Object Recognition from Local Scale-Invariant Features (SIFT)

David G. Lowe

Presented by David Lee 3/20/2006

Well engineered local descriptor

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

Initially proposed for correspondence matching

 Proven to be the most effective in such cases according to a recent performance study by Mikolajczyk & Schmid (ICCV '03)

Automatic Mosaicing

<u>http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html</u>

 Now being used for general object class recognition (e.g. 2005 Pascal challenge)

Histogram of gradients
 Human detection, Dalal & Triggs CVPR '05

SIFT in one sentence

□ Histogram of gradients @ Harris-corner-like

Extract features

- Find keypoints
 - Scale, Location
 - Orientation
- Create signature
- Match features

How do we choose scale?

Scale selection principle (T. Lindeberg '94)

In the absence of other evidence, assume that a scale level, at which (possibly non-linear) combination of normalized derivatives assumes a local maximum over scales, can be treated as reflecting a characteristic length of a corresponding structure in the data.

 Sub-pixel Localization
 Fit Trivariate quadratic to find sub-pixel extrema

Eliminating edges
 Similar to Harris corner detector

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \qquad \qquad \frac{\mathrm{Tr}(\mathbf{H})^2}{\mathrm{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$$

Key issue: Stability (Repeatability)

Alternatives

- Multi-scale Harris corner detector
- Harris-Laplacian

Kadir & Brady Saliency Detector Recall Fei-fei's pLSA paper

U	ni

Rar

Descriptor Random Saliency [4] DoG [7] Grid 47.5%45.5% 11×11 Pixel 64.0%N/A 128-dim Sift 65.2%60.7%52.5%53.1%Important Note ** Their application was scene classification

NOT correspondence matching

 Difference of Gaussians in space and scale $\frac{v}{W} = \frac{v}{W} = \frac{v}{W}$

¹K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ²D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

Finding Keypoints - Orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable
 2D coordinates (x, y, scale, orientation)

 $\mathbf{0}$

 2π

Finding Keypoints – Orientation

 Assign dominant orientation as the orientation of the keypoint

Finding Keypoints

- So far, we found...
 - where interesting things are happening
 - and its orientation
- With the hope of
 - Same keypoints being found, even under some scale, rotation, illumination variation.

Extract features
 Find keypoints
 Scale, Location
 Orientation
 Create signature

Match features

Creating Signature

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

Creating Signature

What kind of information does this capture?

Comparison with HOG (Dalal '05)

- Histogram of Oriented Gradients
- General object class recognition (Human)
 - Engineered for a different goal
- Uniform sampling
- Larger cell (6-8 pixels)
- Fine orientation binning
 - 9 bins/180^o vs. 8 bins/360^o

Both are well engineered

Extract features
 Find keypoints
 Scale, Location
 Orientation
 Create signature

- Match features
 - Nearest neighbor, Hough voting, Least-square affine parameter fit

Conclusion

A novel method for detecting interest points

 Histogram of Oriented Gradients are becoming more popular

 SIFT may not be optimal for general object classification