Computer Science 570/670 Computer Vision

Assignment 4 Due in 2 weeks

Part 0. The data. In this problem you will use two sets of images. One set is
considered the “training set”. The other is considered thst“set”. The goal is to try
to use the training set to label the test set.

Each set contains 10 images of each digit, from 0 to 9. Thesalsgady formatted
so that they are easy to use in MATLAB. Download the two filesrfrthe web page
and load them into MATLAB by typindoad t est _dat a andl oad trai ni ng_dat a.

Each files consists of a four dimensional array. The first timeethsions represent
the extent of the image. The third dimension is which exarmpkhat class it is. The
fourth dimension is which class. In other words, im(a,h,eduld give the pixel in the
ath row andbth column of thecth digit of thedth class.

Part 1. Transformations. The goal of this part is to produce functions that will al-
low you to translate, rotate, and scale an image. To do thisshould write MATLAB
functions which do all of the following (it will be easier ifop do these in order):

e Returns a 3x3 matrix that translates an imagéxgndty.

e Returns a 3x3 matrix that rotates an image about the 0j0}.

e Returns a 3x3 matrix that rotates an image about the gainty).
e Returns a 3x3 matrix that scales an image about the 0j6j.

e Returns a 3x3 matrix that scales an image about the pointy).

e Returns a 3x3 matrix that, given numbexs, cx, cy,tx, andty, first scales the
image bys about the poinfcx,cy), then rotates by about the poin{cx, cy),
then translates bik andty. Call this functiont ot al Tr ansf orm

Keep in mind the following facts when you are writing thesetioes:

e When referring to an elment of a two-dimensioaatay in MATLAB, A(X,Y)
refers thexth row andyth column.

e However, when using image-based functions (suémasr p2), the first number
typically refers to the horizontal coordinate and the secow refers to the
vertical coordinate. This may be confusing, but if you arenof the issue,
it should help. When in doubt read the documentation for tinetfan you are
using by typinghel p functionNane.

Now write a function that, given an image and a transfornmanatrix, transforms
the image using the given transformation. You should doithi®oping over the pixels
in the new image, and “looking back” into the previous using tiwverse transforma-
tion, the way | showed you in class. Call the functiomansf or m mage. When you
“look back” in the previous image and you obtain a locaticet ik outside of the range
of the original image coordinates, you should just put a aetbat pixel location.

Try your transformation function on some different imagethwlifferent matrices
to make sure it works right. You do not have to turn in thesegiesa however.

Part 2. Comparison functions. The next step in writing your classifiers is to have
functions that compare one image to another. Write the fatiguwo functions:

e The first function should compute the Euclidean distancevden two images.
This is just the square root of the sum of the squared differemetween cor-
responding pixels. This can easily be done in a single lin®IATLAB code.
(Hint: use A.” 2 to square every element of a mafjpand usesum(sun(im)
to add together all of the values in an image.

e The second function should find the MINIMUM of the distancéAzen two im-
ages given by calling the Euclidean distance function far invages and trying
all combinations of translations and rotations of the finsage in the following
set:

— horizontal translations between -10 and 10 pixels (usessip pixels)
— vertical translations between -10 and 10 pixels (use stEppixels)
— rotations between -10 and 10 degrees (use steps of 2 degrees)

Thus you should try 11*11*11=1331 positions of each imagen ridt worry
about varying the scale for this part of the problem.

Part 3. A Nearest-Neighbor Classifier

Now that you have some functions (two of them) that compareitaages, write
a nearest-neighbor classifier. The classifier, given an énagmpare it to all of the
“training” examples from your training set. Whichever imagis closest to, it should
declare as the final identity of the image.

You should run your nearest-neighbor classifier on all of td&ting data, and
present the results in a confusion matrix (as describedassgl Turn in the all of
your code and the confusion matrix for the classifier baseh@ach of your distance
functions. How much does the final accuracy improve whencbéay over transfor-
mations?

Part 4. Improving the classifier. Think of a way to improve the classifier's per-
formance and implement it. Here are some suggestions, maoueage you to come
up with your own:

e Add scale to the set of transformations to search over.

¢ Add shearing to the set of the transfomrations to search over

e Implement k-nearest-neighbors (with k¢, 1).

e Center the digitin the image before starting by using thero@&hor by centering
its bounding box.

¢ Implement gradient descent!

Describe your improvement and show the confusion matrixtfoAs long as the
program works correctly, it is not strictly necessary faoiimprove the accuracy rate.

