] 0.21 0.26 0.41 0.42 0.43 7.83
AEMin [21] 0.21 0.25 0.42 0.44 0.45 8.36
EMin [21] 0.35 0.43 0.46 0.63 0.64 11.80
Poisson Point-Proc. 0.17 0.22 0.38 0.38 0.38 6.93

Table 2. Linear velocity estimation. Accuracy comparison on
four translational sequences from dataset [20]. Average results.

root mean square error (RMS). On the other two sequences
we show improvement of 4% and 39% compared to the
next best performing method. The gain of 39% in particular
shows our superior performance for event recordings where
the scene structure (brightness) and motion varies signifi-
cantly. The shapes sequence contains much fewer events
due to its “simple” scene structure than the other three se-
quences of this dataset. Even during peak velocities of
about ±940 deg/s, which corresponds to 2.5 full rotations
per second, our approach robustly estimates the motion.

Figure 3 shows qualitative results for all four approaches
used for comparison. We show the ground truth aligned
event image together with a detailed close-up view for each
approach highlighting the alignment quality of events at
object edges. Our approach consistently reconstructs very
‘sharp’ object contours (see first three rows of Fig. 3). The
shapes sequence (depicted in the last column of Fig. 3)
comes with quite different image characteristics. Due to
its rather simple structure, this event sequence comprises
roughly 20% of the amount of events that are usually ac-
quired during the same time. Therefore a fixed number of
events that is consistently used over all four data sequences
results in much larger time intervals containing highly var-
ied motion. In these cases none of the algorithms is able to
align the events accurately assuming constant velocity dur-
ing a fixed number of events.

Linear velocity estimation. Since our approach is flex-
ible to the type of spatial transformation considered, we
also assess its performance on the estimation of transla-
tional camera motion, e.g., linear velocity. Table 2 sum-
marizes the results of event-based linear velocity estimation
using also non-overlapping packets of 30k events. For this
task, we use the same textured scenes in [20], but the set
of sequences with translational motion. A challenge for all
methods evaluated here is to avoid all events warping to a
single pixel (undesired minima of the alignment measures),
which can happen for large Z-motions.

Additional visual results for velocity estimation are pro-
vided in supplementary material.

Runtime and time complexity analysis. We measure the
time that it takes to compute the alignment (loss) func-
tion given a set of 30k events. For comparability we re-
implement our loss function in C++. The runtime was mea-
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Figure 3. Qualitative results for each sequence with predominant rotational camera motion. From top to bottom: dynamic rotation,
boxes rotation, poster rotation and shapes rotation. From left to right: Grayscale frame, aligned event image using ground truth from
IMU, unaligned events, CMax, AEMin, EMin, Ours. All methods assume constant velocity for a batch with a fixed number of events. Note
that the shapes sequence comprises a sparser scene texture, thus a batch of a fixed number of events spans over a larger time interval with
mostly more variation in camera motion. In this sequence, accurate alignment is not possible for any of the methods under the constant
velocity assumption. The affine model of angular velocity that we propose in Section 4.3 mitigates this issue as shown in Fig 6(f).

sured using an 8-core CPU with 16 threads and clock speed
of 3.9 GHz. The runtime of all four tested methods is com-
pared in Fig. 4, and plotted against accuracy. Our approach
achieves highest average accuracy for angular velocity es-
timation and is among the fastest (3.1ms for one loss func-
tion evaluation). The contrast maximization approach is the
fastest approach taking just 1.2ms per function evaluation,
but comes with significantly lower performance in terms of
the RMS measure.

Additionally, the complexity analysis in Table 3 explains
the slow computation time of both entropy minimization

Figure 4. Runtime vs. accuracy comparison. Time for one loss
function evaluation given a fixed set of 30k events versus accuracy
measured in terms of average RMS-error across boxes, poster and
dynamic. Time plotted on log-scale.

Method Time complexity

CMax [7] O(Ne)

AEMin [21] O(Neκ
d)

EMin [21] O(N2
e )

Poisson Point-Process (ours) O(Ne)

Table 3. Time complexity of each algorithm as a function of the
number of input events Ne and kernel size κd.

methods (EMin, AEMin). The complexity of our approach
as well as for contrast maximization is linear with the num-
ber of events Ne. The complexity of EMin [21] is quadratic
with the number of events since it requires the evaluation
of costs due to all pairs of events. The faster, approximate
version of EMin only considers costs due to events within a
certain distance defined by a kernel of size κd, thus reducing
the complexity from N2

e to Neκ
d, where κ ≪ Ne.

4.3. Ablation study

Poisson rate parameter λ - the expected rate of events.
In Section 3.4 we have described our optimization prob-
lem as a maximum likelihood procedure: the likelihood of
aligned data modeled as a Poisson point process Pois(λx)
is higher than the likelihood of unaligned data under our
model. Computing the likelihood of events requires knowl-
edge of the rate parameter λ. Here, we discuss two options



Figure 5. Prior distribution over λ. Histogram of expected event
counts per pixel λx during a time interval ∆T (events with pos-
itive polarity in red and negative in blue). PDF of the Gamma
distribution shown overlaid.

to deal with this unknown parameter: (i) marginalizing it
out, (ii) using its per-pixel ML-estimate.

Marginalizing out λ. Integrating over λ leads to a neg-
ative binomial distribution (Eq. 8) - which is also often de-
scribed as a gamma-Poisson mixture with a gamma distri-
bution as the mixing distribution. We derive our prior dis-
tribution λ ∼ Gamma(r, q−1(1 − q)) from observed (un-
aligned) event data. In particular, the data is the expected
counts of events per pixel during a time interval ∆T . Both
parameters r and q defining the Gamma distribution are ob-
tained via maximum likelihood estimation. Fig. 5 shows
the histogram of expected event counts per pixel for a set
of 30000 events. The best fitting Gamma distribution with
parameters r = 0.1 and q = 0.39 is shown overlaid.

Per pixel ML estimate, λx. Given a set of events at a par-
ticular pixel location x, the ML estimate for the rate param-
eter λx is simply the count of events at that location (since
we just have one observation sample). This approach might
have the advantage of capturing the scene structure, where
a point in the world triggers events at different rates. How-
ever due to the relatively small sample size this approach is
less robust than integrating over the unknown variable.

Overall both approaches perform well, but marginalizing
the unknown variable out seems to be more robust on aver-
age. Using an ML estimate for λ leads to an average RMS
error of 12.1 deg/s, marginalisation improves slightly and
reaches an RMS error of 12.0 deg/s.

Affine model of angular velocity. Event alignment of a
fixed batch of events (e.g., 30k) is typically done via assum-
ing a constant velocity during the time span of the events.
However, such a time span is a variable that depends on the
amount of texture in the scene. As the last row of Fig. 3
shows, 30k events is too many for low-textured scenes
(shapes). A possible fix to this issue is to use an adap-
tive number of events, depending on texture [16]. However
this makes comparisons more difficult to interpret. We de-
velop a different solution: using a more expressive motion
model. Fig. 6 shows that for a large interval ∆T a high
quality alignment can only be achieved with more com-
plex (but smooth) velocity estimates, such as the ground
truth signal ω(t). Since alignment with constant velocity
ω(t) ≈ ω0 ∀t ∈ [0,∆T ] is not enough, we propose a

higher order model ω(t) ≈ ω0+at (affine), thus estimating
(ω0, a) ∈ R6. This improves event alignment (Fig. 6(f)).
A typically evaluation strategy is to compare the estimated
constant velocity with its closest ground truth. This allows
for evaluating average angular velocity over a fixed time in-
terval, but leads to inaccurate event alignment as can be seen
in Figure 6(b). To mitigate this issue evaluating angular ve-
locity using the high frequency (1kHz) of the ground truth
provided by [20] is required.

(a) Grayscale frame (b) Alignment (IMU) -
typical eval. freq.

(c) Alignment (IMU) -
ground truth freq.

(d) Unaligned (e) Alignment (our)
- const. velocity

(f) Alignment (our) -
affine velocity model

Figure 6. Affine velocity model. Quality of event alignment for
constant velocity estimates within ∆T compared to smooth veloc-
ity model estimates from our affine velocity model.

5. Conclusion
Inspired by congealing [13], this paper has introduced a

new probabilistic approach for event alignment. In partic-
ular we model the aligned events as independent, per pixel
Poisson point processes, or a spatio-temporal Poisson point
process. Based on this idea, we derive a likelihood function
for a set of observed (unaligned) events and maximize it to
estimate the camera motion that best explains the events.
This method leads to new state-of-the-art results for angu-
lar velocity estimation, with only 0.5% relative RMS error
with respect to the velocity excursion. Our event align-
ment method is not specific of rotational motion, as we
have demonstrated how it can be applied to other types of
motion (e.g., translational). This opens the door to utilize
our method for solving related event alignment problems,
such as motion segmentation [30] and feature tracking [29],
which in turn enable higher level scene understanding.
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