Computer Science 791DD, Learningto See
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Assignment 4

1. Suppose a continuous random variable has a distributmsevsupport is limited to the intena b]. Answer
the following questions (5 points each)

(@)

(b)

(©)

(d)

Give an upper bound, in termsa@fndb, on the differential entropy of this random variable.
As | have said many times in class, the upper bound on themntioa distribution over a finite interval
[a,b] is achieved by the uniform distribution over that intenaaid islog(b — a).

What is the tightest lower bound?

Imagine a uniform distribution ovep, a+ b%""] where k= 2. This distribution covers half of the interval
between a and b and will have entropyle§(b—a) — 1. Each time we double k, the entropy drops by 1.
Since there is no limit to the number of times we can doublbéketis no lower limit to the differential
entropy. In other words, the lower bound-igo.

Now suppose you are told that the maximum height of théaibdity density isd, while the support is
still limited to [a, b]. Can you put a tighter lower bound on the differential engfjVhat is it?

Remember that the differential entropy is the negative efaterage log probability density. Thus to
minimize the entropy we should maximize the average logapitity density. If the density height is
bounded by d, then the log probability density at any point nat be higher thaog(d). Hence, the
average log probability density cannot be higher tHag(d), and the entropy can not be lower than
—log(d) or equivalentlylog(%). Since this bound might be achievable, by having a unifostridution
over the intervala, a-+ %], it is a tight bound. That is, the tightest lower bound-fg(d).

If you remove the restriction on the support, but the @gisstill limited in height tod, what is the tightest
upper bound on the differential entropy? The tightest lobarmd?

As in part (b), we can continue doubling the width of the im&over which we define a uniform distribu-
tion, and continue adding to the differential entropy. Henhere is no limit to the entropy, and the upper
bound is.

2. Matlab functions. (10 points each)

(&) Write a Matlab function discreteEntropy.m that comptitesentropy of a discrete probability distribution,

i.e. a probability mass function. Assume that the input igeter of probabilities of events. Make sure
the function can handle zero probabilities. Return theogmytin bits. Show the output of a function for a
particular example.

See Shaolei’'s homework posted on the web-page for a googbxam

(b) Use the function you just wrote to write another functiomutualinformation.m, which computes the

mutual information between two random variables. Assunaé tthe joint probability distribution, in the
form of a two-dimensional matrix, is given as the input. Hittie body of this function can easily be
written in a single line in Matlab.

See Shaolei's homework posted on the web-page for a googkxam

(c) Finally, write a function to compute the KL-divergencetlveen two discrete distributions. It should take

the two distributions as inputs (as vectors). If the true dilergence is infinity, then this is what your
function should return.
See Shaolei's homework posted on the web-page for a googkxam



3. The following figure shows the joint distribution of twondom variable< andY, each of which takes on 10
different values. The probability of each joint eveR{X = x,Y =) is represented by its brightness, where
black is 0 and white is the highest possible value. Xr@ndY independent? Give an airtight argument for your
answer. Remember that this is a probability distributiat,asamplefrom a probability distribution. (5 points)

There are many possible arguments. Here is one. If X and Y waependent, then(X = a;|Y = b) should

be equal to PX = &Y =¢). Thus, d = P(X = az|Y = b) — P(X = a1]|Y = b) should be equal to.g0= P(X =

alY =c)—P(X =a1]Y =c). Letting a = 1,8, = 2,b =4, and c= 5, we see that gdwould be negative (the
lower square is brighter than the upper square) bptwbuld be positive (the lower square is darker than the
upper square). Hence, assuming we can judge relative bragses between adjacent squares correctly, this
joint distribution is inconsistent with X and Y being indegdent.

4. George Bush has an algorithm that only runs on “graysdaiagjes, meaning images in which each pixel is an
integer value in the interva®, 255 inclusive, representing the brightness of that pixel. Thatach pixel needs
to be an 8-bit value. The algorithm cannot use color inforomat George has an image to which he wants to
apply his algorithm, but it is a color image, with 24-bits péxel. The first 8 bits of a pixel represent red, the
next 8 green, and the next 8 blue. He uses a matlab commarghégjkto convert the red-green-blue image to
hue-saturation-value, in which the last channel, “valwah be interpreted as the brightness of the image. He
uses this last channel as his gray-scale image.
Unfortunately, after converting the image to grayscalenynaf the brightness values in the image are exactly
the same. In particular, the distribution of brightnessigalis as follows:
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(&) The number of “bits” of information in this image can beegximated by the number of pixels times the
entropy of the distribution of pixel values. Calculate thisnber. (2 points)
2.125 bits.

(b) George decides he wants his image to contain more “irdtom”, so he takes the image pixels whose
values are 0 and changes them randomly to have values frdnl@eschanges the values in the other bins
similarly. Will the entropy of the distribution of brightss values go up, go down, or stay the same? Why?



(€)

(d)

(2 points).

The entropy will go up. In the original configuration, the igespixels that have a value of 0 have average
log probability of -1. When these pixels are spread out,rtheerage log probability can only go down.
The same is true for the pixels in the other bins. Thus all@ftherage log probabilities for each bin must
go down, and thus the entropy must go up.

George claims he has increased the amount of “informatio the image. What do you think of this
argument? (5 points).

Though the entropy has gone up, this increase in entropy wasalmeaningless randomness and not to
additional structure in the image. Thus, it is bogus to sat the amount of information in the image has
increased.

George’s friend Ralph notices that Matlab’s rgb2hsvecodes the command= max(r, g, b) to calculate
the brightness of an rgb pixel. He argues that the functighrsving away information about the pixel
brightness since the pixel237,0,0), (237,25,42), and (237,0,1) would all get mapped to the same
brightness value, even though the second and third pixel<laarly brighter than the first pixel. He
proposes using the formula= max(r,g,b) + min(r,g,b) /256 to produce a pixel's brightness value. Of
course, truncating such a value, he points out, would pmdoe same result as the original brightness
function. Instead, he does histogram equalization on theesdeforetruncating them. His procedure
results in an image whose values are distributed uniforrmilgss brightness. He argues that his procedure
does indeed preserve more information in the image. Is heloheg himself? Be as clear as you can be in
your answer. (10 points)

One way to look at the goal of obtaining a brightness imageidistinguish among as many different
brightness values in the original scene as possible. Siralph® procedure preserves more different
brightness values from the original color images (but simelabels them to fit in the range 0-255), he
has indeed preserved more information.



