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Figure 1: Clustering results from Hannah and Her Sisters. Each unique color shows a particular cluster. It can be seen
that most individuals appear with a consistent color, indicating successful clustering.

Abstract
We present an end-to-end system for detecting and clus-

tering faces by identity in full-length movies. Unlike works
that start with a predefined set of detected faces, we con-
sider the end-to-end problem of detection and clustering
together. We make three separate contributions. First,
we combine a state-of-the-art face detector with a generic
tracker to extract high quality face tracklets. We then in-
troduce a novel clustering method, motivated by the classic
graph theory results of Erdős and Rényi. It is based on the
observations that large clusters can be fully connected by
joining just a small fraction of their point pairs, while just
a single connection between two different people can lead
to poor clustering results. This suggests clustering using a
verification system with very few false positives but perhaps
moderate recall. We introduce a novel verification method,
rank-1 counts verification, that has this property, and use
it in a link-based clustering scheme. Finally, we define a
novel end-to-end detection and clustering evaluation metric
allowing us to assess the accuracy of the entire end-to-end
system. We present state-of-the-art results on multiple video
data sets and also on standard face databases.
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1. Introduction
The problem of identifying face images in video and

clustering them together by identity is a natural precursor to
high impact applications such as video understanding and
analysis. This general problem area was popularized in the
paper “Hello! My name is...Buffy” [9], which used text
captions and face analysis to name people in each frame of
a full-length video. In this work, we use only raw video
(with no captions), and group faces by identity rather than
naming the characters. In addition, unlike face clustering
methods that start with detected faces, we include detection
as part of the problem. This means we must deal with false
positives and false negatives, both algorithmically, and in
our evaluation method. We make three contributions:

• A new approach to combining high-quality face de-
tection [15] and generic tracking [31] to improve both
precision and recall of our video face detection.

• A new method, Erdős-Rényi clustering, for large-scale
clustering of images and video tracklets. We argue
that effective large-scale face clustering requires face
verification with fewer false positives, and we intro-
duce rank-1 counts verification, showing that it indeed
achieves better true positive rates in low false positive
regimes. Rank-1 counts verification, used with simple
link-based clustering, achieves high quality clustering
results on three separate video data sets.

• A principled evaluation for the end-to-end problem of
face detection and clustering in videos; until now there
has been no clear way to evaluate the quality of such an



Figure 2: Overview of approach. Given a movie, our approach generates tracklets (Sec. 3) and then does Erdős-Rényi
Clustering and FAD verification between all tracklet pairs. (Sec. 4) Our final output is detections with unique character Ids.

end-to-end system, but only to evaluate its individual
parts (detection and clustering).

We structure the paper as follows. In Section 2 we dis-
cuss related work. In Section 3, we describe the first phase
of our system, in which we use a face detector and generic
tracker to extract face tracklets. In Section 4, we introduce
Erdős-Rényi clustering and rank-1 counts verification. Sec-
tions 5 and 6 present experiments and discussions.

2. Related Work
In this section, we first discuss face tracking and then the

problem of naming TV (or movie) characters. We can di-
vide the character-naming work into two categories: fully
unsupervised and with some supervision. We then discuss
prior work using reference images. Related work on clus-
tering is covered in Section 5.2.

Recent work on robust face tracking [36, 29, 24] has
gradually expanded the length of face tracklets, starting
from face detection results. Ozerov et al. [24] merge re-
sults from different detectors by clustering based on spatio-
temporal similarity. Clusters are then merged, interpolated,
and smoothed for face tracklet creation. Similarly, Roth et
al. [29] generate low-level tracklets by merging detection
results, form high-level tracklets by linking low-level track-
lets, and apply the Hungarian algorithm to form even longer
tracklets. Tapaswi et al. [36] improve on this [29] by remov-
ing false positive tracklets.

With the development of multi-face tracking techniques,
the problem of naming TV characters1 has been also widely
studied [35, 13, 9, 2, 39, 40, 37]. Given precomputed face
tracklets, the goal is to assign a name or an ID to a group
of face tracklets with the same identity. Wu et al. [39, 40]
iteratively cluster face tracklets and link clusters into longer
tracks in a bootstrapping manner. Tapaswi et al. [37] train
classifiers to find thresholds for joining tracklets in two
stages: within a scene and across scenes. Similarly, we aim
to generate face clusters in a fully unsupervised manner.

1Another related problem is person re-identification [44, 18, 6] in
which the goal is to tell whether a person of interest seen in one cam-
era has been observed by another camera. Re-identification typically uses
the whole body on short time scales while naming TV characters focuses
on faces, but over a longer period of time.

Though solving this problem may yield a better result
for face tracking, some forms of supervision specific to
the video or characters in the test data can improve perfor-
mance. Tapaswi et al. [35] perform face recognition, cloth-
ing clustering and speaker identification, where face models
and speaker models are first trained on other videos con-
taining the same main characters as in the test set. In [9, 2],
subtitles and transcripts are used to obtain weak labels for
face tracks. More recently, Haurilet et al. [13] solve the
problem without transcripts by resolving name references
only in subtitles. Our approach is more broadly applicable
because it does not use subtitles, transcripts, or any other
supervision related to the identities in the test data, unlike
these other works [35, 13, 9, 2].

As in the proposed verification system, some existing
work [4, 12] uses reference images. For example, index
code methods [12] map each single image to a code based
upon a set of reference images, and then compare these
codes. On the other hand, our method compares the rel-
ative distance of two images with the distance of one of
the images to the reference set, which is different. In ad-
dition, we use the newly defined rank-1 counts, rather than
traditional Euclidean or Mahalanobis distance measures to
compare images [4, 12] for similarity measures.

3. Detection and tracking

Our goal is to take raw videos, with no captions or an-
notations, and to detect all faces and cluster them by iden-
tity. We start by describing our method for generating face
tracklets, or continuous sequences of the same face across
video frames. We wish to generate clean face tracklets that
contain face detections from just a single identity. Ideally,
exactly one tracklet should be generated for an identity from
the moment his/her face appears in a shot until the moment
it disappears or is completely occluded.

To achieve this, we first detect faces in each video frame
using the Faster R-CNN object detector [28], but retrained
on the WIDER face data set [41], as described by Jiang et
al. [15]. Even with this advanced detector, face detection
sometimes fails under challenging illumination or pose. In
videos, those faces can be detected before or after the chal-



lenging circumstances by using a tracker that tracks both
forward and backward in time. We use the distribution
field tracker [31], a general object tracker that is not trained
specifically for faces. Unlike face detectors, the tracker’s
goal is to find in the next frame the object most similar to
the target in the current frame. The extra faces found by the
tracker compensate for missed detections (Fig. 2, bottom
of block 2). Tracking helps not only to catch false nega-
tives, but also to link faces of equivalent identity in different
frames.

One simple approach to combining a detector and tracker
is to run a tracker forward and backward in time from ev-
ery single face detection for some fixed number of frames,
producing a large number of “mini-tracks”. A Viterbi-style
algorithm [10, 5] can then be used to combine these mini-
tracks into longer sequences. This approach is computation-
ally expensive since the tracker is run many times on over-
lapping subsequences, producing heavily redundant mini-
tracks. To improve performance, we developed the fol-
lowing novel method for combining a detector and tracker.
Happily, it also improves precision and recall, since it takes
advantage of the tracker’s ability to form long face tracks of
a single identity.

The method starts by running the face detector in each
frame. When a face is first detected, a tracker is initialized
with that face. In subsequent frames, faces are again de-
tected. In addition, we examine each current tracklet to see
where it might be extended by the tracking algorithm in the
current frame. We then check the agreement between de-
tection and tracking results. We use the intersection over
union (IoU) between detections and tracking results with
threshold 0.3, and apply the Hungarian algorithm[16] to es-
tablish correspondences among multiple matches. If a de-
tection matches a tracking result, the detection is stored in
the current face sequence such that the tracker can search
in the next frame given the detection result. For the detec-
tions that have no matched tracking result, a new tracklet
is initiated. If there are tracking results that have no asso-
ciated detections, it means that either a) the tracker could
not find an appropriate area on the current frame, or b) the
tracking result is correct while the detector failed to find
the face. The algorithm postpones its decision about the
tracked region for the next α consecutive frames (α = 10).
If the face sequence has any matches with detections within
α frames, the algorithm will keep the tracking results. Oth-
erwise, it will remove the tracking-only results. The sec-
ond block of Fig. 2 summarizes our proposed face tracklet
generation algorithm and shows examples corrected by our
joint detection-tracking strategy. Next, we describe our ap-
proach to clustering based on low false positive verification.

4. Erdős-Rényi Clustering and Rank-1 Counts
Verification

In this section, we describe our approach to clustering
face images, or, in the case of videos, face tracklets. We
adopt the basic paradigm of linkage clustering, in which
each pair of points (either images or tracklets) is evaluated
for linking, and then clusters are formed among all points
connected by linked face pairs. We name our general ap-
proach to clustering Erdős-Rényi clustering since it is in-
spired by classic results in graph theory due to Erdős and
Rényi [7], as described next.

Consider a graph G with n vertices and probability p of
each possible edge being present. This is the Erdős-Rényi
random graph model [7]. The expected number of edges
is
(
n
2

)
p. One of the central results of this work is that, for

ε > 0 and n sufficiently large, if

p >
(1 + ε) lnn

n
, (1)

then the graph will almost surely be connected (there ex-
ists a path from each vertex to every other vertex). Fig. 3
shows this effect on different graph sizes, obtained through
simulation.
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Figure 3: Simulation of cluster connectedness as a function
of cluster size, N , and the probability p of connecting point
pairs. The figure shows that for variousN (different colored
lines), the probability that the cluster is fully connected (on
the y-axis) goes up as more pairs are connected. For larger
graphs, a small probability of connected pairs still leads to
high probability that the graph will be fully connected.

Consider a clustering system in which links are made
between tracklets by a verifier (a face verification system),
whose job is to say whether a pair of tracklets is the “same”
person or two “different” people. While graphs obtained
in clustering problems are not uniformly random graphs,
the results of Erdős and Rényi suggest that this verifier can
have a fairly low recall (percentage of same links that are
connected) and still do a good job connecting large clus-
ters. In addition, false matches may connect large clusters
of different identities, dramatically hurting clustering per-
formance. This motivates us to build a verifier that focuses
on low false positives rather than high recall. In the next
section, we present our approach to building a verifier that
is designed to have good recall at low false positive rates,



and hence is appropriate for clustering problems with large
clusters, like grouping cast members in movies.

4.1. Rank-1 counts for fewer false positives

Our method compares images by comparing their mul-
tidimensional feature vectors. More specifically, we count
the number of feature dimensions in which the two images
are closer in value than the first image is to any of a set
of reference images. We call this number the rank-1 count
similarity. Intuitively, two images whose feature values are
“very close” for many different dimensions are more likely
to be the same person. Here, an image is considered “very
close” to a second image in one dimension if it is closer to
the second image in that dimension than to any of the refer-
ence images.

More formally, to compare two images IA and IB , our
first step is to obtain feature vectors A and B for these im-
ages. We extract 4096-D feature vectors from the fc7 layer
of a standard pre-trained face recognition CNN [26]. In
addition to these two images, we use a fixed reference set
with G images (we typically set G = 50), and compute
CNN feature vectors for each of these reference images.2

Let the CNN feature vectors for the reference images be
R1, R2, ..., RG. We sample reference images from the TV
Human Interactions Dataset [27], since these are likely to
have a similar distribution to the images we want to cluster.

For each feature dimension i (of the 4096), we ask
whether

|Ai −Bi| < min
j
|Ai −Rji |.

That is, is the value in dimension i closer between A and B
than betweenA and all the reference images? If so, then we
say that the ith feature dimension is rank-1 between A and
B. The cumulative rank-1 counts feature R is simply the
number of rank-1 counts across all 4096 features:

R =
4096∑
i=1

I

[
|Ai −Bi| < min

j
|Ai −Rji |

]
,

where I[·] is an indicator function which is 1 if the expres-
sion is true and 0 otherwise.

Taking inspiration from Barlow’s notion that the brain
takes special note of “suspicious coincidences” [1], each
rank-1 feature dimension can be considered a suspicious
coincidence. It provides some weak evidence that A and
B may be two images of the same person. On the other
hand, in comparing all 4096 feature dimensions, we expect
to obtain quite a large number of rank-1 feature dimensions
even if A and B are not the same person.

When two images and the reference set are selected ran-
domly from a large distribution of faces (in this case they

2The reference images may overlap in identity with the clustering set,
but we choose reference images so that there is no more than one occur-
rence of each person in the reference set.

are usually different people), the probability thatA is closer
to B in a particular feature dimension than to any of the
reference images is just

1

G+ 1
.

Repeating this process 4096 times means that the expected
number of rank-1 counts is simply

E[R] =
4096

G+ 1
,

since expectations are linear (even in the presence of statisti-
cal dependencies among the feature dimensions). Note that
this calculation is a fairly tight upper bound on the expected
number of rank-1 features conditioned on the images being
of different identities, since most pairs of images in large
clustering problems are different, and conditioning on ”dif-
ferent” will tend reduce the expected rank-1 count. Now if
two images IA and IB have a large rank-1 count, it is likely
they represent the same person. The key question is how to
set the threshold on these counts to obtain the best verifica-
tion performance.

Recall that our goal, as guided by the Erdős-Rényi ran-
dom graph model, is to find a threshold on the rank-1
counts R so that we obtain very few false positives (declar-
ing two different faces to be “same”) while still achieving
good recall (a large number of same faces declared to be
“same”). Fig. 4 shows distributions of rank-1 counts for var-
ious subsets of image pairs from Labeled Faces in the Wild
(LFW) [14]. The red curve shows the distribution of rank-1
counts for mismatched pairs from all possible mismatched
pairs in the entire data set (not just the test sets). Notice
that the mean is exactly where we would expect with a
gallery size of 50, at 4096

51 ≈ 80. The green curve shows the
distribution of rank-1 counts for the matched pairs, which
is clearly much higher. The challenge for clustering, of
course, is that we don’t have access to these distributions
since we don’t know which pairs are matched and which are
not. The yellow curve shows the rank-1 counts for all pairs
of images in LFW, which is nearly identical to the distribu-
tion of mismatched rank-1 counts, since the vast majority
of possibe pairs in all of LFW are mismatched. This is the
distribution to which the clustering algorithm has access.

If the 4,096 CNN features were statistically indepen-
dent (but not identically distributed), then the distribution
of rank-1 counts would be a binomial distribution (blue
curve). In this case, it would be easy to set a threshold on
the rank-1 counts to guarantee a small number of false posi-
tives, by simply setting the threshold to be near the right end
of the mismatched (red) distribution. However, the depen-
dencies among the CNN features prevent the mismatched
rank-1 counts distribution from being binomial, and so this
approach is not possible.



Figure 4: LFW distribution of rank-1 counts. Each distribu-
tion is normalized to sum to 1.

Table 1: Verification performance comparisons on all pos-
sible LFW pairs. The proposed rank-1 counts gets much
higher recall at fixed FPRs.
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1E-6 0.1872 0.1279 0.0175 0.0086
1E-5 0.3800 0.3154 0.0767 0.0427
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1E-3 0.8222 0.7952 0.5215 0.8719
1E-2 0.9490 0.9396 0.8204 0.9656
1E-1 0.9939 0.9915 0.9776 0.9861

4.2. Automatic determination of rank-1 count
threshold

Ideally, if we could obtain the rank-1 count distribution
of mismatched pairs of a test set, we could set the threshold
such that the number of false positives becomes very low.
However, it is not clear how to get the actual distribution of
rank-1 counts for mismatched pairs at test time.

Instead, we can estimate the shape of the mismatched
pair rank-1 count distribution using one distribution (LFW),
and use it to estimate the distribution of mismatched rank-1
counts for the test distribution. We do this by fitting the left
half of the LFW distribution to the left half of the clustering
distribution using scale and location parameters. The rea-
son we use the left half to fit the distribution is that this part
of the rank-1 counts distribution is almost exclusively influ-
ence by mismatched pairs. The right side of this matched
distribution then gives us an approximate way to threshold
the test distribution to obtain a certain false positive rate. It
is this method that we use to report the results in the left-
most column of Table 2.

A key property of our rank-1 counts verifier is that it

has good recall across a wide range of the low false pos-
itive regime. Thus, our method is relatively robust to the
setting of the rank-1 counts threshold. In order to show
that our rank-1 counts feature has good performance for the
types of verification problems used in clustering, we con-
struct a verification problem using all possible pairs of the
LFW database [14]. In this case, the number of mismatched
pairs (quadratic in N ) is much greater than the number of
matched pairs. As shown in Table 1, we observe that our
verifier has higher recall than three competing methods (all
of which use the same base CNN representation) at low
false positive rates.

Using rank-1 counts verification for tracklet cluster-
ing. In our face clustering application, we consider every
pair (I, J) of tracklets, calculate a value akin to the rank-1
count R, and join the tracklets if the threshold is exceeded.
In order to calculate an R value for tracklets, we sample a
random subset of 10 face images from each tracklet, com-
pute a rank-1 count R for each pair of images, and take the
maximum of the resulting R values.

4.3. Averaging over gallery sets

While our basic algorithm uses a fixed (but randomly se-
lected) reference gallery, the method is susceptible to the
case in which one of the gallery images happens to be sim-
ilar in appearance to a person with a large cluster, resulting
in a large number of false negatives. To mitigate this effect,
we implicitly average the rank-1 counts over an exponential
number of random galleries, as follows.

The idea is to sample random galleries of size g from a
larger super-gallery with G images; we used g = 50, G =
1000. We are interested rank-1 counts, in which image A’s
feature is closer to B than to any of the gallery of size g.
Suppose we know that among the 1000 super-gallery im-
ages, there are K (e.g., K = 3) that are closer to A than B
is. The probability that a random selection (with replace-
ment) of g images from the super-gallery would contain
none of the K closer images (and hence represent a rank-1
count) is

r(A,B) =

(
1.0− K

G

)g
.

That is, r(A,B) is the probability of having a rank-1 count
with a random gallery, and using r(A,B) as the count is
equivalent to averaging over all possible random galleries.
In our final algorithm, we sum these probabilities rather
than the deterministic rank-1 counts.

4.4. Efficient implementation

For simplicity, we discuss the computational complexity
of our fixed gallery algorithm; the complexity of the average
gallery algorithm is similar. With F , G, and N indicating
the feature dimensionality, number of gallery images, and



number of face tracklets to be clustered, the time complex-
ity of the naive rank-1 count algorithm is O(F ∗G ∗N2).

However, for each feature dimension, we can sort N test
image feature values and G gallery image feature values in
time O((N +G) log(N +G)). Then, for each value in test
image A, we find the closest gallery value, and increment
the rank-1 count for the test images that are closer to A. Let
Y be the average number of steps to find the closest gallery
value. This is typically much smaller than N . The time
complexity is thenO(F ∗ [(N +G) log(N +G)+N ∗Y ]).

4.5. Clustering with do-not-link constraints
It is common in clustering applications to incorporate

constraints such as do-not-link or must-link, which specify
that certain pairs should be in separate clusters or the same
cluster, respectively [38, 32, 19, 17, 21]. They are also often
seen in the face clustering literature [3, 39, 40, 25, 37, 43].
These constraints can be either rigid, implying they must be
enforced [38, 32, 21, 25], or soft, meaning that violations
cause an increase in the loss function, but those violations
may be tolerated if other considerations are more important
in reducing the loss [19, 17, 39, 40, 43].

In this work, we assume that if two faces appear in the
same frame, they must be from different people, and hence
their face images obey a do-not-link constraint. Further-
more, we extend this hard constraint to the tracklets that
contain faces. If two tracklets have any overlap in time,
then the entire tracklets represent a do-not-link constraint.

We enforce these constraints on our clustering proce-
dure. Note that connecting all pairs below a certain dis-
similarity threshold followed by transitive closure is equiv-
alent to single-linkage agglomerative clustering with a join-
ing threshold. In agglomerative clustering, a pair of closest
clusters is found and joined at each iteration until there is a
single cluster left or a threshold met. A naı̈ve implementa-
tion will simply search and update the dissimilarity matrix
at each iteration, making the whole process O(n3) in time.
There are faster algorithms giving the optimal time com-
plexity O(n2) for single-linkage clustering [34, 22]. Many
of these algorithms incur a dissimilarity update at each iter-
ation, i.e. update d(i, k) = min(d(i, k), d(j, k)) after com-
bining cluster i and j (and using i as the cluster id of the
resulting cluster). If the pairs with do-not-link constraints
are initialized with +∞ dissimilarity, the aforementioned
update rule can be modified to incorporate the constraints
without affecting the time and space complexity:

d(i, k) =

 min(d(i, k), d(j, k)) d(i, k) 6= +∞
AND d(j, k) 6= +∞

+∞ otherwise

5. Experiments
We evaluate our proposed approach on three video data

sets: the Big Bang Theory (BBT) Season 1 (s01), Episodes

(a) Rank-1 Count (b) Rank-Order Distance [45]

Figure 5: Visualization of the combined detection and clus-
tering metric for the first few minutes of the Hannah set.

1-6 (e01-e06) [2], Buffy the Vampire Slayer (Buffy) Sea-
son 5 (s05), Episodes 1-6 (e01-e06) [2], and Hannah and
Her Sisters (Hannah) [24]. Each episode of the BBT and
Buffy data set contains 5-8 and 11-17 characters respec-
tively, while Hannah has annotations for 235 characters.3

Buffy and Hannah have many occlusions which make the
face clustering problem more challenging. In addition to the
video data sets, we also evaluate our clustering algorithm on
LFW [14] which contains 5730 subjects.4

An end-to-end evaluation metric. There are many eval-
uation metrics used to independently evaluate detection,
tracking, and clustering. Previously, it has been difficult to
evaluate the relative performance of two end-to-end systems
because of the complex trade-offs between detection, track-
ing, and clustering performance. Some researchers have at-
tempted to overcome this problem by providing a reference
set of detections with suggested metrics [20], but this ap-
proach precludes optimizing complete system performance.
To support evaluation of the full video-to-identity pipeline,
in which false positives, false negatives, and clustering er-
rors are handled in a common framework, we introduce uni-
fied pairwise precision (UPP) and unified pairwise recall
(UPR) as follows.

Given a set of annotations, {a1, a2, ..., aA} and detec-
tions, {d1, d2, ..., dD}, we consider the union of three sets
of tuples: false positives resulting from unannotated face
detections {di, ∅}; valid face detections {di, aj}; and false
negatives resulting from unmatched annotations {∅, aj}.
Fig. 5 visualizes every possible pair of tuples ordered by
false positives, valid detections, and false negatives for the
first few minutes of the Hannah data set. Further, groups of
tuples have been ordered by identity to show blocks of iden-
tity to aid our understanding of the visualization, although
the order is inconsequential for the numerical analysis.

In Fig 5, the large blue region (and the regions it con-
tains) represents all pairs of annotated detections, where
we have valid detections corresponding to their best anno-
tation. In this region, white pairs are correctly clustered,
magenta pairs are the same individual but not clustered,
cyan pairs are clustered but not the same individual, and

3We removed garbage classes such as ‘unknown’ or ‘false positive’.
4All known ground truth errors are removed.



Table 2: Clustering performance comparisons on various data sets. The leftmost shows our rank1count by setting a threshold
automatically. For the rest of the columns, we show f-scores using optimal (oracle-supplied) thresholds. For BBT and Buffy,
we show average scores over six episodes. The full table with individual episode results is given in Supp. Mat. Best viewed
in color (1st place, 2nd place, 3rd place).
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Video
BBT s01 [2] .7728 .7828 .7365 .7612 .6692 .6634 .1916 .2936 .6319 .2326 .1945
Buffy s05 [2] .5661 .6299 .3931 .5845 .2990 .5439 .1601 .1409 .5351 .1214 .1143
Hannah [24] .6436 .6813 .2581 .3620 .4123 .3955 .1886 .1230 .3344 .1240 .1052

Image LFW [14] .8532 .8943 .8498 .3735 .5989 .5812 .3197 .0117 .2538 .4520 .3133

blue pairs are not clustered pairs from different individuals.
The upper left portion of the matrix represents false posi-
tives with no corresponding annotation. The green pairs in
this region correspond to any false positive matching with
any valid detection. The lower right portion of the matrix
corresponds to the false negatives. The red pairs in this
region correspond to any missed clustered pairs resulting
from these missed detections. The ideal result would con-
tain blue and white pairs, with no green, red, cyan, or ma-
genta.

The unified pairwise precision (UPP) is the fraction of
pairs, {di, aj} within all clusters with matching identi-
ties, i.e., the number of white pairs divided by the num-
ber of white, cyan, and green pairs. UPP decreases if: two
matched detections in a cluster do not correspond to the
same individual; if a matched detection is clustered with
a false positive; for each false positive regardless of its clus-
tering; and for false positives clustered with valid detec-
tions. Similarly, the unified pairwise recall (UPR) is the
fraction of pairs within all identities that have been properly
clustered, i.e., the number of white pairs divided by number
of white, magenta, and red pairs. UPR decreases if: two
matched detections of the same identity are not clustered;
a matched detection should be matched but there is no cor-
responding detection; for each false negative; and for false
negative pairs that should be detected and clustered. The
only way to achieve perfect UPP and UPR is to detect every
face with no false positives and cluster all faces correctly.
At a glance, our visualization in Fig. 5 shows that our de-
tection produces few false negatives, many more false posi-
tives, and is less aggressive in clustering. Using this unified
metric, others can tune their own detection, tracking, and
clustering algorithms to optimize the unified performance
metrics. Note that for image matching without any detec-
tion failures, the UPP and UPR reduce to standard pairwise
precision and pairwise recall.

The UPP and UPR can be summarized with a single F-
measure (the weighted harmonic mean) providing a single,
unified performance measure for the entire process. It can
be α-weighted to alter the relative value of precision and
recall performance:

Fα =
1

α
UPP + 1−α

UPR

(2)

where α ∈ [0, 1]. α = 0.5 denotes a balanced F-measure.

5.1. Threshold for rank-1 counts
The leftmost column in Table 2 shows our clustering re-

sults when the threshold is set automatically by the valida-
tion set. We used LFW as a validation set for BBT, Buffy
and Hannah while Hannah was used for LFW. Note that the
proposed method is very competitive even when the thresh-
old is automatically set.

5.2. Comparisons
We can divide other clustering algorithms into two broad

categories–link-based clustering algorithms (like ours) that
use a different similarity function and clustering algorithms
that are not link-based (such as spectral clustering [33]).
Table 2 shows the comparisons to various distance func-
tions [4, 23, 45] with our link-based clustering algorithm.
L2 shows competitive performance in LFW while the per-
formance drops dramatically when a test set has large pose
variations. We also compare against a recent so-called
“template adaptation” method [4] which also requires a ref-
erence set. It takes 2nd and 3rd place on Buffy and BBT. In
addition, we compare to the rank-order method [45] in two
different ways: link-based clustering algorithms using their
rank-order distance, and rank-order distance based cluster-
ing.

In addition, we compare against several generic cluster-
ing algorithms (Affinity Propagation [11], DBSCAN [8],
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Figure 6: Clustering results from Buffy the Vampire Slayer. A failure example can be seen in frame (e), in which the main
character Buffy (otherwise in a purple box) in shown in a pink box.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Clustering results from the Big Bang Theory. A failure example can be seen in frame (d), in which the main
character Howard (otherwise in a magenta box) in shown in a gray box.

Spectral Clustering [33], Birch [42], KMeans [30]), where
L2 distance is used as pairwise metric. For algorithms that
can take as input the similarity matrix (Affinity Propagation,
DBSCAN, Spectral Clustering), do-not-link constraints are
applied by setting the distance between the corresponding
pairs to ∞. Note that this is just an approximation, and in
general does not guarantee the constraints in the final clus-
tering result (e.g. for single-linkage agglomerative cluster-
ing, a modified update rule is also needed in Section 4.5).

Note that all other settings (feature encoding, tracklet
generation) are common for all methods. In Table 2, except
for the leftmost column, we report the best F0.5 scores using
optimal (oracle-supplied) thresholds for (number of clus-
ters, distance). The link-based clustering algorithm with
rank-1 counts outperforms the state-of-the-art on all four
data sets in F0.5 score. Figures 6 and 7 show some cluster-
ing results on Buffy and BBT.

6. Discussion

We have presented a system for doing end-to-end clus-
tering in full length videos and movies. In addition to a
careful combination of detection and tracking, and a new
end-to-end evaluation metric, we have introduced a novel

approach to link-based clustering that we call Erdős-Rényi
clustering. We demonstrated a method for automatically es-
timating a good decision threshold for a verification method
based on rank-1 counts by estimating the underlying portion
of the rank-1 counts distribution due to mismatched pairs.

This decision threshold was shown to result in good re-
call at a low false-positive operating point. Such operating
points are critical for large clustering problems, since the
vast majority of pairs are from different clusters, and false
positive links that incorrectly join clusters can have a large
negative effect on clustering performance.

There are several things that could disrupt our algorithm:
a) if a high percentage of different pairs are highly similar
(e.g. family members), b) if only a small percentage of pairs
are different (e.g., one cluster contains 90% of the images),
and if same pairs lack lots of matching features (e.g., ev-
ery cluster is a pair of images of the same person under
extremely different conditions). Nevertheless, we showed
excellent results on 3 popular video data sets. Not only do
we dominate other methods when thresholds are optimized
for clustering, but we outperform other methods even when
our thresholds are picked automatically.
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[7] P. Erdős and A. Rényi. On the evolution of random graphs.
Publications of the Mathematical Institute of the Hungarian
Academy of Sciences, 5:17–61, 1960. 3

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. KDD, 96(34):226–231, 1996. 7

[9] M. Everingham, J. Sivic, and A. Zisserman. ”Hello! My
name is... Buffy” Automatic naming of characters in TV
video. In Proc. BMVC, 2006. 1, 2

[10] G. D. Forney. The Viterbi algorithm. Proceedings of the
IEEE, 61(3):268–278, 1973. 3

[11] B. J. Frey and D. Dueck. Clustering by passing messages
between data points. Science, 315(5814):972–976, 2007. 7

[12] A. Gyaourova and A. Ross. Index codes for multibiometric
pattern retrieval. IEEE Transactions on Information Foren-
sics and Security (TIFS), 7(2):518–529, April 2012. 2

[13] M.-L. Haurilet, M. Tapaswi, Z. Al-Halah, and R. Stiefelha-
gen. Naming TV characters by watching and analyzing di-
alogs. In Proc. CVPR, 2016. 2

[14] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. La-
beled faces in the wild: A database for studying face recog-
nition in unconstrained environments. In The Workshop on
Faces in Real-Life Images at ECCV, 2008. 4, 5, 6, 7

[15] H. Jiang and E. Learned-Miller. Face detection with the
Faster R-CNN. In Face and Gesture, 2017. 1, 2

[16] H. W. Kuhn. The hungarian method for the assignment prob-
lem. Naval research logistics quarterly, 2(1-2):83–97, 1955.
3

[17] Z. Li, J. Liu, and X. Tang. Pairwise constraint propagation
by semidefinite programming for semi-supervised classifica-
tion. In Proc. ICML, 2008. 6

[18] G. Lisanti, I. Masi, A. D. Bagdanov, and A. D. Bimbo. Per-
son re-identification by iterative re-weighted sparse ranking.
TPAMI, 37(8):1629–1642, August 2015. 2

[19] Z. Lu and T. K. Leen. Penalized probabilistic clustering.
Neural Computation, 19(6):1528–1567, 2007. 6
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