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Today

Information theoretic quantities: entropy, joint
entropy, KL-divergence, and mutual information

Conditional entropy

Conditional mutual information and information
gain

Optimal and greedy algorithms for feature selection




Notation




Entropy

® How much “information” do you get when you
observe a random variable?
® How many bits, on average, do you have to send to
communicate the outcome of the random variable to
someone else?

® coin with probability distribution [Y2, 12]: 1 bit

® Definition:
The entropy of a discrete random variable X with probability distribution given
by P(X) is
H(X)=-)_ P(z)logP(x).
TEX

Don’t forget the negative sign!
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Entropy

® A 4-sided die that always lands on
side A or side C: [V 0 1 O]

1 1 1 1
H(X)=- li log(i) + 0log 0 + §log(§) +Olog0]

® How should we evaluate O log O?




Entropy

® A 4-sided die that always lands on
side A or side C: [V 0 1 O]

1 1 1 1
H(X)=-— [5 log(i) + 0log 0+ §log(§) +Olog0]

® How should we evaluate O log O?

}:I_I)I%)P(.’B) log P(x) = 0.

Why does this make sense?
A coin can land on its edge...




True or False?

® The entropy of independent random variables is the
sum of the entropies of each variable?




Entropy of Ind. RVs

H(X,Y) (1)

= — Y P(z,y)log P(z,y) (2)
(z,y)E(X,Y)

= — z Z P(z,y)log P(z,y) (3)
YyeEY z€X

= =) Y P(z)P(y)log P(z)P(y) (4)
YyeEY z€X

= —Y Y P(z)P(y)[log P(z) + log P(y)] (5)
yeEY z€X

= - P(y)logP(y) > P(x)- > Py) Y P(z)logP(z) (6)

yeYy TEX yeY TEX
= H(X)+H(Y). (7) |




Joint Entropy

® The joint entropy of P(X,Y) is just the same as the
entropy of a single random variable Z, where Z is a
renaming of (X,Y):

® Example: entropy of (precipitation, temperature) vs.
entropy of “weather”.




KL-divergence
(relative entropy)

®* How different are two probability distributions?
P(x)
Q(z)

D(P(X)|Q(X)) = ) _ P(z)log

reX




KL-divergence
(relative entropy)

®* How different are two probability distributions?

D(P(2)[Q(z)) = ) P(z)log SEZ;

TEX

What happens when P(x) = Q(x)?




KL-divergence
(relative entropy)

®* How different are two probability distributions?

D(P(2)[Q(z)) = ) P(z)log Sgi
Tz€EX

What happens when P(x) = Q(x)?

® Not symmetric: Order of P, Q matters!




Mutual Information

P(z,c)

I(X;C) = Z P(m,c)logP(m)P(c)

r€EX,cEC




Feature Selection

® |f we can have only one feature, which feature
should we have?




Feature Selection

® |f we can have only one feature, which feature
should we have?

® Feature whose mutual information with class label is
highest.




Feature Selection

® [et possible features be called X;,Xs,..., Xk

We would like

arg max I(X;; C)
1<i<k

P(xia C)
P(z;)P(c)

= arg max Z P(z;,c)log
:I:,;Gxi,cec

1<i<k




Best 2 features

® [et possible features be called X;,Xs,..., Xk

We would like

argmax I(X;, X;;C)

1<i,j<k
P(z;,z;,c)
— a,rgma,x Z P(:z:,-,a:j,c) log T
1<i,j<k (2,2, ) E(Xi,X;)sc€C P(:‘Bz,.’DJ)P(C)




Best 3 features... yikes

® [et possible features be called X;,Xs,..., Xk

We would like

argmax I(X;, X;, Xp;C)
1<i,5,h<k

P(z;,z;,Zh,c)

arg max E P(z;,zj,zh,c)log
> P(xz;,xz:,z;)P(c
1<i,5,h<k (@i ,21) €(Xi , X;, Xn) ,cEC ( TR E h) ( )




Let’s analyze this

® There are 2 problems with finding the optimal set
of features:

e Computational complexity (obvious)
e Statistical complexity (subtle)




Computational Complexity

e k features

® Number of features to try:
® Best feature: O(k)
® Best two features: O(k™2)
® Best three features: O(k”3)

® Computing mutual information for each choice:
e ] feature: O(|X])
o ? features: O(|X]|"2)
e 3 features: O(|X]|"3)




Statistical Complexity

® How many samples of each joint distribution do we
need to ensure confidence in our results?

P((Bz‘, :Bj).

P(z;,x;,xn)




Greedy Approach

® First find best single feature.

® Then find best second feature given first.

® Find 3 feature given the first two.




Best feature

® [et possible features be called X;,Xs,..., Xk
We still want.

argmax I(X;; C)
1<i<k

P(xia C)
P(z;)P(c)

= arg max Z P(z;,c)log
ziexi)cec

1<i<k




Best 2nd feature given first.

® [et possible features be called X;,Xs,..., Xk

arg max I(X;, X;;C) — I(X;; C).
1<j<k




Best 2nd feature given first.

® [et possible features be called X;,Xs,..., Xk

arg max I(X;, X;;C) — I(X;; C).
1<j<k

maximize the information gain.




More than 2 features

® How do we handle the best 3 features?
best 4 features?
best b features?




More than 2 features

® Assume we already have chosen f features.
Which feature from among k should we choose
next?




Example

® Assume we have already chosen as features X4,XB

® We will NOT compute this:

argmax I(X;, Xa,Xp;C) —I(X4,XpB;C).
1<i<k

Why not?




Alternative

® Try to make sure that new feature is not “highly
redundant” with any previous feature.
Consider two possible new features X, and x

I(X4,Xc;C)—1(X4;C)=0.3
I(XB,Xc;C)—I(XpB;C)=0

I(X4,Xp;C)—I1(X4;C)=0.2
I(Xp,Xp;C) — I(Xp;C)=0.1

value do we get fro




Final Greedy Strategy for
Nth feature

argmax |min I(X;, Xp;C) — I(Xg;C)| .

1<i<k |FEF







Means
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Means and
differences of means
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