Graduate Computer Vision

CS670 Unit 2: Probability, Statistics, Supervised Learning: Simple Features Erik Learned-Miller

Today

- Supervised learning: a direct probabilistic approach
 - Consistency, and optimality of MAP classification
- Single pixel features
 - How to choose them?
- Two pixel features
 - How to choose them?
- How many pixels should we use?

MAP classification

- Supervised learning: a direct probabilistic approach
 - Choose features
 - Estimate probabilities of those features for each class
 - Use Bayes' rule to compute posterior probability
 - Choose class with highest posterior: maximum a posteriori (MAP) classification

(What do we do in case of a tie?)

"True Distributions"

Estimated Distributions

Likelihood in 2 dimensions

MAP Classification

- When used with the exact likelihoods and priors
 - Minimizes probability of error over ALL decision functions.
 - There exists NO BETTER CLASSIFIER in terms of minimizing the probability of error.
 - T-Maze example.

MAP Classification

- When used with the ESTIMATED likelihoods and priors
 - No guarantees for poor estimates.
 - However
 - Consistent estimators of likelihoods and priors yield consistent classifiers*

Consistent estimators

- Consistent estimator: as I gather more and more data, the difference between the true value of the estimate and the actual value goes to 0.
 - Example of consistent estimator: sampling from a discrete distribution and estimating the probability of each outcome by its frequency.
 - Not consistent: Estimate a probability distribution by assuming it's Gaussian (normal) and finding the best fitting Gaussian.

Summary

- If we have enough data to estimate likelihood distributions and priors well
 - Use a consistent estimator of distributions
 - Use Bayes rule to estimate posteriors
 - Choose maximum posterior class (MAP classification)
 - Should get error close to minimum possible error.

High dimensions and lack of data

- Fundamental problem in vision:
 - don't have enough data to estimate 10,000dimensional probability distributions!
 - Must reduce the number of things to estimate. Possible approaches:
 - Use a subset of pixels
 - Compute small number of features that are functions of the pixels. There are a lot of these!
 - Constrain form of estimates.
 - Gaussian
 - Only allow 3 probability levels?
 - etc.

Start with a single pixel

- Assignment 1:
 - Estimate p(X|Y="3") p(X|Y="5")
 - Use Bayes rule to invert.
- Not all pixels are equal!
 - Which pixel to select is topic of "feature selection" methods.

Means

Code for means:

load '~/Desktop/Teaching/Data/digits.mat';

clf; figure(1); subplot(1,3,1); colormap(gray); imagesc(mean(train_threes,3));

subplot(1,3,2); colormap(gray); imagesc(mean(train_fives,3));

Means and differences of means

What about 2 pixels?

First question: do we have enough data to estimate p(X1, X2 | Y="3") and p(X1, X2 | Y="5") ?

• Which two pixels?

• The story of the late professor and the frosty windshield....

• The story of the late professor and the frosty windshield....

• Moral of the story:

We want to choose features that are informative, but also features that contain independent information!

Statistical Independence

Statistical Independence

Random variables X and Y are statistically independent if and only if P(X,Y) = P(X)P(Y).

Statistical Independence

Random variables X and Y are statistically independent if and only if

P(X,Y) = P(X)P(Y).

Mini-quiz.

Good features

- We would like features that are NOT independent of the class we are trying to guess. That is, they should be *dependent on the class.*
- We would like features that are as INDEPENDENT as possible from each other.
- How do we measure the "quantity" of statistical dependence?

Mutual Information between feature and class

 $I(X;C) = \sum_{X \in \mathcal{X}, C \in \mathcal{C}} P(X,C) \log \frac{P(X,C)}{P(X)P(C)}$

Information Gain

 After choosing the most informative feature (highest MI with class label) choose feature which adds the most information.

 $I(X_2; C|X_1) = I(X_1, X_2; C) - I(X_1; C).$

Greedy versus global

To pick the best 2 features, we would like to optimize:

$I(X_1, X_2; C)$

This requires us to examine N-choose-2 feature pairs. $O(N^2)$.

- Greedy alternative:
 - Pick best $I(X_1;C)$

Then pick best $I(X_2;C|X_1)$

Suboptimal, but what is complexity?