670 Unit 3: Alignment Lecture 2 Joint Alignment

Including work with Vidit Jain, Andras Ferencz, Gary Huang, Lilla Zollei, Sandy Wells

Computer Science

Pixel representations

Pixel representations

Squared differences

Examples of Joint Alignment

- Aligning handwritten digits
 - Improves recognition
 - Allows recognition from a single example
- Aligning grayscale images and grayscale volumes
 - magnetic resonance images
- Aligning complex images such as faces
 - Improves recognition
 - Building a hierarchy of models, from coarse to fine

Congealing (CVPR 2000, PAMI 2006)

Congealing Gray Brain Volumes (ICCV 2005 Workshop)

Aligned Volumes

Why joint alignment?

- Can be easier than aligning two images!
 - Natural smoothing effect.
- Produces natural notion of "center".
 - Traditional medical atlas: one individual
 - Compares anatomy to many individuals that have been jointly registered
- Automatically produce an alignment machine (an "image funnel") from a set of images.
 - Unsupervised model building!
- Produce "sharper" models.

Congealing

- Process of joint alignment of sets of arrays (samples of continuous fields).
- 3 ingredients
 - A set of arrays in some class
 - A parameterized family of *continuous* transformations
 - A criterion of joint alignment

Congealing Binary Digits

- 3 ingredients
 - A set of arrays in some class:
 - Binary images
 - A parameterized family of *continuous* transformations:
 - Affine transforms
 - A criterion of joint alignment:
 - Entropy minimization

Congealing

3	3	3	3	3	3	
3	3	3	3	3	3	
3	3	3	3	3	3	
Ŋ	3	3	3	3	3	
3	3	3	3	3	3	
3	3	3	3	3	3	

Criterion of Joint Alignment

 Minimize sum of pixel stack entropies by transforming each image. "Joint Gradient Descent"

0	0	0	0	0	0		Ø	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0	x	0	0	0	0	0	0
0	0	0	0	\mathcal{O}	\Diamond		0	0	0	0	Д	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	Ð	0	0		0	0	0	0	0	0

Entropy

Entropy of a discrete random variable X that takes values in \mathcal{X} :

$$H(X) = -\sum_{x \in X} P(x) \log P(x) \qquad (1)$$

$$= -E[\log P(X)].$$
 (2)

Differential entropy of a continuous real random variable X:

$$h(X) = -\int_{-\infty}^{\infty} p(x) \log p(x) \qquad (3)$$

$$= -E[\log p(X)].$$
 (4)

Entropy of probability distributions

Histogram of samples from a high entropy distribution.

Histogram of samples from a low entropy distribution.

Entropy as a measure of dispersion

- Low entropy
 - High average log likelihood under "true" distribution.
 - A small number of highly likely values
- High entropy
 - a large number of relatively uncommon values.
- Important for gray scale images:
 - Multi-modal distribution can have low entropy!
 - Even if the modes are far apart.
 - Variance does not have this property!

Empirical entropy

- Empirical entropy is the estimate of the entropy of a random variable derived from a sample.
 - Given: A sample of a random variable X.
 - To estimate entropy of X:
 - Estimate probability distribution of X from the sample (density estimation).
 - Compute the entropy of the density estimate.

Empirical entropy

- Empirical entropy is the estimate of the entropy of a random variable derived from a sample.
 - Given: A sample of a random variable X.
 - To estimate entropy of X:
 - Estimate probability distribution of X from the sample (density estimation).
 - Compute the entropy of the density estimate.

There are very fast methods of entropy estimation that do not require the intermediate estimation of a density.

Criterion of Joint Alignment

 Minimize sum of pixel stack entropies by transforming each image.

0	0	0	0	0	0	Ø	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	\bigcirc	0	0	0	0	D	0
o	0	0	0	0	0	0	0	0	0	0	0
0	0	0	Ø	0	0	0	0	0	Ð	0	0

Note: Mutual Information doesn't make sense here.

Congealing as Inference

Congealing as Inference

<u>UMassAmherst</u>

Min entropy = Max non-parametric likelihood

$$\underset{\mathbf{T}\in\mathcal{T}}{\arg\max} P(\mathbf{T}|\mathbf{I}) = \underset{\mathbf{T}\in\mathcal{T}}{\arg\max} P(\mathbf{I},\mathbf{T})$$
(1)

$$\approx \underset{\mathbf{T}\in\mathcal{T}}{\arg\max} P(\mathcal{L}(\mathbf{I},\mathbf{T}))$$
(2)

$$\underset{\mathbf{T}\in\mathcal{T}}{\operatorname{arg\,max}} \prod_{x,y} \prod_{i=1}^{N} P_{x,y}(L_i(x,y))$$
(3)

$$\underset{\mathbf{T}\in\mathcal{T}}{\operatorname{arg\,max}} \sum_{x,y} \sum_{i=1}^{N} \log P_{x,y}(L_i(x,y))$$
(4)

$$\approx \underset{\mathbf{T}\in\mathcal{T}}{\operatorname{arg\,min}} - \sum_{x,y} \sum_{i=1}^{N} \log \hat{P}_{x,y}(L_i(x,y))$$
(5)

$$= \underset{\mathbf{T}\in\mathcal{T}}{\operatorname{arg\,min}} \sum_{x,y} \hat{H}(X,Y) \tag{6}$$

Learned-Miller

A pixel stack

The Independent Pixel Assumption

- Model assumes independent pixels
- A poor generative model:
 - True image probabilities don't match model probabilities.
 - Reason: heavy dependence of neighboring pixels.
- However! This model is great for alignment and separation of causes!
 - Why?
 - Relative probabilities of "better aligned" and "worse aligned" are usually correct.

Summary so far...

- Congealing aligns a set of images
- It does this by trying to make each column of pixels (a pixel stack) have low disorder (entropy)
- It assumes that the distribution of latent images have independent pixels.

Summary so far...

- Congealing aligns a set of images
- It does this by trying to make each column of pixels (a pixel stack) have low disorder (entropy)
- It assumes that the distribution of latent images have independent pixels.
- Next question: what if we want to align one new image to the set of images we have already aligned?

How do we align a new image?

Sequence of successively "sharper" models

Take one gradient step with respect to each model.

How do we align a new image?

Sequence of successively "sharper" models

Funneling

- A funnel is an image alignment machine.
- It is a side-effect of the congealing process.
- Congealing any set of images produces a funnel which can be used align subsequent images
- NO TRAINING DATA ARE REQUIRED!!!

Applications...

Learning from one example (CVPR 2000)

Application: Alignment of 3D Magnetic Resonance Volumes

Lilla Zollei, Sandy Wells, Eric Grimson

Congealing MR Volumes: Joint Registration

- 3 ingredients
 - A set of arrays in some class:
 - Gray-scale MR volumes
 - A parameterized family of *continuous* transformations:
 - 3-D affine transforms
 - A criterion of joint alignment:
 - Grayscale entropy minimization
- Purposes:
 - Pooling data for functional MRI studies
 - Aligning subjects to a common **unbiased** reference frame for comparison
 - Building general purpose statistical anatomical atlases

Congealing Gray Brain Volumes (ICCV 2005 Workshop)

Aligned Volumes

Validation: Synthetic Data

Unaligned input data sets

Aligned input data sets

<u>UMassAmherst</u>

Real Data

Unaligned input data sets

Aligned input data sets

<u>Data set</u>: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm³ voxels <u>Experiment</u>: 2 levels; 12-param. affine; N = 2500; iter = 150; time = <u>1209 sec!!</u>

MR Congealing Challenges

- Big data
 - 8 million voxels per volume
 - 100 volumes
 - 12 transform parameters (3D affine)
 - 20 iterations
- Techniques:
 - Stochastic sampling
 - Multi-resolution techniques

Next Application: Alignment of Faces for Improved Recognition

joint work with Gary Huang

Labeled Faces in the Wild

http://vis-www.cs.umass.edu/lfw/

Labeled Faces in the Wild: Face Verification

AJ Cook, 1

Aaron Sorkin, 2

Frank Solich, 5

Abdel Nasser Assidi, 2 Hilary McKay, 1

Abdoulaye Wade, 4 Linda Dano, 1 "different"

"same"

40

Face verification with and without alignment

Traditional Face Alignment

- Traditional Face Alignment algorithm:
 - Develop "part detectors" for eyes, nose, mouth, and other parts of the face.
 - Requires lots of hand-labeled data.
 - Find the parts for a new face.
 - Position those parts in canonical locations.
- Is it possible to design an alignment algorithm without first building part detectors?
 - An "unsupervised" alignment algorithm.
 - Unsupervised because no parts were labeled.

Congealing Faces

- Challenges:
 - High variability
 - Pixel values do not necessarily have low entropy when aligned
 - Lighting, hue may foil pixel-based method
- Use higher level-features that have greater invariance under lighting
 - SIFT (what else?)
- Problem with SIFT—high dimensionality
 - Can't estimate entropy of SIFT distribution from small number of examples.
 - Need to reduce dimensionality

A pixel stack

Congealing Complex Images (ICCV 2007)

Convert face images to arrays of multinomials

- Start with data set of faces
- Compute SIFT at each pixel
- Cluster SIFT vectors (16 clusters)
- At each pixel, form posterior (multinomial) over clusters
- Distribution of pixel stack is mean of multinomial vectors
- Now, do congealing over these multinomial vectors

Face Congealing

Converting any Model into a Congealer

- Congealing as sequence of independent pixel models.
 - Why not use other models?
 - For example, PCA congealing?

Deep Congealing (in submission)

- Build a model of faces using Deep Belief Networks.
- Adjust each face to increase its likelihood under the Deep Belief model.
- Retrain the Deep Belief model.
- Iterate until convergence

Deep Congealing (in submission)

- Build a model of faces using Deep Belief Networks.
- Adjust each face to increase its likelihood under the Deep Belief model.
- Retrain the Deep Belief model.
- Iterate until convergence
- Matches best alignment performance so far, but with no annotated parts!

Deep Congealing

Summary of Face Congealing

- Fine alignment significantly increases recognition rates for most face recognition algorithms.
- Congealing can be done in different feature spaces
 - Must be able to estimate entropy of feature space from a few hundred examples at most
- Congealing can be done with respect to different models
 - Deep Congealing
- Nothing in the algorithm is specific to faces
 - Works just as well with frontal car images!

Last Application: Bias removal in MRI

<u>UMassAmherst</u>

The Problem

Bias fields have low spatial frequency content

Bias Removal in MR as a Congealing Problem

3 ingredients

- A set of arrays in some class:
 - MR Scans of Similar Anatomy (2D or 3D)
- A parameterized family of *continuous* transformations:
 - Smooth brightness transformations
- A criterion of joint alignment:
 - Entropy minimization

Congealing with brightness transforms

Grayscale Entropy Minimization

Learned-Miller

Image intensity

Some Infant Brains

(thanks to Inder, Warfield, Weisenfeld)

- Pretty well registered (not perfect)
- Pretty bad bias fields

Fourier Basis for Smooth Bias Fields

Results

Assumptions

- Pixels in same location, across images, are independent.
 - When is this not true?
 - Systematic bias fields.
- Pixels in same image are independent, given their location.
 - Clearly not true, but again, doesn't seem to matter.
- Bias fields are truly bandlimited.

Some Other Recent Approaches

- Minimize entropy of intensity distribution in single image
 - Viola (95)
 - Warfield and Weisenfeld extensions (current)
- Wells (95)
 - Use tissue models and maximize likelihood
 - Use Expectation Maximization with unknown tissue type
- Fan (02)
 - Incorporate multiple images from different coils, but same patient.

Potential difficulties with single image method

- If there is a component of the brain that looks like basis set, it will get eliminated.
- Does this occur in practice?
 - Yes!

MRI Bias Removal

Summary

- Congealing: joint alignment of images
- Learning from one example
 - Use congealing to learn about shape changes of a class
 - Transfer shape change knowledge to new classes
- Remove unwanted spatial transformations and brightness transformations from medical images
- Define notions of central tendency in a data driven manner
- Build alignment machines (funnels) that have few local minima with no labeled examples.
- Improve classification performance