JMassAmbhe

670 Unit 3:
Alignment Lecture 2
Joint Alignment

Including work with

Vidit Jain, Andras Ferencz, Gary
Huang, Lilla Zollei, Sandy Wells

Computer Science
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Pixel representations
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Pixel representations

Squared
differences
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Examples of Joint Alignment

= Alighing handwritten digits
« Improves recognition
» Allows recognition from a single example

= Aligning grayscale images and grayscale volumes
¢ magnetic resonance images
= Aligning complex images such as faces

« Improves recognition
e Building a hierarchy of models, from coarse to fine
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Congealing Gray Brain Volumes accv 2005 workshop)
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Aligned Volumes
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Why joint alignment?

= Can be easier than aligning two images!
 Natural smoothing effect.
= Produces natural notion of “center”.

 Traditional medical atlas: one individual

« Compares anatomy to many individuals that have been
jointly registered

= Automatically produce an alignment machine (an
“image funnel”) from a set of images.
e Unsupervised model building!

= Produce “sharper” models.
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Congealing

= Process of joint alignment of sets of arrays
(samples of continuous fields).

= 3 ingredients
A set of arrays in some class

e A parameterized family of continuous transformations
e A criterion of joint alignment
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Congealing Binary Digits

= 3 ingredients
* A set of arrays in some class:
e Binary images
A parameterized family of continuous transformations:
o Affine transforms
e A criterion of joint alignment:
e Entropy minimization
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Congealing
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Criterion of Joint Alignment

= Minimize sum of pixel stack
entropies by transforming
each image. "“Joint Gradient Descent”
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A pixel stack
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Entropy

Entropy of a discrete random variable X that takes values in A

H(X) = -} P(x)logP(x) (1)
reX
= —Ellog P(X)]. (2)

Differential entropy of a continuous real random variable X:

h(X) = —/- plx) log p(x) (3)
= —El[logp(X)]. (4)
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Entropy of probability distributions

Histogram of samples from a
high entropy distribution.

Histogram of samples from a
low entropy distribution.
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Entropy as a measure of dispersion

= Low entropy
 High average log likelihood under “true” distribution.
« A small number of highly likely values

= High entropy

e a large number of relatively uncommon values.

= Important for gray scale images:
o Multi-modal distribution can have low entropy!
 Even if the modes are far apart.
* Variance does not have this property!
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Empirical entropy

= Empirical entropy is the estimate of the entropy
of a random variable derived from a sample.

 Given: A sample of a random variable X.
e To estimate entropy of X:

e Estimate probability distribution of X from the
sample (density estimation).

« Compute the entropy of the density estimate.
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Empirical entropy

= Empirical entropy is the estimate of the entropy
of a random variable derived from a sample.

 Given: A sample of a random variable X.
e To estimate entropy of X:

e Estimate probability distribution of X from the
sample (density estimation).

« Compute the entropy of the density estimate.

There are very fast methods of entropy estimation
that do not require the intermediate estimation of a density
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Criterion of Joint Alignment

= Minimize sum of pixel stack

entropies by transforming
each image.
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Note: Mutual Information doesn’ t make sense here.
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Congealing as Inference
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Congealing as Inference
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Min entropy = Max non-parametric likelihood

argmax P(T|I) = argmax P(I,T) (1)
TeT TeT
~ argmax P(L(I,T)) (2)
TeT
N
= arg max P o(Li(x, 3
, g m: H]J o(Li(z,y)) (3)
d/ N
i = arg max log Pp o (Li(x, 4
._—J/ g m Z,; g Pry(Li(z,y)) (4)
\ A
A pixel stack ~ m‘,gell;in =D D log Puy(Li(x,y)) (5)
€,y 1=1
= arg min Zﬁ(X,Y) (6)
TeT .y
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The Independent Pixel Assumption

= Model assumes independent pixels

= A poor generative model:

e True image probabilities don’t match model
probabilities.

« Reason: heavy dependence of neighboring
pixels.
= However! This model is great for
alignment and separation of causes!
e Why?

» Relative probabilities of “better aligned” and
“worse aligned” are usually correct.
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Summary so far...

= Congealing aligns a set of images

= [t does this by trying to make each column of
pixels (a pixel stack) have low disorder (entropy)

= [t assumes that the distribution of latent images
have independent pixels.
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Summary so far...

= Congealing aligns a set of images

= [t does this by trying to make each column of
pixels (a pixel stack) have low disorder (entropy)

= [t assumes that the distribution of latent images
have independent pixels.

= Next question: what if we want to align one new
image to the set of images we have already
aligned?
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How do we align a new image?

Sequence of successively “sharper” models

step O step 1 step N
2]0[0e[0]o] 2]0[0e[0]o] ololololo]o]
0]0[g 000 0]0[g 000 olololo|o]o]
0l0ls0]0|0] 0l0ls0]0|0] olole|o]o]o
ciecceolill oo e
000 020 EEEIEIE 010/0000]

Take one gradient step with respect to each model.
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How do we align a new image?

Sequence of successively “sharper” models

step O step 1 step N
2]0[0e[0]o] 2]0[0e[0]o] ololololo]o]
Booany  padand : aooaan
ciecceolill oo e
000 020 EEEIEIE 010/0000]

New Image Image Funnel Aligned Image
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Funneling

= A funnel is an image alignment machine.
= [t is a side-effect of the congealing process.

= Congealing any set of images produces a funnel
which can be used align subsequent images

= NO TRAINING DATA ARE REQUIRED!!!
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Applications...
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Learning from one example (CVPR 2000)

Latent

Image Kernel
Density Estimator
(or other estimator)

/ Images

Congealing

Transforms

Transform Kernel
Density Estimator
(CVPR 2003)

>

P(l.)

Latent Image
Probability Density
for Zeroes

P(T)

Transform
Probability Density
for Zeroes
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Application:
Alignment of 3D Magnetic Resonance Volumes
Lilla Zollei, Sandy Wells, Eric Grimson
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Congealing MR Volumes: Joint Registration

= 3 ingredients
A set of arrays in some class:
 Gray-scale MR volumes
A parameterized family of continuous transformations:
o 3-D affine transforms
e A criterion of joint alignment:
o Grayscale entropy minimization

= Purposes:
* Pooling data for functional MRI studies

e Aligning subjects to a common unbiased reference frame
for comparison

e Building general purpose statistical anatomical atlases
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Congealing Gray Brain Volumes accv 2005 workshop)
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Aligned Volumes
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Validation: Synthetic Data

Unaligned input data sets Aligned input data sets
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Real Data

Unaligned input data sets Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm? voxels
Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!
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MR Congealing Challenges

= Big data
8 million voxels per volume
« 100 volumes
e 12 transform parameters (3D affine)
o 20 iterations

= Techniques:
e Stochastic sampling
e Multi-resolution techniques

Learned-Miller 37
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Next Application:
Alignment of Faces for Improved Recognition

joint work with Gary Huang

Learned-Miller 38
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Labeled Faces in the Wild

http://vis-www.cs.umass.edu/lfw/

39
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Labeled Faces in the Wild: Face Verification
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Face verification with and without alignment
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Traditional Face Alignment

= Traditional Face Alignment algorithm:

 Develop “part detectors” for eyes, nose, mouth, and
other parts of the face.

* Requires lots of hand-labeled data.
 Find the parts for a new face.
* Position those parts in canonical locations.

= [s it possible to design an alignment algorithm
without first building part detectors?
 An “unsupervised” alignment algorithm.
 Unsupervised because no parts were labeled.
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Congealing Faces

= Challenges:
* High variability
e Pixel values do not necessarily have low entropy when
aligned
 Lighting, hue may foil pixel-based method

= Use higher level-features that have greater g
2

invariance under lighting ]
o SIFT (what else?) J

= Problem with SIFT—high dimensionality \
 Can’t estimate entropy of SIFT distribution .
from small number of examples. A pixel stack

 Need to reduce dimensionality
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Congealing Complex Images (ICCV 2007)

SIFT clusters

vector representing
probability of each cluster,
or “mixture” of clusters
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Convert face images to arrays of multinomials

= Start with data set of faces
= Compute SIFT at each pixel
= Cluster SIFT vectors (16 clusters)

= At each pixel, form posterior (multinomial) over
clusters

= Distribution of pixel stack is mean of multinomial
vectors

= Now, do congealing over these multinomial
vectors
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Face Congealing
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Converting any Model into a Congealer

= Congealing as sequence of independent pixel models.
e Why not use other models?
 For example, PCA congealing?

Training set :
Of faces > Train mOdel

\ /

Make small changes
to training set to
improve score under
model.
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Deep Congealing (in submission)

= Build a model of faces using Deep Belief
Networks.

= Adjust each face to increase its likelihood under
the Deep Belief model.

= Retrain the Deep Belief model.
= Jterate until convergence

Learned-Miller 48



J\Mass Amihe
Deep Congealing (in submission)

= Build a model of faces using Deep Belief
Networks.

= Adjust each face to increase its likelihood under
the Deep Belief model.

= Retrain the Deep Belief model.
= Jterate until convergence

= Matches best alignment performance so far, but
with no annotated parts!
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Deep Congealing

J V19
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Summary of Face Congealing

= Fine alignment significantly increases recognition
rates for most face recognition algorithms.

= Congealing can be done in different feature
spaces

 Must be able to estimate entropy of feature space from
a few hundred examples at most

= Congealing can be done with respect to different
models
« Deep Congealing

= Nothing in the algorithm is specific to faces
 Works just as well with frontal car images!
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Last Application:
Bias removal in MRI
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The Problem

Bias Observed
Field Image

Bias fields have low spatial frequency content
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Bias Removal in MR as a Congealing Problem

= 3 ingredients
* A set of arrays in some class:
e MR Scans of Similar Anatomy (2D or 3D)
A parameterized family of continuous transformations:
« Smooth brightness transformations
e A criterion of joint alignment:
e Entropy minimization
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Congealing with brightness transforms
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Grayscale Entropy Minimization
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Some Infant Brains
(thanks to Inder, Warfield, Weisenfeld)

= Pretty bad bias fields
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Fourier Basis for Smooth Bias Fields

Learned-Miller
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Original
Images

Bias
Corrected
Images

Learned-Millg

Results
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Assumptions

= Pixels in same location, across images, are
independent.

« When is this not true?
« Systematic bias fields.
= Pixels in same image are independent, given
their location.
e Clearly not true, but again, doesn’ t seem to matter.

= Bias fields are truly bandlimited.
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Some Other Recent Approaches

= Minimize entropy of intensity distribution in single image
* Viola (95)
« Warfield and Weisenfeld extensions (current)
= Wells (95)
e Use tissue models and maximize likelihood
e Use Expectation Maximization with unknown tissue type
= Fan (02)
 Incorporate multiple images from different coils, but same patient.
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Potential difficulties with single image method

= If there is a component of the brain that looks
like basis set, it will get eliminated.

= Does this occur in practice?
e Yes!
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MRI Bias Removal
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Summary

Congealing: joint alignment of images
Learning from one example

 Use congealing to learn about shape changes of a class
« Transfer shape change knowledge to new classes

Remove unwanted spatial transformations and
brightness transformations from medical images

Define notions of central tendency in a data
driven manner

Build alignment machines (funnels) that have
few local minima with no labeled examples.

Improve classification performance
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