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Questions about Face Recognition

= How hard can it be?

= What's it good for today?
 What about in the near future?
= What are the underlying technologies?

 Hyperfeatures for recognition.
 Congealing for alignment.

How well does it work?
e How do we characterize performance?
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How hard is face recognition?

= Humans think of face recognition as trivial.
= For machines, it is much harder than
* Playing chess,
 Doing large integrals.
= Failures of human face recognition illustrate
some of the difficulties.
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Detection-Alignment-Recognition Pipeline

Detection

Alignment Recognition

“Same”
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Detection-Alignment-Recognition Pipeline

Detection

Harder than you
might expect...
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Face detection

Image by "Furitsu”
From Michael’s “Visual Phenomena & Optical Illusions”
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Alignment
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Alignment

= Surprisingly important for recognition algorithms...
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Original pictures...




After detection...




Cropping...
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Patchwise comparison...
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Differences are too large for successful recognition
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Cropping...
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Improved alignment
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Recognition greatly improved...
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Alignment and human perception

= We're not usually aware of it, but alignment can
dramatically affect our ability to interpret
Images.
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Does alignment affect human recognition?

Schwaninger et al., 2003
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Does alignment affect human recognition?

Schwaninger
et al., 2003
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Recognition
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Recognition: More Than Meets the Eye

from www.coolopticalillusions.com
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So far

= Three main subtasks in face processing:
e Detection
o Alignment
e Recognition
= For humans:
o Usually easy, but each has its failure modes
= For machines:
e All areas still far inferior to humans.
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Questions about Face Recognition
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Some Applications

Rose Authenticated !

v

"3”.
= Access control : ..*} =

= Watch lists m

= Organizing personal photo collections

= many others...
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Errors

= Applications must be tolerant to errors.

= Different applications have different failure
modes.

= Error types have different costs.

= Can usually make trade-offs between error
types.

Erik Learned-Miller 28



Example 1

= Personal photo collections:
e Type 1 error: Failed to label a picture of Erik.
 Type 2 error: Identified Steve as Erik.

= Both of these are cheap to fix.
= When confidence is low, don’t label.

Erik Learned-Miller 29



Example 2

= Watch lists: looking for Osama Bin Laden at JFK.

= Error types
* False positive: Identify John Doe as Bin Laden.
* False negative: Fail to identify Osama Bin Laden.
= Error costs:
» False positive: Easily corrected by human.
 False negative: Extremely costly.

= Problem: no good trade-off.

 Either we miss Bin Laden 90% of the time, or we make
millions and millions of false ID's.
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Current trends

= Algorithms are slowly becoming more accurate.

= Manufacturers looking hard for apps that can
tolerate errors.

= Apps that require very high accuracy rates will
rely on humans for the foreseeable future.
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Questions about Face Recognition

= How hard can it be?

= What's it good for today?
« What about in the near future?

==p \What are the underlying technologies?
 Hyperfeatures for recognition.
 Congealing for alignment.

= How do we characterize performance?
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Face Recognition Paradigms

= Two dominant paradigms:
e Recognition with a fixed “gallery”
* Face verification or pair matching
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Gallery Recognition

Fixed Gallery of Registered People

Yanlei . .
a Question: Is this person one of the

registered people?
Erik

Hanna

Sridhar

Erik Learned-Miller 34




Gallery Recognition

Fixed Gallery of Registered People

Yanlei . .
a Question: Is this person one of the

registered people?

Erik

Hanna m

becomes much more difficult as
gallery size increases.
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Face Verification (pair matching)

Are these the same person?
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Sample Face Verification Problem
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Sample Face Verification Problem
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Sample Face Verification Problem
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Some problems are just too hard to solve
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Face Verification

= How can we teach a computer to do this by
giving it examples?

= How do humans learn such a task?
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Crash Course on Martian Verification

Martian training set

\— D
® O
®

Test: Find Bob after one meeting

/’?' b )
2
©
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Training Data for Human Verification

From
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Consider pairs of patches

Let d be "distance" between a pair of patches.

d = 1-correlation(patch1, patch2).
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Distributions over distances after “learning”

_~1for matched pairs

P(d)
for mismatched pairs
A 0 ) A1A - 2A
distance d
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For a new image pair...

_~1for matched pairs

for mismatched pairs

0 ) 1 - 2
distance d

Evidence for “match”

Erik Learned-Miller 46



Or.
_~1for matched pairs
P(d)
for mismatched pairs
0 ) 1 E 2
distance d
Evidence for “mismatch”
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Computing the likelihood of same and different

N: number of patches in an image

d;: distance between the 7th pair of patches
D ={dy,ds,...,dy}: set of d; for all patches

N
Prob(D|same) = H(d,,;|same)
i=1

N
Prob(D|diff) = | [(di|diff)
1=1
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Three models for distributions over distances

1. Universal patch model:
P(d|same)
P(d|different)
2. Spatially dependent patch model:
P(d|same,Xx,y)
P(d|different,x,y)
3. Hyper-feature dependent model:

1. P(d|same,x,y,appearance of left image)
2. P(d|different,x,y,appearance of left image)
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Universal Patch Model

A single P(d | same) for all patches

Different blue patches are evidence against a match!
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Spatial Patch Model

P(dlsame,x;,y,) estimated separately from P(dlsame,x,,y,)

Greatly increases discriminative power of model.
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Distributions over distances for specific locations

informative
patch location

for matched pairs

for mismatched pairs

0 ) ] B 2
distance d
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Distributions over distances for specific locations

for matched pairs

Informative
patch location

for mismatched pairs

0 ) ] B 2
distance d

A vote for “match”
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Distributions over distances for specific locations

for matched pairs

Informative
patch location

P(d)
for mismatched pairs
0 1 2
distance d
A vote for “mismatch”
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Distributions over distances for specific locations

uninformative
atch location
P(d) i
o 1 2
distance d
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Distributions over distances for specific locations

uninformative
atch location
P(d) i
0 1
distance d
Most values of d are not informative
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Spatial Patch Model

P(dlsame,x;,y,) estimated separately from P(dlsame,x,,y,)

Avoid drawing wrong conclusion from blue patches.
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Spatial patch model summary

= By building separate models for each location in
the image, we put appropriate emphasis on each
region.
= Must estimate separate distribution over d for
each position in image.
« Need more training data.
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Hyper-Feature Patch Model

Is the patch from a matching face going to
match this patch?
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Hyper-Feature Patch Model

Is the patch from a matching face going to
match this patch? Probably yes
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Hyper-Feature Patch Model

— What about
this patch?
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Hyper-Feature Patch Model

What about
this patch?
Probably
not.
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Hyper-teatures

= Conditioning features for distance distributions
« P(d|same, X, y, edge energy, contrast, color, etc.)
« P(d|differ, x, y, edge energy, contrast, color, etc.)

= Greatly improves precision of model.
= Only problem:

 Must estimate many many distributions. Need a lot of
data.

e Mitigated by using a generalized linear model to share
parameters among estimates.
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Summary of Recognition work

= "Independent” patch model built on probabilities
of patch differences.

= Build special conditional distributions of
differences based on the appearance of one of
the images.

= Around 2005 was state-of-the-art.
 Has since been surpassed by many others.
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Back to Alignment
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Strategies of Alignment

= Find parts: eyes, nose, mouth
e Put parts in standard positions.
« Difficulty: a whole new recognition problem!
« Often certain parts are invisible. Would like to be robust

to the missing parts.

= Try to align each new face to some "standard
face" via gradient descent.
 Prone to getting stuck in local optima. —

O
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Local optimum problem in alignment

Stuck in a local
optimum

Erik Learned-Miller

Unaligned







Criterion of Joint Alignment

= Minimize sum of pixel stack /
entropies by transforming , o
: [ |
each image. VA
[ O
HEJEEEJI [
/ O
A pixel stack
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Congealing Interpretations

= Make each image as likely as possible with
respect to all other images.
e Joint maximum likelihood

= Find hidden variables (transformations) that
make data as “"compact” (low entropy) as
possible.
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Congealing Complex Images

= Extend congealing to deal with noise in real world images
« Complex and variable lighting effects
e Occlusions
« Highly varied foreground objects (hair, hats, glasses...)
e Highly varied backgrounds
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Difficulties with complex images

= Congealing requires estimating a probability
distribution at each pixel from N images.
e Let N=100.
o If images are binary
e Each pixel can take on only two values.
« Estimate of Bernoulli random variable is good.
e If images are color
e Each pixel can take on 16 million values.

e Estimate of 16 million-valued multinomial from 100
samples is horrible.
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Congealing Complex Images: Feature Clustering

Feature clusters

vector representing
probability of each cluster,
or “mixture” of clusters
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Convert face images to arrays of multinomials

= Start with data set of faces
= Compute SIFT at each pixel
= Cluster SIFT vectors (16 clusters)

= At each pixel, form posterior (multinomial) over
clusters

= Distribution of pixel stack is mean of multinomial
vectors

= Now, do congealing over these multinomial
vectors
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Questions about Face Recognition

= How hard can it be?

= What's it good for today?
« What about in the near future?

= What are the underlying technologies?
 Hyperfeatures for recognition.
 Congealing for alignment.

==» How do we characterize performance?
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A lot of misinformation

= How well does your product work?
o "It achieves 99% accuracy!"
« On what problem?
« How big is the gallery?
 How difficult are the images?
e Does this include detection?
= Industry is the major culprit in exaggerated
claims.
e Superbowl example.
e London surveillance example.

= However...
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The Bernie Madoff of Face Recognition

“100% Accuracy in Automatic Face Recognition” 1]

Science 25 January 2008
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The Bernie Madoff of Face Recognition

“100% Accuracy in Automatic Face Recognition” 1]

Science 25 January 2008

If someone's results are too good,
you should be highly skeptical.
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What's needed

= Careful problem definitions.
e Validation given detection and alignment.
« Validation given detection, but not alignment.
e Validation given neither.

o Intruder detection with alignment and neutral pose.
« etc.
= Carefully defined test suites.
« GTAV Database
« UMass Amherst database
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The Many Faces of Face Recognition

GTAV Face Database

Erik Learned-Miller 83



The Many Faces of Face Recognition

GTAV Face Database
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The Many Faces of Face Recognition

GTAV Face Database
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UMass Database

= Real-world images: “wild”

= 13,233 images, with name of each person
= 5749 people

= 1680 people with 2 or more images

= Designed for the face verification problem.
= Best machine accuracy: currently about 86%!
= Human accuracy: about 99.8%
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Sample UMass database images
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Best Match Scores
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Worst Match Scores
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Best Mismatch Scores

Erik Learned-Miller 94




Best Mismatch Scores
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Worst Mismatch Scores
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Summary of Current Accuracy

= Need careful evaluations on well-defined
problems.

= Difficult to assess true state of the art

» lack of industry participation in benchmarks.
e But clearly far inferior to humans in most settings.

= Cheating is common on benchmarks.
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Questions about Face Recognition

= How hard can it be?
= What's it good for today?
« What about in the near future?

= What are the underlying technologies?
 Hyperfeatures for recognition.
 Congealing for alignment.

= How do we characterize performance?
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Ties with financial industry

= Alignment
e Correlation up to time shift

 Instruments may appear independent due to a time
shift, but are really dependent.

= Conditional models.
« Searching for right conditioning variables

= Other work
» Finding independent causes in data
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Overall Summary

= Face recognition is complex and difficult.

= Humans are masters at taking advantage of
e context

e image structure
e dynamic alignment
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Do we need separate methods for each step?

= Theoretically:

 No. Evaluate recognition algorithm for every pose and
position. Pick best match.

= Practically:

« Maybe. Performance may be dramatically improved by
specializing for each task.

Erik Learned-Miller 102



Generalized Linear Model

Example Image Distribution of d vs. Y position
same different
¥ |
N
d d

Ordinary Linear Model
M =[YY2Y31][¥]

Generalized Linear Model
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Generalized Linear Model

Example Image Distribution of d vs. Y position
same different
¥ |
N
d d

Ordinary Linear Model
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Cascade for Efficient Matching

= Using hyper-feature model, can predict likely
utility of a patch

« Note that even after we observe the “left” image, D is
still a random variable, as it also depends on the “right”
image.

e Mutual information: I(D; C)
= For test image, sort patches according to utility.

= Compare against other images only until decision
IS reached.
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Estimating Saliency

Saliency = Mutual Information I(Dj;C)
where C={same,diff}

~1{I(D,;C) = .39 (best)

P(D) 21I(D,;C) = .23 (good)

’ (D,;C) = .01 (bad)
D
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Congealing

update distribution
field from transformed

. CC . . (—
Images ] T —
] [ ]
CEEE] (-
increase likelihood 1 1 l
of image with Dist_ribution Dist‘ribution Dist.ribution
. .. ] Field 1 Field 2 Field n
respect to distribution
field
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How to align a new image after congealing?

e Insert into training set, re-run algorithm

 More efficient to save sequence of distribution fields
from congealing

e High entropy to low entropy sequence - “Image
Funnel”

 Funneling: increase likelihood of new image at each
iteration according to corresponding distribution field

Distribution Distribution Distribution
Field 1 Field 2 Field n

New Image Image Funnel Aligned Image e




Comparing Patches

* @

Figure 3: Patch Marching: The left image is sampled (red dots) by patches encoded as oriented
filter channels (for one patch, four channels are shown). Each patch 1s matched to the best point in the
other image by maximizing the appearance similarity between the patches. For each pair of patches

(bi-patch), the size and color of the matching circles indicates similarity in appearance. {Larger and
redder is more similar.)

d;j =1— CUI‘TGEE}F{F}L,FJR]
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Congealing of curves
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