Photometry:

Concerned with mechanisms for converting light energy into electrical energy.

B&W Video System

Color Video System

Beam Splitter

A Philips type trichroic beam splitter prism schematic, with a different color separation order than the assembly shown in the photo. The red beam undergoes total internal reflection at the air gap, while the other reflections are dichroic.

Beam splitter

Sony 6 MegaPixel CCD

Spectral Sensitivity

- Figure 1 shows relative efficiency of conversion for the eye (scotopic and photopic curves) and several types of CCD cameras. Note the CCD cameras are much more sensitive than the eye.
- Note the enhanced sensitivity of the CCD in the Infrared and Ultraviolet (bottom two figures)
- Both figures also show a handrawn sketch of the spectrum of a tungsten light bulb

Human Vision Regimes

Fig. 16.2. Approximate ranges of vision regimes and receptor regimes (after Osram Sylvania, 2000).

Computer Vision

Bayer filtering

primary colors (see to true scanding image Noise for an example).

(shown at 200%)

(through a Bayer array)

Note: Not all digital cameras use a Bayer array, however this is by far the most common setup. The Foveon four colors in a similar array: red, green, blue and emerald green.

Introduction to Computer Vision

Bayer Image Before Interp.

Interpolating the Bayer Filter

- Most accurate interpolation?
- How to do it in hardware or firmware?
- Local averaging?

Computer Vision

- In general, $V(x,y) = k E(x,y)^g$ where
 - k is a constant
 - gis a parameter of the type of sensor
 - **■** g=1 (approximately) for a CCD camera
 - g=.65 for an old type vidicon camera
- Factors influencing performance:
 - Optical distortion: pincushion, barrel, non-linearities
 - Sensor dynamic range (30:1 CCD, 200:1 vidicon)
 - Sensor Shading (nonuniform responses from different locations)
- TV Camera pros: cheap, portable, small size
- TV Camera cons: poor signal to noise, limited dynamic range, fixed array size with small image (getting better)

Sensor Performance

- Optical Distortion: pincushion, barrel, non-linearities
- Sensor Dynamic Range: (30:1 for a CCD, 200:1 Vidicon)
- Sensor Blooming: spot size proportional to input intensity
- Sensor Shading: (non-uniform response at outer edges of image)
- Dead CCD cells

There is no "universal sensor".

Sensors must be selected/tuned for a particular domain and application.

- Digitization: conversion of the continuous (in space and value) electrical signal into a digital signal (digital image)
- Three decisions must be made:
 - Spatial resolution (how many samples to take)
 - Signal resolution (dynamic range of values)
 - Tessellation pattern (how to 'cover' the image with sample points)

Digitization: Spatial Resolution

- Let's digitize this image
 - Assume a square sampling pattern
 - Vary density of sampling grid

Coarse Sampling: 20 points per row by 14 rows

Finer Sampling: 100 points per row by 68 rows

Effect of Sampling Interval - 1

Look in vicinity of the picket fence:

100	100	100	100	100	100
100	100	100	100	100	100
100	100	100	100	100	100
100	100	100	100	100	100

NO EVIDENCE OF THE FENCE!

40	40	40	40	40	40
40	40	40	40	40	40
40	40	40	40	40	40
40	40	40	40	40	40

White Image!

Dark Gray Image!

Effect of Sampling Interval - 2

Look in vicinity of picket fence:

40	100	40	100	40
40	100	40	100	40
40	100	40	100	40
40	100	40	100	40

What's the difference between this attempt and the last one?

Now we've got a fence!

Consider the repetitive structure of the fence:

Sampling Intervals

Case 1: s' = d

The sampling interval is equal to the size of the repetitive structure

NO FENCE

Case 2: s = d/2

The sampling interval is one-half the size of the repetitive structure

FENCE

The Sampling Theorem

- IF: the size of the smallest structure to be preserved is d
- THEN: the sampling interval must be smaller than d/2
- Can be shown to be true mathematically
- Repetitive structure has a certain frequency ('pickets/foot')
 - To preserve structure must sample at twice the frequency
 - Holds for images, audio CDs, digital television....
- Leads naturally to Fourier Analysis

Human Eye Sampling

- Fine near the center of the retina (fovea)
- Coarse at the edges
- Strategy:
 - Detect points of interest with low resolution sampling
 - "Foveate" to point of interest and use high resolution sampling.

Human Eye Sampling

Cartesian image ---- Log-Polar representation ---- Retinal representation

Rough Idea: Ideal Case

- Rough Idea: Actual Case
 - Can't realize an ideal point function in real equipment
 - "Delta function" equivalent has an area
 - Value returned is the average over this area

Projection through a pixel

Digitized 35mm Slide or Film

Image irradiance is the average of the scene radiance over the area of the surface intersecting the solid angle!

Computer Vision

Goal: determine a mapping from a continuous signal (e.g. analog video signal) to one of K discrete (digital) levels.

Computer Vision

- I(x,y) = continuous signal: $0 \le I \le M$
- Want to quantize to K values 0,1,....K-1
- K usually chosen to be a power of 2:

K:	#Levels	#Bits
	2	1
	4	2
	8	3
	16	4
	32	5
	64	6
	128	7
	256	8

- Mapping from input signal to output signal is to be determined.
- Several types of mappings: uniform, logarithmic, etc.

Choice of K

Original

K=2

K=4

Linear Ramp

K=32

Computer Vision

K=2 (each color)

K=4 (each color)

Digital X-rays

Digital X-rays: 8 is enough?

Digital X-rays: 1 bit

Digital X-rays: 2 bits

Digital X-rays: 3 bit

Digital X-rays: 8 is enough?

Gray Levels-Resolution

Computer Vision

Trade Off

- More gray levels can be simulated with more resolution.
- A "gray" pixel:

Doubling the resolution in each direction adds at least 3 new gray levels. But maybe more?

Pseudocolor

Digital X-rays: 8 is enough?

Choice of Function: Uniform

- Uniform sampling divides the signal range [0-M] into K equal-sized intervals.
- The integers 0,...K-1 are assigned to these intervals.
- All signal values within an interval are represented by the associated integer value.
- Defines a mapping:

Logarithmic Quantization

- Signal is log I(x,y).
- Effect is:

Detail enhanced in the low signal values at expense of detail in high signal values.

Logarithmic Quantization

Quantization Curve

Histogram Equalization

Brightness Equalization

- Two methods:
 - Change the data (histogram equalization)
 - Use a look up table (brightness or color remapping)

Maps Brightness Value -> RGB Color

$$0 \rightarrow (1, 0, 0)$$

Brightness Equalization

- Two methods:
 - Change the data (histogram equalization).
 - Use a look up table (brightness equalization).

Maps Brightness Value -> RGB Color

- $0 \rightarrow (0, 0, 0)$
- 1 -> (0, 0, 0)
- **2** -> (0, 0, 0)
- **3** -> (0, 0, 0)
- **...**
- 130-> (0,0,0)
- **131->** (.01, .01, .01)
- **132->** (.02,.02,.02)
- _ ...
- 200->(1,1,1)
- 201->(1,1,1)
- _ ...
- 255 -> (1, 1, 1)

Brightness Equalization

