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Joint Alignment:
What’s It Good For?
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Congealing (CVPR 2000, PAMI 2006)
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MRI Bias Removal (NIPS 2005, MICCAI 2005, PAMI 2006)  
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Five Applications

 Image factorizations
• For transfer learning, learning from one example

 Alignment for Data Pooling
• 3D MR registration
• EEG registration

 Artifact removal
• Magnetic resonance bias removal

 Improvements to recognition algorithms
• Alignment before recognition

 Defining anchor points for registration
• Find highly repeatable regions for future registrations
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Congealing

 Process of joint “alignment” of sets of arrays
(samples of continuous fields).

 3 ingredients
• A set of arrays in some class
• A parameterized family of continuous transformations
• A criterion of joint alignment
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Congealing Binary Digits

 3 ingredients
• A set of arrays in some class:

• Binary images
• A parameterized family of continuous transformations:

• Affine transforms
• A criterion of joint alignment:

• Entropy minimization
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Congealing
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Criterion of Joint Alignment
 Minimize sum of pixel stack

entropies by transforming
each image.

A pixel stack

Note: Mutual Information doesn’t make sense here.
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Observed
Image

“Latent Image”

Transform

(Previous work by Grenander,, Frey and Jojic.)

An Image Factorization
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A pixel stack



11Learned-Miller

Why Minimize Entropy?

 Negative entropy is just the average log
likelihood of points under their own distribution.

Min entropy = 
maximum non-parametric likelihood
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The Independent Pixel Assumption

 Model assumes independent pixels
 A poor generative model:

• True image probabilities don’t match model probabilities.
• Reason: heavy dependence of neighboring pixels.

 However! This model is great for alignment and separation of
causes!

• Why?
• Relative probabilities of “better aligned” and “worse aligned” are

usually correct.

 Once components are separated, a more accurate (and
computationally expensive) model can be used to model
each component.
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Before After

Each pair implicitly creates a sample of the transform T.

Congealing

A transform
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Character Models

Latent
Images

Transforms

Image Kernel
Density Estimator

(or other estimator)

Transform Kernel
Density Estimator

(CVPR 2003)
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How do we line up a new image?

Sequence of successively “sharper” models 

…

step 0    step 1                      step N

…

Take one gradient step with respect to each model.
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Digit Models from One Example
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Next Application:
Alignment of 3D Magnetic Resonance Volumes

Lilla Zollei, Sandy Wells, Eric Grimson
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Congealing MR Volumes: Joint Registration

 3 ingredients
• A set of arrays in some class:

• Gray-scale MR volumes
• A parameterized family of continuous transformations:

•  3-D affine transforms
• A criterion of joint alignment:

• Grayscale entropy minimization

 Purposes:
• Pooling data for fMRI studies
• Building general purpose statistical anatomical atlases
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Why Entropy?

 Drives volumes to having mass concentrated in a
small number of tissues.

 Comparison to Transformed Mixture of Gaussians
(Frey and Jojic).

 Convexity of entropy in distribution.
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Congealing Gray Brain Volumes (ICCV 2005 Workshop)
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Aligned Volumes
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Validation: Synthetic Data
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Real Data
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MR Congealing Challenges

 Big data
• 8 million voxels per patient
• 100 patients
• 12 transform parameters
• 20 iterations

 Techniques:
• Stochastic sampling
• Multi-resolution techniques
• Don’t use visual basic
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Signal to Noise in Event Related Potentials

Before
congealing

After
congealing
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Next Application:
Bias Removal in Magnetic Resonance Images

Parvez Ahammad, Vidit Jain
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The Problem

Ideal
Image

Observed
Image

Bias
Field

Bias fields have low spatial frequency content



28Learned-Miller

Bias Removal in MR as a Congealing Problem

 3 ingredients
• A set of arrays in some class:

• MR Scans of Similar Anatomy (2D or 3D)
• A parameterized family of continuous transformations:

• Smooth brightness transformations
• A criterion of joint alignment:

• Entropy minimization
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Congealing with brightness transforms
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Grayscale Entropy Minimization
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Some Infant Brains
(thanks to Inder, Warfield, Weisenfeld)

 Pretty well registered (not perfect)
 Pretty bad bias fields
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Fourier Basis for Smooth Bias Fields



Results

Original
Images

Bias
Corrected

Images
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Assumptions

 Pixels in same location, across images, are independent.
• When is this not true?

• Systematic bias fields.
 Pixels in same image are independent, given their location.

• Clearly not true, but again, doesn’t seem to matter.
 Bias fields are truly bandlimited.
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Some Other Recent Approaches

 Minimize entropy of intensity distribution in single image
• Viola (95)
• Warfield and Weisenfeld extensions (current)

 Wells (95)
• Use tissue models and maximize likelihood
• Use Expectation Maximization with unknown tissue type

 Fan (02)
• Incorporate multiple images from different coils, but same patient.
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Potential difficulties with single image method

 If there is a component of the brain that looks
like basis set, it will get eliminated.

 Does this occur in practice?
• Yes!
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MRI Bias Removal
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Next Application of Congealing:
Improving recognition with alignment

Andras Ferencz, Vidit Jain, Jitendra Malik, Gary Huang
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Better Alignment for Better Recognition

 Hyper-feature recognizer
• Cars, faces, etc. (ICCV 2005, NIPS 2005, BMVC 2006)

 Depends heavily upon alignment:
• Hyper-features are features conditioned on location and

appearance of facial features

 Current alignment:
• trained separately for each category, requires labeled

parts

 Goals:
• Develop automatic, parts free alignment methods
• Improve alignments
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Key Question for Identification

Which features are distinctive and persistent?
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Crash Course on Martian Identification

?

Test:  Find Bob

Martian training set

=

=

=

Bob
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Learning About the Category

Same Different

:
:

:
:

=

=

≠

≠

Training set:  sample many patch pairs.

BETTER ALIGNMENT PRODUCES BETTER MODELS

≠
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An Example

?

?
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Classification Results (correct)
same samedifferent different
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Classification Results (errors)
same samedifferent different
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Congealing Faces

 Challenges:
• High variability
• Pixel values do not necessarily have low value when

aligned
• Lighting, hue may foil pixel-based method

 Use higher level-features
• SIFT (what else?)
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Convert face images to arrays of multinomials

 Start with data set of faces
 Compute SIFT at each pixel
 Cluster SIFT vectors (16 clusters)
 At each pixel, form posterior (multinomial) over

clusters
 Distribution of pixel stack is mean of multinomial

vectors
 Now, do congealing over these multinomial

vectors
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Converting any Model into a Congealer

 Congealing as cascade of independent pixel models.
• Why not use other models?

• For example, CMU face detector?

Training set
of faces Train model

Make small changes
to training set to
improve score under
model.
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Next Application:
Finding Anchor Points for Registration

Just started…
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How Do We Register This?
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Answer: Anchor Points

 Radiologists use highly robust, highly informative
reference points to determine local coordinate
systems in the brain.

 Idea: Use congealing to determine what these
anchor points should be.
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How Do We Register This?
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Rerun algorithm on 3D windows



60Learned-Miller

Properties of Good Anchor Points

 High reliability
• Low across patient entropy

 High distinctiveness
• High within patient entropy
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Summary

 Remove source of variability
• MR bias removal
• MR anatomical alignment
• ERP signal alignment
• Better alignment for recognition (hyper-features)

 Model a source of variability
• Form factorized models (learning from one example)

 Define points of high saliency and repeatability
(anchor points) for difficult registration problems


