Today

- Supervised learning: a direct probabilistic approach
 - Consistency, and optimality of MAP classification

- Single pixel features
 - How to choose them?

- Two pixel features
 - How to choose them?

- How many pixels should we use?
MAP classification

- Supervised learning: a direct probabilistic approach
 - Choose features
 - Estimate probabilities of those features for each class
 - Use Bayes’ rule to compute posterior probability
 - Choose class with highest posterior:
 \[\text{maximum a posteriori (MAP) classification} \]

(What do we do in case of a tie?)
“True Distributions”

- $P(X|Y = 1)$
- $P(X|Y = 2)$
- $P(Y = 1|X)$
- $P(Y = 2|X)$
Estimated Distributions

\[\hat{P}(X|Y = 1) \]

\[\hat{P}(X|Y = 2) \]

\[\hat{P}(Y = 1|X) \]

\[\hat{P}(Y = 2|X) \]
Likelihood in 2 dimensions

$P(X|Y = 1)$
MAP Classification

- When used with the exact likelihoods and priors
 - Minimizes probability of error over ALL decision functions.
 - \textit{There exists NO BETTER CLASSIFIER} in terms of minimizing the probability of error.

- T-Maze example.
MAP Classification

- When used with the ESTIMATED likelihoods and priors
 - No guarantees for poor estimates.
 - However
 - Consistent estimators of likelihoods and priors yield consistent classifiers*
Consistent estimators

- Consistent estimator: as I gather more and more data, the difference between the true value of the estimate and the actual value goes to 0.
- Example of consistent estimator: sampling from a discrete distribution and estimating the probability of each outcome by its frequency.
- Not consistent: Estimate a probability distribution by assuming it’s Gaussian (normal) and finding the best fitting Gaussian.
Summary

- If we have enough data to estimate likelihood distributions and priors well
 - Use a consistent estimator of distributions
 - Use Bayes rule to estimate posteriors
 - Choose maximum posterior class (MAP classification)
 - Should get error close to minimum possible error.
High dimensions and lack of data

- Fundamental problem in vision:
 - don’t have enough data to estimate 10,000-dimensional probability distributions!
- Must reduce the number of things to estimate.
 Possible approaches:
 - Use a subset of pixels
 - Compute small number of features that are functions of the pixels. There are a lot of these!
 - Constrain form of estimates.
 - Gaussian
 - Only allow 3 probability levels?
 - etc.
Start with a single pixel

- Assignment 1:
 - Estimate $p(X|Y=\text{“3”})$
 - $p(X|Y=\text{“5”})$
 - Use Bayes rule to invert.

- Not all pixels are equal!
 - Which pixel to select is topic of “feature selection” methods.
Means
Code for means:

```matlab
load '~/Desktop/Teaching/Data/digits.mat';
clf;
figure(1);
subplot(1,3,1);
colormap(gray);
imagesc(mean(train_threes,3));

subplot(1,3,2);
colormap(gray);
imagesc(mean(train_fives,3));
```
Means and differences of means
What about 2 pixels?

- First question: do we have enough data to estimate
 \(p(X_1, X_2 \mid Y=\text{“3”}) \) and
 \(p(X_1, X_2 \mid Y=\text{“5”}) \) ?

- Which two pixels?
• The story of the late professor and the frosty windshield....
• The story of the late professor and the frosty windshield....

• Moral of the story:
 We want to choose features that are informative, but also features that contain independent information!
Statistical Independence
Random variables X and Y are statistically independent if and only if

$$P(X, Y) = P(X)P(Y).$$
Random variables X and Y are **statistically independent** if and only if

$$P(X, Y) = P(X)P(Y).$$

Mini-quiz.
Good features

• We would like features that are NOT independent of the class we are trying to guess. That is, they should be dependent on the class.

• We would like features that are as INDEPENDENT as possible from each other.

• How do we measure the “quantity” of statistical dependence?
Mutual Information between feature and class

\[I(X; C) = \sum_{x \in \mathcal{X}, c \in \mathcal{C}} P(X, C) \log \frac{P(X, C)}{P(X)P(C)} \]
Information Gain

- After choosing the most informative feature (highest MI with class label)
 choose feature which *adds the most information.*

\[I(X_2; C|X_1) = I(X_1, X_2; C) - I(X_1; C). \]
Greedy versus global

- To pick the best 2 features, we would like to optimize:

\[I(X_1, X_2; C) \]

This requires us to examine N-choose-2 feature pairs. \(O(N^2) \).

- Greedy alternative:
 - Pick best \(I(X_1; C) \)
 - Then pick best \(I(X_2; C|X_1) \)

Suboptimal, but what is complexity?