
Computer Science 570/670 Computer Vision

Assignment 3 Due Tuesday, March 13

For this assignment, you should turn in all of the images you produce, and
the matlab code for the varioius parts of the problem. Please include the images
and the matlab code sequentially, and number them according to the problem
numbers.

Part 1. Intro to brightness normalization. If an image contains more distinct
brightness values than can be displayed on a particular display device, or an image
contains more brightness values than can be seen by a human being, then it may be
advantageous to adjust the image so that more of the information in the image can
be seen. A simple example of this would be taking a checkboardmade out of black
squares and dark grey squares, and repainting it so that the dark grey squares are white.

There are two basic types of strategies for doing brightnessnormalization: chang-
ing the mapping of numbers to colors (changing the colormap in a colormap based
system) or changing the values in the image and using the samecolormap, as would
be done in a “true color” mode (a mode that does not use any color map, but rather
displays pixels directly as a function of the number contained in the pixel). In the first
part of this assignment, you will explore brightness normalization techniques.

1. Download the file rawImage.dat from the class web page.

2. This file contains a header followed by 65536 pixels. Each pixel takes two bytes.

3. Use the commandfopen to open the file andfread to read the bytes in the
header. Throw the bytes in the header away.

4. Usefread again to read in the image pixels into an array.

5. Using thereshape command, reshape the pixels into a 256x256 matrix of pixels,
and display the image usingimagesc.

6. The image should be flipped on its side. Fix the image so thatthe round part of
the figure (which is the top of the patient’s head) is at the topof the image.

7. Use the commandhist to look at the distribution of brightness values in the
image. You may want to use the argument which increases the number of bins in
the histogram.

8. Write a function which takes two inputs (an image, and a number of gray val-
ues) and returns another image such that there are about the same number of
brightness values for each brightness. It may not be possible to have the exact
same number of pixels at each brightness value, but the number of pixels for
each brightness value should be the within 1 of each other. Insome cases, you
may need to map the same value in the original image to multiple values in the
destination image. Use this function to render the given image as a 1-bit image,
a 2-bit image, a 3-bit image, and so on, up to an 8-bit image.

1



9. Write another function which, given an image and a number ofcolors (as an
integer), returns a grayscale “colormap” for displaying the image that makes the
appearance of the image as much like the result of the previous part as possible.
A “colormap” is a matrix with an arbitrary number of rows, butwith 3 columns.
Each row represents a “red-green-blue” color triple. Type “help colormap” to
read about colormaps. Also, try typingjet or gray to look at two colormaps
that are predefined in matlab. To use the colormap that you have created (suppose
your colormap is names “foo”), useimagesc to plot your image, and then type
colormap foo. The idea is, without changing the values of any of the pixels, to
spread the brightnesses out as uniformly as possible.

Part 2. Local methods of brightness normalization. The human eye has the
ability to separately control brightness normalization indifferent parts of an image.
This is called “locally adaptive” brightness normalization. One way to do this is to try
to boost the image contrast in areas where it is not very high.

1. Write a function which, given a “sub-image”, that is a chunkfrom a larger image,
returns an image whose smallest value is 0 and whose largest value is 256. The
function should work by subtracting the minimum value in thesub-image from
every pixel, and then scaling the image by a single constant factor so that the
largest value is 256.

2. Use this function to write another function, localScale(), which takes 16x16
patches of an image, and replaces them with their locally normalized versions.
Run the function on the original image for this problem. Notice the “patchyness”
of the image.

3. Finally, write a “smoother” local gain correction algorithm which evaluates an
offset (based on the minimum pixel in a patch) and a scaling factor (again based
upon the range of the pixels in a patch) at EVERY pixel in the image. Then it
uses this particular offset and scaling factor only at the pixel at the center of each
patch. Rerender the image and notice its smoother appearance.

2


