Graduate Computer Vision

CS670 Unit 2: Probability, Statistics, Supervised Learning: Feature Selection Erik Learned-Miller

Today

- Information theoretic quantities: entropy, joint entropy, KL-divergence, and mutual information
- Conditional entropy
- Conditional mutual information and information gain
- Optimal and greedy algorithms for feature selection

Notation

Entropy

- How much "information" do you get when you observe a random variable?
 - How many bits, *on average*, do you have to send to communicate the outcome of the random variable to someone else?
 - coin with probability distribution $[\frac{1}{2}, \frac{1}{2}]$: 1 bit
- Definition:

The *entropy* of a discrete random variable X with probability distribution given by P(X) is

$$H(X) = -\sum_{x \in \mathcal{X}} P(x) \log P(x).$$

Don't forget the negative sign!

Entropy

 A 4-sided die that always lands on side A or side C: [½ 0 ½ 0]

$$H(X) = -\left[\frac{1}{2}\log(\frac{1}{2}) + 0\log 0 + \frac{1}{2}\log(\frac{1}{2}) + 0\log 0\right]$$

How should we evaluate 0 log 0?

Entropy

 A 4-sided die that always lands on side A or side C: [½ 0 ½ 0]

$$H(X) = -\left[\frac{1}{2}\log(\frac{1}{2}) + 0\log 0 + \frac{1}{2}\log(\frac{1}{2}) + 0\log 0\right]$$

How should we evaluate 0 log 0?

 ${\displaystyle \lim_{x
ightarrow 0}} P(x) \log P(x) = 0.$

Why does this make sense? A coin can land on its edge...

True or False?

• The entropy of independent random variables is the sum of the entropies of each variable?

Entropy of Ind. RVs

	H(X,Y)	(1)
=	$-\sum_{(x,y)\in(\mathcal{X},\mathcal{Y})}P(x,y)\log P(x,y)$	(2)
=	$-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P(x,y)\log P(x,y)$	(3)
=	$-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P(x)P(y)\log P(x)P(y)$	(4)
=	$-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P(x)P(y)[\log P(x)+\log P(y)]$	(5)
=	$-\sum_{y\in\mathcal{Y}}P(y)\log P(y)\sum_{x\in\mathcal{X}}P(x)-\sum_{y\in\mathcal{Y}}P(y)\sum_{x\in\mathcal{X}}P(x)\log P(x)$	(6)
=	H(X) + H(Y).	(7)

Joint Entropy

- The joint entropy of P(X,Y) is just the same as the entropy of a single random variable Z, where Z is a renaming of (X,Y):
 - Example: entropy of (precipitation, temperature) vs. entropy of "weather".

KL-divergence (relative entropy)

• How different are two probability distributions?

$$D(P(X) \| Q(X)) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

KL-divergence (relative entropy)

• How different are two probability distributions?

$$D(P(x) \| Q(x)) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

What happens when P(x) = Q(x)?

KL-divergence (relative entropy)

• How different are two probability distributions?

$$D(P(x) \| Q(x)) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

What happens when P(x) = Q(x)?

• Not symmetric: Order of P, Q matters!

Mutual Information

 $I(X;C) = \sum_{x \in \mathcal{X}, c \in \mathcal{C}} P(x,c) \log \frac{P(x,c)}{P(x)P(c)}$

Feature Selection

 If we can have only one feature, which feature should we have?

Feature Selection

- If we can have only one feature, which feature should we have?
 - Feature whose mutual information with class label is highest.

Feature Selection

• Let possible features be called $X_1, X_2, ..., X_k$

We would like

 $\begin{aligned} & \operatorname*{arg\,max}_{1 \leq i \leq k} I(X_i;C) \\ = & \operatorname*{arg\,max}_{1 \leq i \leq k} \ \sum_{x_i \in \mathcal{X}_i, c \in \mathcal{C}} P(x_i,c) \log \frac{P(x_i,c)}{P(x_i)P(c)} \end{aligned}$

Best 2 features

• Let possible features be called $X_1, X_2, ..., X_k$

We would like

 $rg \max_{1 \le i,j \le k} I(X_i, X_j; C)$

 $= \arg \max_{1 \leq i,j \leq k} \sum_{(x_i,x_j) \in (\mathcal{X}_i,\mathcal{X}_j), c \in \mathcal{C}} P(x_i,x_j,c) \log \frac{P(x_i,x_j,c)}{P(x_i,x_j)P(c)}$

Best 3 features... yikes

• Let possible features be called $X_1, X_2, ..., X_k$

We would like

 $rg \max_{1 \le i, j, h \le k} I(X_i, X_j, X_h; C)$

 $= \arg \max_{1 \leq i,j,h \leq k} \sum_{(x_i,x_j,x_h) \in (\mathcal{X}_i,\mathcal{X}_j,\mathcal{X}_h), c \in \mathcal{C}} P(x_i,x_j,x_h,c) \log \frac{P(x_i,x_j,x_h,c)}{P(x_i,x_j,x_h)P(c)}$

Let's analyze this

- There are 2 problems with finding the optimal set of features:
 - Computational complexity (obvious)
 - Statistical complexity (subtle)

Computational Complexity

k features

- Number of features to try:
 - Best feature: O(k)
 - Best two features: O(k²)
 - Best three features: O(k³)
- Computing mutual information for each choice:
 - 1 feature: O(|X|)
 - 2 features: O(|X|^2)
 - 3 features: O(|X|^3)

Statistical Complexity

 How many samples of each joint distribution do we need to ensure confidence in our results?

> $P(x_i)$ $P(x_i, x_j)$

 $P(x_i, x_j, x_h)$.

Greedy Approach

- First find best single feature.
- Then find best second feature given first.
- Find 3rd feature given the first two.

Best feature

• Let possible features be called $X_1, X_2, ..., X_k$ We still want.

 $\begin{aligned} & \operatorname*{arg\,max}_{1 \leq i \leq k} I(X_i;C) \\ = & \operatorname*{arg\,max}_{1 \leq i \leq k} \ \sum_{x_i \in \mathcal{X}_i, c \in \mathcal{C}} P(x_i,c) \log \frac{P(x_i,c)}{P(x_i)P(c)} \end{aligned}$

Best 2nd feature given first.

• Let possible features be called $X_1, X_2, ..., X_k$

$$\underset{1 \le j \le k}{\arg \max} I(X_i, X_j; C) - I(X_i; C).$$

Best 2nd feature given first.

• Let possible features be called $X_1, X_2, ..., X_k$

 $\arg \max I(X_i, X_j; C) - I(X_i; C).$ $1 \le j \le k$

maximize the information gain.

More than 2 features

 How do we handle the best 3 features? best 4 features? best 5 features?

More than 2 features

 Assume we already have chosen f features. Which feature from among k should we choose next?

Example

- Assume we have already chosen as features X_A, X_B
- We will NOT compute this:

 $\underset{1 \leq i \leq k}{\operatorname{arg\,max}} I(X_i, X_A, X_B; C) - I(X_A, X_B; C).$

Why not?

Alternative

• Try to make sure that new feature is not "highly redundant" with any previous feature. Consider two possible new features X_C and X_D

$$I(X_A, X_C; C) - I(X_A; C) = 0.3$$

 $I(X_B, X_C; C) - I(X_B; C) = 0$

 $I(X_A, X_D; C) - I(X_A; C) = 0.2$ $I(X_B, X_D; C) - I(X_B; C) = 0.1$

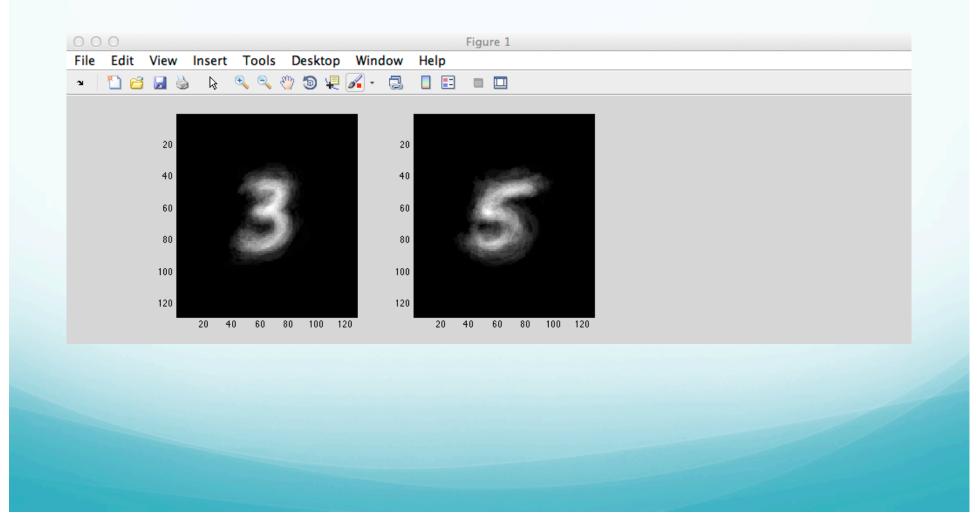
?

How much value do we get from adding

Final Greedy Strategy for Nth feature

 $\underset{1 \leq i \leq k}{\operatorname{arg\,max}} \left[\min_{F \in \mathcal{F}} I(X_i, X_F; C) - I(X_F; C) \right].$

Means



Means and differences of means

