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Joint Alignment:
What'’s It Good For?
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MRI Bias Removal (NIPS 2005, MICCAI 2005, PAMI 2006)
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Five Applications

= Image factorizations
e For transfer learning, learning from one example
= Alignment for Data Pooling
e« 3D MR registration
 EEG registration
= Artifact removal
e Magnetic resonance bias removal
= Improvements to recognition algorithms
e Alignment before recognition
= Defining anchor points for registration
* Find highly repeatable regions for future registrations
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Congealing

= Process of joint “alignment” of sets of arrays
(samples of continuous fields).

= 3 ingredients
A set of arrays in some class
* A parameterized family of continuous transformations
e A criterion of joint alignment
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Congealing Binary Digits

= 3 ingredients
* A set of arrays in some class:
e Binary images
* A parameterized family of continuous transformations:
o Affine transforms
e A criterion of joint alignment:
e Entropy minimization
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Criterion of Joint Alignment
= Minimize sum of pixel stack

entropies by transforming
each image.
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A pixel stack

Note: Mutual Information doesn’t make sense here.
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An Image Factorization

Observed
Image

“Latent Image”
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(Previous work by Grenander,, Frey and Jojic.)
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Why Minimize Entropy?

= Negative entropy is just the average log
likelihood of points under their own distribution.

Min entropy =
maximum non-parametric likelihood
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The Independent Pixel Assumption

Model assumes independent pixels

A poor generative model:

 True image probabilities don’t match model probabilities.

« Reason: heavy dependence of neighboring pixels.

However! This model is great for alignment and separation of
causes!

« Why?

« Relative probabilities of “better aligned” and “worse aligned” are

usually correct.

Once components are separated, a more accurate (and
computationally expensive) model can be used to model
each component.
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Congealing

Before After

A transform

Each pair implicitly creates a sample of the transform T.
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Character Models
Image Kernel p(| )
Density Est!mator L
Latent (or other estimator) > Latent Image
_7 Images Probability Density
EEE% P g for Zeroes
paaang |
AEEYZie c Transform Kernel
EEE\ 8 Density Estimator P(T)
(CVPR 2003)
Transforms > Transform
Probability Density
for Zeroes
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How do we line up a new image?

Sequence of successively “sharper” models

Take one gradient step with respect to each model.
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Digit Models from One Example

Model of General model
non-affine of affine

“A’” vanability variabilit

Model || Model || Model Model
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Next Application:
Alignment of 3D Magnetic Resonance Volumes
Lilla Zollei, Sandy Wells, Eric Grimson
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Congealing MR Volumes: Joint Registration

= 3 ingredients
* A set of arrays in some class:
e Gray-scale MR volumes
« A parameterized family of continuous transformations:
o 3-D affine transforms
e A criterion of joint alignment:
e Grayscale entropy minimization

= Purposes:
* Pooling data for fMRI studies
e Building general purpose statistical anatomical atlases
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Why Entropy?

= Drives volumes to having mass concentrated in a
small number of tissues.

= Comparison to Transformed Mixture of Gaussians
(Frey and Jojic).
= Convexity of entropy in distribution.
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Congealing Gray Brain Volumes accv 2005 workshop)
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Aligned Volumes
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Validation: Synthetic Data

Unaligned input data sets Aligned input data sets
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Real Data

Unaligned input data sets Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm?® voxels
Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!
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MR Congealing Challenges

= Big data
« 8 million voxels per patient
100 patients
12 transform parameters
e 20 iterations

= Techniques:
e Stochastic sampling

e Multi-resolution techniques
 Don't use visual basic
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ignal to Noise in Event Related Potentials
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Next Application:
Bias Removal in Magnetic Resonance Images

Parvez Ahammad, Vidit Jain
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The Problem

Observed
Image

Bias fields have low spatial frequency content
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Bias Removal in MR as a Congealing Problem

= 3 ingredients
* A set of arrays in some class:
e MR Scans of Similar Anatomy (2D or 3D)
* A parameterized family of continuous transformations:
« Smooth brightness transformations
e A criterion of joint alignment:
e Entropy minimization
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Congealing with brightness transforms
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Grayscale Entropy Minimization
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Some Infant Brains
(thanks to Inder, Warfield, Weisenfeld)

= Pretty well registered (not perfect)
= Pretty bad bias fields
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Basis for Smooth Bias Fields
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Assumptions

= Pixels in same location, across images, are independent.
« When is this not true?
» Systematic bias fields.
= Pixels in same image are independent, given their location.
e Clearly not true, but again, doesn’t seem to matter.
= Bias fields are truly bandlimited.
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Some Other Recent Approaches

= Minimize entropy of intensity distribution in single image
* Viola (95)
 Warfield and Weisenfeld extensions (current)
= Wells (95)
e Use tissue models and maximize likelihood
« Use Expectation Maximization with unknown tissue type
= Fan (02)
e Incorporate multiple images from different coils, but same patient.
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Potential difficulties with single image method

= If there is a component of the brain that looks
like basis set, it will get eliminated.

= Does this occur in practice?
e Yes!
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MRI Bias Removal
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Next Application of Congealing:
Improving recognition with alignment
Andras Ferencz, Vidit Jain, Jitendra Malik, Gary Huang

Learned-Miller 40



JVass A he
Better Alignment for Better Recognition

= Hyper-feature recognizer
« Cars, faces, etc. (rccv 2005, NIPS 2005, BMVC 2006)

= Depends heavily upon alignment:

 Hyper-features are features conditioned on location and
appearance of facial features

= Current alignment:

» trained separately for each category, requires labeled
parts

= Goals:
 Develop automatic, parts free alignment methods
« Improve alignments
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Key Question for Identification

Which features are distinctive and persistent?

Learned-Miller 42




JMassAmhbe
Crash Course on Martian Identification

Martian training set

Test: Find Bob
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Learning About the Category

Different

Training set: sample many patch pairs.

BETTER ALIGNMENT PRODUCES BETTER MODELS
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An Example
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Classification Results (correct)
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Classification Results (errors)
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Congealing Faces

= Challenges:
« High variability

* Pixel values do not necessarily have low value when
aligned

« Lighting, hue may foil pixel-based method

= Use higher level-features
o SIFT (what else?)
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Convert face images to arrays of multinomials

= Start with data set of faces
= Compute SIFT at each pixel
= Cluster SIFT vectors (16 clusters)

= At each pixel, form posterior (multinomial) over
clusters

= Distribution of pixel stack is mean of multinomial
vectors

= Now, do congealing over these multinomial
vectors
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Converting any Model into a Congealer

= Congealing as cascade of independent pixel models.
« Why not use other models?
 For example, CMU face detector?

Training set :
of faces > Train model

\ .

Make small changes
to training set to
improve score under
model.
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Next Application:
Finding Anchor Points for Registration

Just started...
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How Do We Register This?
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Answer: Anchor Points

= Radiologists use highly robust, highly informative
reference points to determine local coordinate
systems in the brain.

= Idea: Use congealing to determine what these
anchor points should be.
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How Do We Register This?
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Rerun algorithm on 3D windows

Unaligned input data sets Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm?® voxels
Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!




JVassAmhe
Properties of Good Anchor Points

= High reliability

« Low across patient entropy

= High distinctiveness
e High within patient entropy
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Summary

= Remove source of variability
e MR bias removal
« MR anatomical alignment
 ERP signal alignment
» Better alignment for recognition (hyper-features)

= Model a source of variability
 Form factorized models (learning from one example)

= Define points of high saliency and repeatability
(anchor points) for difficult registration problems
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