
Computer Science 570/670 Computer Vision

Assignment 5: Due on last day of class

The goal of this problem set is to build a backgrounding system and use it to do
simple object tracking in a video stream.

Part 1. Color histograms and “soft histogramming”
Write a function in matlab which forms a 3-D histogram from a set of rgb pixel val-

ues. In MATLAB, you could represent a set of rgb pixel values as an Nx3 matrix, where
each row represents one rgb value. You should normalize eachhistogram by dividing
by the number of elements in it, which will convert it into a probability distribution.

Once you have this working, alter your code so that instead ofadding a point to
a single histogram bin that it falls in, it adds points to the eight nearest bins weighted
by the distance from the bin center. This is called “soft histogramming”. If you have
trouble visualizing this for a 3-D histogram, you might wantto start with a 1-D or 2-D
histogram. For example, in 1-dimension, if a point falls on the boundary between two
bins, you want to add .5 to each of the two bins. If it’s 70% of the way between the
center of the first bin and the center of the second bin, then add 0.3 to the first bin and
0.7 to the second bin. You should generalize this procedure to 3-D. Finally, if a point
falls on the boundary of the color space, you may only want to distribute its weight
among 4, 2, or 1 bins, depending upon where it falls.

Part 2. On the course web site, you will find files called training10.mat, train-
ing 100.mat, testing10.mat, and testing100.mat. You will use the training files to
build your background model and the testing files to detect moving objects. The num-
bers 10 and 100 refer to the number of frames in each file. Startby using the smaller
versions (with 10 frames), and once you get your code workingyou can try it on the
larger files.

Each file is in matlab format. Just load each one in by typing “load filename”
without any parentheses or anything. Each file contains a matlab “movie”. You can use
the movie command to play the movie. You won’t see much in the training movies,
since there is little movement, but you should see people walking around in the test
movies.

It is easier to deal with the movies as collections of images rather than as movies.
A movie is an array of “frames”. You can use the command frame2im to convert each
frame to an image before processing it. It will turn into an rgb image.

The next step is to turn the set of training images into a distribution field using the
color histogram tools you developed in part 1. Write a matlab function which takes the
whole movie and returns a distribution field consisting of normalized color histograms
at each pixel.

Part 3. Use the distribution field you built from the training data toassess the
likelihood that each pixel of a test image is in the background. There are many ways to
do this including:

1



1. Set a threshold on the probability of a pixel color. If the value is above the thresh-
old, it’s determined to be background. If the probability isbelow the threshold,
it’s determined to be foreground.

2. Compute the entropy of the normalized histogram at a pixel. This is done by
computing−p(x) logp(x) for every bin in the histogram (except for the ones with
value equal to zero) and adding them together. Then check if apixel has negative
log likelihood less than some fixed percentage of the entropy. For example, if
− logp(color) < .1H, whereH is the entropy of the distribution at a particular
pixel, then consider it to be background.

3. There are many other ways to do this. You can use one of the methods above, or
invent your own.

Write a function which classifies each pixel in a text image as foreground or back-
ground by comparing it to your background model.

Part 4. Your results from part 3 may end up being scattered pixels, rather than
coherent “blobs” representing people or cars. To try to find blobs, write a function to
dilate the binary image produced from part 3. The function dilate should take a binary
image and color each pixel white if either it or its neighborsis white. Then write a
function dilateN which dilates an image multiple times according to an argument N.
Experiment with dilateN to see what value connects the pixels in a tracked object with
expanding beyond the object too much.

Part 5. Once you have dilated an image to get some “blobs”, write a function which
finds the set of all blobs (connected sets of white pixels) in the image. The easiest way
to do this is to use a “flood fill” on the binary images. You can look up flood fill on
Wikipedia if you don’t know how it works. Perform flood fills onthe binary image
until all of the blobs are found. You may want to ignore blobs with fewer than some
number of pixels.

Part 6. Finally, for each blob found in part 5, draw a box around the blob and in
the same position in the original image. Make a movie out of the images, showing the
boxes around the original tracked objects.

Turn in all of your code, and a few example images from each stage (if there are
any images to show).

Part 7. Required for graduate students, extra credit for undergrads. Augment
the above model to use a foreground model and a prior model of foreground and back-
ground. You can create these models however you want, but onesuggestion would be
to create a foreground model from the colors obtained in the first version of the pro-
gram running on the test1000 video. Use Bayes rule to classify pixels as foreground or
background. Is there any significant difference between theBayesian backgrounding
and maximum likelihood backgrounding?

2


