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Abstract
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance.
Traditional computer vision systems cannot solve this problem at all. Recognizing
surface reflectance properties from a single photograph is difficult because the observed
image depends heavily on the amount of light incident from every direction. A mirrored
sphere, for example, produces a different image in every environment. To make matters
worse, two surfaces with different reflectance properties could produce identical images.
The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it
could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive
sense of what materials typically “look like” in the real world. This thesis develops
computational algorithms with a similar ability to recognize reflectance properties from
photographs under unknown, real-world illumination conditions.

Real-world illumination is complex, with light typically incident on a surface from
every direction. We find, however, that real-world illumination patterns are not ar-
bitrary. They exhibit highly predictable spatial structure, which we describe largely
in the wavelet domain. Although they differ in several respects from the typical pho-
tographs, illumination patterns share much of the regularity described in the natural
image statistics literature.

These properties of real-world illumination lead to predictable image statistics for
a surface with given reflectance properties. We construct a system that classifies a
surface according to its reflectance from a single photograph under unknown illumin-
ination. Our algorithm learns relationships between surface reflectance and certain
statistics computed from the observed image. Like the human visual system, we solve
the otherwise underconstrained inverse problem of reflectance estimation by taking ad-
vantage of the statistical regularity of illumination. For surfaces with homogeneous
reflectance properties and known geometry, our system rivals human performance.

Thesis Supervisors: Alan S. Willsky, Professor of Electrical Engineering
Edward H. Adelson, Professor of Vision Science
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Chapter 1

Introduction

Humans effortlessly recognize surfaces with different optical reflectance properties at
a glance. In the images of Figure 1.1, we recognize the shiny metal of the bowl, the
rough metal of the pie tin, the white matte tabletop, the glossy apple skins, and the
wet glistening ice cream. This ability to characterize reflectance properties from images
in uncontrolled real-world environments is impressive for two reasons. First, images
of identical surfaces in various settings can be very different. Figure 1.2 shows four
spheres, each photographed in two locations. Images of different spheres in the same
setting are more similar in a pixelwise sense than images of the same sphere in different
settings. Second, two identical images may represent surfaces with different reflectance
properties. Any of the images in Figure 1.2 could in principle be a photograph of a
chrome surface; a chrome sphere simply reflects its environment, so it could, in principle,
take on an arbitrary appearance.

In a typical real-world setting, however, distinctive image features characterize the
appearance of chrome. We know what the real world typically “looks like,” so we recog-
nize its reflection in the surface. The visual world contains sharp edges, for example, so
we expect to see sharp edges in the image of the chrome sphere. Estimation of surface

Figure 1.1. Typical photographs including surfaces with different reflectance properties

17



18 CHAPTER 1. INTRODUCTION

chrome smooth shiny rough metal matte

Figure 1.2. The two images in each column are photographs of the same sphere, shown over a standard
gray background. The images in each row were photographed in the same location, under the same
illumination.

reflectance properties involves recognition of patterns due not only to the physical laws
governing electromagnetic reflectance, but also to the visual appearance of real-world
environments.

This thesis explores the relationship between the reflectance properties of a surface
and the statistics of an image of that surface under complex, real-world illumination.
We show that the spatial structure of real-world illumination patterns exhibits a great
deal of statistical regularity. We identify statistical features that a vision system can use
to identify reflectance properties from an image. We use these features to design image-
based reflectance classifiers for surfaces under unknown, uncontrolled illumination.

The analysis and results of this thesis rely only on a single monochrome image
of the surface of interest. One could undoubtedly improve the performance of the
proposed reflectance recognition algorithms by exploiting image context, motion, and
color. However, we wish to determine what information the basic image structure
captures about reflectance, even in the absence of these additional cues. We have found
that humans can estimate certain surface reflectance properties given only a single
isolated image of a surface [33, 34]. A computational vision system should also be able
to accomplish this task.

! 1.1 Motivation

Humans take for granted their ability to recognize materials, from gold to skin to ice
cream, in a wide variety of environments. We can often judge whether a surface is wet
or dry, rough or smooth, clean or dirty, liquid or solid, even soft or hard. We sometimes
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make mistakes; one can design a foam object that appears to be a rock, but these are
sufficiently unusual to be sold as novelties in curiosity shops. The ability to recognize
and characterize materials is essential to interaction with the visual world. We rely on
that ability to identify substances (e.g., food), to judge their state (e.g., fresh or rotten),
and to identify the objects and scenes that they comprise. We recognize the human
form not only by its geometry, but by the material properties of flesh and clothing.
We recognize coins as much by their metallic reflectance properties as by their disk-like
shapes.

Current computer vision systems, on the other hand, are typically powerless to
distinguish materials accurately in uncontrolled, real-world environments. A robot
may not eat ice cream, but many machine vision applications still demand material
recognition abilities. An autonomous vehicle should be able to recognize a wet road or
mud before driving onto it. An industrial inspection system should be able to recognize
a dirty surface. A surgical robot should be able to distinguish different tissues. An
industrial robot should be able to distinguish solids from powders and liquids. A face
recognition system should be able to distinguish a human from a mannequin.

The desire to build vision systems capable of recognizing materials provides the
primary motivation for the present work. Reflectance and texture both differentiate
materials. Over the past several years, researchers have taken significant strides to-
ward characterization and recognition of texture [43, 81]. We wish to do the same for
reflectance, creating vision systems capable of distinguishing materials based on their
reflectance properties.

While this thesis focuses on analysis of visible-spectrum photographs, other imaging
modalities pose analogous material recognition problems. One may wish to distinguish
terrain types from a remote radar image, or tissue types in a medical image. Although
the physics of image formation depends on the specific modality, the difference in ap-
pearance of various materials often stem from their reflectance properties.

Additional motivation for our work stems from computer graphics. Modern-day
graphics is constrained as much by the acquisition of realistic scene models as by ren-
dering requirements. One often wishes to build a model of a real-world scene from
photographs of that scene. If one plans to render the scene from a different viewpoint,
under different illumination, or with synthetic objects inserted, one needs to recover
not only surface geometry, but also surface reflectance properties. Graphics researchers
have also observed that one can increase the realism of synthetic scenes by rendering
them under illumination patterns measured in the real world [23]. Models for the sta-
tistical regularities of real-world illumination may allow us to reconstruct real-world
illumination patterns from sparse samples, or to synthesize illumination patterns that
provide the impression of image realism.

An understanding of real-world illumination and an ability to recognize reflectance
properties are also necessary to overcome limitations of traditional computer vision
algorithms for shape and motion estimation. Shape-from-shading algorithms, for ex-
ample, require a known relationship between surface orientation and image irradiance
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(brightness) [45]. This relationship depends on the reflectance and illumination of the
surface, exhibiting particularly dramatic changes as a specular surface moves from one
illumination to another. One may be able to recover shape for such a surface in an
unknown setting by exploiting the statistical properties of real-world illumination pat-
terns as well as the relationships between illumination, reflectance, geometry, and the
observed image. Classical methods for optical flow estimation and stereo reconstruction
pose a similar problem. These techniques are based on the constant brightness assump-
tion, which holds only for Lambertian surfaces [46,61]. The specularities moving across
a smooth metallic surface therefore produce incorrect depth and motion estimates. To
remedy these problems, one must be able to distinguish image changes due to non-
Lambertian surface reflectance from changes due to an actual change in the position of
surfaces with respect to the viewer.

Finally, analysis of the relationship between real-world images and surface reflectance
facilitates investigation of perceptual mechanisms for surface recognition [33,34]. Exper-
imental studies of these mechanisms not only contribute to our scientific understanding
of the human visual system but also have practical implications for computer graphics.
The relevant measure of realism for most graphics applications is perceptual. To design
reflectance models and implement efficient rendering techniques that produce images
with a realistic appearance, one must understand which image features the visual system
uses in recognizing surface geometry and reflectance.

! 1.2 Thesis Organization and Contributions

The following two chapters cover background material and formulate the reflectance
recognition problem mathematically. Chapter 2 describes prior work in physics, com-
puter graphics, computer vision, and human perception that frames the developments
of this thesis. We define surface reflectance and discuss the reflectance properties of
real-world materials. We describe previous image-based methods for measuring surface
reflectance. We also summarize studies of the human visual system’s ability to recognize
surface reflectance properties, including our own experiments performed in conjunction
with the computational work of this thesis.

Chapter 3 poses surface reflectance estimation under unknown illumination as a
blind inverse problem. The process by which a surface interacts with incident light to
produce an image constitutes the forward problem and serves as the basis for rendering
in computer graphics. Even when one assumes that surface geometry is known and that
reflectance properties do not vary across a surface, the problem of recovering reflectance
from an image under unknown illumination is underconstrained. In order to solve it,
we must exploit prior information about the real world.

Chapters 4, 5, and 6 cover the major results of this thesis. Chapter 4 presents
an empirical study of the statistical properties of real-world illumination. We use a
spherical image, or illumination map, to describe the amount of light incident from every
direction at a point in the real world. Illumination maps exhibit statistical properties
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that vary little from one location to another. We describe these properties in terms
of illumination intensity distributions, power spectra, and especially wavelet coefficient
distributions, comparing our results to those reported for typical photographs in the
natural image statistics literature. Although the remainder of this thesis focuses on
reflectance recognition, the properties of real-world illumination are relevant to a variety
of problems in computer vision and computer graphics.

Chapter 5 shows that the regularity of real-world illumination leads to predictable
relationships between the reflectance of a surface and the statistics of an image of that
surface. We explore these relationships using a parameterized reflectance model. Cer-
tain image statistics vary significantly with changes in reflectance but little from one
real-world illumination to another. One can build a reflectance classifier for images un-
der unknown illumination by partitioning a feature space based on these statistics into
regions corresponding to different reflectance classes. We use machine learning tech-
niques to train such a classifier, either from photographs of surfaces or from synthetic
images rendered under photographically-acquired illumination.

Chapter 6 considers the design of an effective reflectance classifier in more detail.
We consider the choice of machine learning techniques and the selection of specific im-
age statistics as classification features. We analyze the effects of surface geometry on
image statistics and describe a method to classify surfaces of different known geometry
according to their reflectance. We also examine the robustness of our reflectance clas-
sification techniques to incorrect geometry estimates. This chapter includes multiple
examples of classifiers applied to both synthetic images and real photographs. When
geometry is known in advance and reflectance properties are homogeneous across the
surface, the accuracy of our classification algorithms rivals that of the human visual
system.

The concluding chapter summarizes the contributions of the thesis in more detail
and proposes a number of avenues for future research. This chapter also relates our
work on reflectance and illumination to the broader context of material recognition.
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Chapter 2

Background

This chapter combines material from physics, computer graphics, computer vision,
and human vision as relevant to this thesis. We start by defining surface reflectance
(Section 2.1.1) and discussing the reflectance properties of real-world materials (Sec-
tion 2.1.2). We then describe previous work on recognition of reflectance properties from
images (Section 2.2). Finally, we discuss studies of the human visual system’s ability
to recognize surface reflectance properties under unknown illumination (Section 2.3).

! 2.1 Physics of Reflectance

! 2.1.1 Definition of Reflectance

The bidirectional reflectance distribution function (BRDF) of an opaque surface patch
defines its reflectance by specifying what proportion of the light incident from each
possible illumination direction is reflected in each possible observation or view direction
[39]. Figure 2.1 shows a surface patch with normal N illuminated by a directional light
source in direction S and observed by a viewer in direction V. In a three-dimensional
world, two angles are necessary to uniquely specify the illumination direction S and
two more to specify the view direction V. The BRDF is therefore a function of four
continuous angular variables. We denote it by f(θi, φi; θr, φr), where θi and θr are the
angles of S and V, respectively, from the surface normal N, and φi and φr are their
respective azimuthal angles. This function is defined for θi and θr in the range [0, π/2]
and for φi and φr in the range (−π, π].1 Because surface radiance depends linearly
on the amount of light incident from every direction, the BRDF of a surface patch

1To define the BRDF precisely, we introduce several radiometric terms following the formulation of
Nicodemus [70]. Light incident on a surface is typically measured in terms of irradiance, the power
per unit surface area of radiant energy ( W

m2 ) . Light reflected by a surface in a particular direction is
measured in terms of radiance, or power per unit foreshortened area emitted into a unit solid angle
( W

sr·m2 ); foreshortened surface area is equal to the actual surface area times the cosine of θi. Irradiance
corresponds to the concept of image brightness, and radiance to scene brightness. If one takes a
photograph of a scene, the irradiance of a point on the film is proportional to the radiance of the
corresponding point in the scene. The BRDF f(θi, φi; θr, φr) is the ratio of the reflected radiance in
a particular direction to incident irradiance from a differential solid angle centered on the incident
direction. Since irradiance has units W

m2 and radiance has units W
sr·m2 , the BRDF has units 1

sr and can
take on values from 0 to ∞.

23
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Figure 2.1. A surface patch with normal N. The BRDF is a function of light source direction S and
view direction V.

determines its appearance under any illumination distribution.
Reflectance also depends on the wavelength of the incident light. Because most

materials reflect light of a given wavelength at the same wavelength, one can describe
the effect of color on reflectance by writing the BRDF as a function of an additional
variable representing wavelength.2 The intensity and polarization of light reflected by a
surface both depend on the polarization of the incident light. One could capture these
dependencies in the BRDF as well, although this is rarely done in practice because
polarization effects are generally minor in typical real-world settings.3 Likewise, one
could add a temporal variable to the BRDF for phosphorescent surfaces that absorb
incident radiation and then emit radiation after a delay.

The expression of reflectance as a BRDF presupposes an opaque surface. Many
real-world materials exhibit some degree of translucency, meaning that light incident
at one point on the surface may be emitted at nearby points. Skin, milk, and wax
are all highly translucent. One can capture their appearance properties with a bidirec-
tional scattering-surface reflectance distribution function (BSSRDF), a generalization
of the BRDF that specifies a proportionality constant dependent on incident and exi-
tant locations as well as directions. The BSSRDF is a function of two positions on the
surface as well as two directions in the three-dimensional world, so it depends on eight
spatial variables. If the surface is homogeneous and isotropic, one need only specify
the distance between the points of incidence and exitance, rather than their locations.
Recent computer graphics worked has used this simplified form of the BSSRDF for ren-
dering purposes [50, 51]. This thesis focuses on reflectance as described by the BRDF,

2If the incident and reflected wavelengths differ, as for fluorescent surfaces, one must add two wave-
length variables to the BRDF.

3To capture polarization effects, one would augment the BRDF with two additional binary-valued
variables, representing incoming and outgoing polarization. Each of these variables takes on values
corresponding to horizontal and vertical polarization.
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although the experiments described in Chapter 6 include materials with some degree of
translucency.

The BRDF is defined locally, for an infinitesimal patch of a surface. It may vary from
one point on a surface to another. Two types of reflectance variation are commonplace.
The first occurs at a boundary between two surfaces or between distinct materials
within a surface. In these cases, reflectance changes help distinguish two or more
different materials. The second involves regular variation of reflectance within a surface,
associated with surface texture. In this case, the patterns of variation themselves are
an important characteristic of the surface.

While the computer graphics community tends to regard reflectance and texture as
complementary properties [26], material recognition tasks may demand that they be
considered jointly. Whether a texture results from fine-scale geometry or from actual
reflectance variation, it will have a different appearance when viewed from different
angles. A Bidirectional Texture Function (BTF) captures these properties by spec-
ifying the two-dimensional texture visible from each viewing angle for each lighting
angle [20]. One might model a BTF as a random field of BRDFs. The distinction
between reflectance and texture is a matter of scale; as one views a surface from in-
creasing distance, fine scale geometry variations will no longer be resolvable, but they
will influence the measured surface BRDF. Although this thesis focuses on reflectance
recognition, we further discuss the relationship between recognition of surface texture
and reflectance in Sections 5.1.3 and 7.2.5.

! 2.1.2 Reflectance Properties of Real-World Materials

Maxwell’s equations impose two constraints on the BRDF of a passive surface. First,
the BRDF must obey energy conservation or normalization; for any illumination, to-
tal reflected energy must be less than or equal to total incident energy. Second, the
BRDF must satisfy the Helmholtz reciprocity principle, which guarantees symmetry
between incident and reflected directions. Reciprocity requires that f(θi, φi; θr, φr) =
f(θr, φr; θi, φi).

Although any function of four variables satisfying the reciprocity and normalization
properties constitutes a physically realizable BRDF, some reflectances are much more
common than others in the real world. For example, the reflectance of this paper is more
common than that of a particular point in a hologram. Visual reflectance estimation
is feasible partly because physical materials tend to produce certain types of BRDFs.
In other words, the frequency distribution of surface BRDFs in the real world is not
uniform.

A great deal of research has focused on approximating common BRDFs by models
with only a few free parameters. These parameterized models play an important role
in computer graphics, where they are used to implement efficient shading algorithms
that can be effectively controlled by a user [39]. The graphics and applied physics
literatures include models derived from the physics of light reflection as well as models
designed empirically to fit experimental BRDF data or to produce appealing renderings.
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(a) (b) (c)

Figure 2.2. These diagrams illustrate BRDFs by showing the distribution of emitted radiation for a
particular incident direction. The incident illumination direction is indicated by the thick solid line,
which can be uniquely specified by the two angles θi and φi. The curved surface is a plot of the outgoing
radiance for all directions over the hemisphere spanned by θr and φr. This is a two-dimensional slice of
a BRDF. The distance from the origin to this surface in any direction is proportional to the reflected
radiance in that direction. The thin solid line indicates the surface normal, while the thick dashed
line indicates the direction of ideal specular reflection given the incident illumination direction. (a)
Lambertian BRDF. (b) Specular BRDF, described by the Ward model, for light incident at 45◦ to the
normal. (c) The same specular BRDF, for light incident at 60◦ to the normal. The illustrations of this
figure and Figure 2.4 were inspired by Rusinkiewicz [91].

These studies have focused on two general reflectance phenomena, diffuse and specular
reflectance.

Diffuse reflectance is associated with matte surfaces such as plaster or uncoated
paper. An ideal diffuse, or Lambertian, surface has equal radiance in all directions
regardless of the incident light direction. Matte paint consisting of reflective patches
suspended in a clear matrix approximates a Lambertian reflector, because light will
emerge after multiple reflections in a more or less random direction. An ideal Lamber-
tian reflector that emits a constant proportion ρd of the incident energy and absorbs
the rest has a constant BRDF of the form

f(θi, φi; θr, φr) =
ρd

π
, (2.1)

where 0 ≤ ρd ≤ 1. Figure 2.2(a) illustrates this BRDF.
Real diffuse reflectors deviate from this ideal behavior. Oren and Nayar [69, 74, 75]

and Koenderink et al. [54] studied locally Lambertian surfaces with a fine-scale texture
consisting of V-shaped grooves or spherical pits. From a typical viewing distance, such
a surface appears homogeneous because the spatial variations due to texture are not
visible. The fine-scale geometry has a direction-dependent effect on average reflectance,
however, so the measured BRDF is not Lambertian. The BRDF models derived from
these physical assumptions provide an accurate fit to measured BRDFs of natural sur-
faces such as plaster, chalk, and clay.

Specular reflectance is typified by a mirror. An ideal specular surface reflects all
energy in an incident light ray such that the incident and reflected directions are bisected
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by the surface normal. Such a surface has a BRDF

f(θi, φi; θr, φr) =
δ(cos θi − cos θr)

− cos θr
δ(|φr − φi| − π). (2.2)

Specular surfaces such as metals also typically exhibit some fine-scale variation in sur-
face geometry. This roughness causes the specular reflection of a point source to be
distributed in a small region around the ideal mirrored direction, as shown in Fig-
ure 2.2(b) and (c).

Diffuse and specular reflectance differ fundamentally in two ways. First, speculari-
ties are typically visible over a narrow view angle, so that specular reflection tends to
be sharper than diffuse reflection. Second, even a rough specular surface differs from
a diffuse surface in the direction of dominant reflectance. As a fixed observer views
a surface illuminated by a moving light source, the diffuse component will peak for
illumination normal to the surface, while the specular component will peak when the
surface normal bisects the illumination direction and the view direction.

A number of parameterized models of specular reflectance take into account the
width of the specular lobe. The earliest of these, still common in computer graphics,
is the Phong model [8, 79], which uses one parameter to describe the strength of the
specular reflectance and another to specify surface smoothness, which is inversely cor-
related to roughness and the width of the specular lobe. The Phong model leads to a
computationally efficient implementation but is not constrained by the reciprocity and
normalization requirements of a passive physical surface.

Ward proposed a variant of the Phong model that largely overcomes these problems
[56,118]. The BRDF for the specular component of the Ward model takes the form

f(θi, φi; θr, φr) = ρs
1√

cos θi cos θr

exp(− tan2 δ/α2)
4πα2

, (2.3)

where δ is the angle between the surface normal and a vector bisecting the incident
and reflected directions, the so-called “half-angle vector” (Figure 2.3). The specular
component is spread out about the ideal specular direction in a Gaussian distribution
with standard deviation α. The larger α is, the wider the specular lobe and the blurrier
the specular reflection. The other free parameter, ρs, specifies the proportion of incident
energy reflected by the specular component.4

Most surfaces reflect light by several physical mechanisms, including both specular
and diffuse reflection. BRDFs are therefore typically modeled as a sum of a specular
and a diffuse component. For example, the isotropic Ward model combines the specular

4The 4πα2 normalization factor in the denominator ensures that the total energy reflected remains
independent of α. This normalization factor, computed using the small-angle approximation tan x ≈ x,
is accurate as long as α is not much greater than 0.2 [118]. The 1√

cos θi cos θr
term satisfies the reciprocity

principle while ensuring that the amount of energy reflected does not depend on the position of the
light source.
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Figure 2.3. Geometry used to define the specular component of the Ward model. As in Figure 2.1, N
is the surface normal, S is the light source direction, and V is the view direction. The half-angle vector
H bisects S and V. The direction of ideal specular reflection R is such that N bisects R and S.

component described by Equation (2.3) with the Lambertian component described by
Equation (2.1):

f(θi, φi; θr, φr) =
ρd

π
+ ρs

1√
cos θi cos θr

exp(− tan2 δ/α2)
4πα2

. (2.4)

The sum ρd + ρs specifies the fraction of incident energy reflected by the surface, so
normalization requires ρd + ρs ≤ 1. Figure 2.4 illustrates the effect of each of the Ward
model parameters on the BRDF.

Many common materials have isotropic reflectance functions with no particular ori-
entation [44]. Such a BRDF can be written as a function of the difference between the
incident and reflected azimuthal angles, φi−φr, rather than the actual values of φi and
φr. Certain materials, such as brushed aluminum or fine-grained wood, have anisotropic
BRDFs; rotating a patch of such a surface about its own normal may change its appear-
ance. A number of parameterized reflectance models, including a more general form of
the Ward model, can capture anisotropic specular reflection.

The empirically derived Ward model fits measured data well for certain materials,
such as latex paints [118]. However, it fails to capture a variety of real-world reflectance
properties. Some of these properties, including Fresnel effects, specular spikes, and off-
specular peaks, are captured by more complicated models derived directly from physi-
cal principles [39]. Most physically-based models in the computer graphics and applied
physics literatures assume a simple but random surface micro-structure, such as a flat
substrate with randomly oriented V-shaped grooves. They predict surface reflectance
based on geometrical considerations and physical optics. Perhaps the most physically
complete model to date is that of He, Torrance, Sillion, and Greenberg (HTSG) [42],
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Figure 2.4. Effects of the Ward model parameters on the model BRDF. Emitted radiance distributions
are illustrated for light incident at 45◦ to the normal. (a) BRDF with ρd = .5, ρs = .05, α = .05. (b)
Same as (a), except that ρd has been increased to .9. (c) Same as (a), except that ρs has been increased
to .6. (d) Same as (a), except that α has been increased to .1.

parameterized by a complex index of refraction, a spectral reflectivity function, and two
values which characterize surface roughness as an RMS deviation from the plane and an
autocorrelation length. This model has been verified experimentally for a wider class
of surfaces than the Ward model. However, it still cannot accurately model anything
near the full range of real-world surface reflectances. The HTSG model, like most com-
parable physically-based models, is far more analytically complex and computationally
expensive than the Ward or Phong models. As a result, it is almost never used for
rendering applications.

In general, parameterized reflectance models capture a range of common reflectances,
but they fail to capture many of the reflectances encounterd in the real world. Even
within the range of reflectances they accommodate, they do not describe the relative
frequency with which different reflectances are observed.
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! 2.2 Previous Approaches to Reflectance Estimation

The importance of reflectance models in computer graphics has motivated several re-
searchers to develop image-based reflectance estimation techniques. The majority of
these techniques assume a controlled laboratory setting similar to that employed by
traditional gonioreflectometers, devices that measure a BRDF by illuminating a ma-
terial sample with a movable point light source and measuring its radiance in every
direction for each illumination direction. To accelerate the task of BRDF measurement,
Ward [118] developed an “imaging gonioreflectometer,” which for each illumination di-
rection captures radiance in all directions simultaneously as a single image of a silvered
hemisphere taken with a fisheye lens. Marschner et al. [66] developed a laboratory
technique for measuring BRDFs from multiple images of a curved surface such as skin;
instead of assuming a flat sample, they take advantage of the additional information
provided by known surface curvature. Debevec et al. [24] also acquired BRDFs of skin
under controlled point source illumination, using color space techniques to separate
specular and diffuse reflections. Tominaga et al. [110] present a method for estimating
Phong model parameters from an image of a uniform cylindrical surface. They require
illumination by a point light source, although they estimate the exact location of the
light source from image data. Sato et al. [92] as well as Marschner [65] develop simi-
lar techniques that accommodate spatial variation in the diffuse reflectance coefficient
as well as a more general geometry acquired through laser range scanning. Love [60]
measured reflectance from multiple photographs under illumination by the sun and sky,
using a model that specifies the amount of light incident from each direction at a par-
ticular location, season, and time of day. None of these methods recover reflectance
from photographs acquired in the real world under unknown lighting conditions.

Several authors have recently estimated both illumination and reflectance from a set
of photographs under real-world illumination [9,73,86,123,124]. They all assume known
geometry and a Phong- or Ward-like specular plus diffuse reflectance model. They all
apply an iterative estimation technique to deduce both illumination and reflectance,
matching resynthesized images to the observed images. These techniques assume that
enough information is available to guarantee that this optimization will converge to a
unique solution. Multiple combinations of illumination and reflectance can explain the
entire reflected light field, even when reflectance is restricted to a Phong- or Ward-
like model (Section 3.2.1). One must therefore introduce additional information to
guarantee that the joint optimization will converge to a unique solution. All of these
approaches require a complete geometric model of the surrounding scene and a rea-
sonable initial estimate for illumination. Yu and Malik [124] measure the illumination
incident on the scene from each direction photographically, constructing an illumination
map such as those described in Chapter 4. Yu et al. [123] explicitly specify the location
of primary light sources. Ramamoorthi and Hanrahan [86] assume the presence of a
point source in a known direction. Nishino et al. [72,73] introduce a regularization term
on illumination motivated by computational efficiency, and also assume that all illumi-
nation has the same color and that color images of the surface are available. Boivin and
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Gagalowicz [9], the only authors to estimate both illumination and reflectance based
on a single photograph, rely on human interaction in the estimation process.

We wish to avoid estimating illumination explicitly by characterizing it statistically.
In this sense, our approach has something in common with that of Weiss [119], who
decomposed a set of images of the same scene under different illumination into intrin-
sic “illumination” and “reflectance” images by assuming statistics on the illumination
images. We also draw on Freeman’s observation that one can select between differ-
ent reflectance functions that perfectly explain an image by integrating the posterior
probability of each reflectance over possible illuminations [37]. Freeman demonstrated
that this “generic viewpoint” approach favors image explanations that are relatively
insensitive to changes in illumination and reflectance parameters.

! 2.3 Reflectance Estimation in Human Vision

The human ability to recognize surface reflectance properties in real-world circum-
stances provides motivation for our investigation into computational reflectance estima-
tion problems. Human vision researchers have conducted a variety of psychophysical
and physiological experiments to investigate the algorithmic strategy and efficacy of the
human reflectance estimation process.

Most of this research has assumed Lambertian surfaces, focusing on estimation of
diffuse surface reflectance (albedo) and color. A gray surface under bright illumina-
tion may have exactly the same luminance as a white surface under dim illumination.
Humans possess a surprising ability to recognize the intrinsic albedo of surfaces under
realistic and varied illumination conditions. This ability, termed lightness constancy,
depends on the spatial arrangement of luminances within a scene.

Vision researchers have studied the lightness constancy problem since the 19th cen-
tury. Herring emphasized low-level visual effects that could correspond to basic retinal
mechanisms, such as the fact that the perceived reflectance of an image region depends
on the luminance of its immediate surroundings [1]. Helmholtz, on the other hand,
described lightness constancy as a high-level process of unconscious inference, whereby
an observer deduces the most likely explanation of a visual image by drawing upon prior
experience [1]. More recently, psychophysicists have found evidence for a variety of mid-
level lightness perception mechanisms based on image features such as contours, edge
junctions, and local brightness distributions [1, 38]. These mechanisms do not require
a high-level understanding of the image, but they may be viewed as statistical estima-
tion algorithms in that their success depends on statistical assumptions about the real
visual world. Several researchers have focused on the development of computational
approaches to estimating surface albedo [10,55,64].

Two surfaces of different intrinsic colors may produce exactly the same image color
when viewed under differently colored light sources. The human visual system also
exhibits approximate color constancy, the ability to recognize intrinsic surface color
under a wide variety of viewing conditions [11,29]. A number of authors have proposed
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Figure 2.5. A sample screen from the matching experiment. Subjects adjusted two parameters of the
sphere on the right until it appeared to be made of the same material as the sphere on the left. The
two spheres pictured here have different reflectance properties.

computational techniques to achieve color constancy [12, 14, 28, 35, 63], some of which
are used for color balance in photographic systems.

Although psychophysicists have long been aware that humans can recognize non-
Lambertian reflectance properties reliably, investigation of the extent of this ability and
the mechanisms underlying has been limited. Beck [5] observed that eliminating all the
highlights in an image of a glossy vase could make the entire vase look matte, suggesting
that gloss perception involves propagation of local cues over a surface. However, Beck
and Prazdny [6] performed further experiments suggesting that gloss perception involves
responses to low- and mid-level visual cues rather than high-level inference that the
surface is reflecting light specularly.

Pellacini et al. [77] established a “perceptually uniform gloss space.” They applied
multi-dimensional scaling to human judgments of gloss differences in order to establish a
nonlinear reparameterization of the space spanned by the Ward model. Equal distances
in this reparameterized space correspond to equal perceptual differences.

We carried out a series of experiments to measure the human ability to match
non-Lambertian reflectances under unknown real-world illumination conditions. This
experimental work, which involved a collaboration with Roland Fleming, is summarized
in the present section as background to the remainder of the thesis. A more detailed
account has been published elsewhere [33,34]. We wished to ascertain the accuracy with
which humans could judge gloss properties from single images of isolated surfaces, in
the absence of motion, stereo, or contextual information. We also wished to determine
under what range of illuminations humans can perform the task, and what image cues
they use to solve it.
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Figure 2.6. Grid showing range of reflectance properties used in the experiments for a particular
real-world illumination map. All the spheres shown have an identical diffuse component. In Pellacini’s
reparameterization of the Ward model, the specular component depends on the c and d parameters.
The strength of specular reflection, c, increases with ρs, while the sharpness of specular reflection, d,
decreases with α. The images were rendered in Radiance, using the techniques described in Appendix B.

To investigate these issues, we used the experimental setup pictured in Figure 2.5.
The subject was presented with two images of spheres rendered by computer under
different illuminations. The subject was instructed to adjust two reflectance parameters
of one sphere (the “Match” sphere) until it appeared to be made of the same material
as the other sphere (the “Test” sphere).

The sphere reflectances were restricted to the space covered by the Ward model,
with the diffuse reflectance fixed. Subjects were given two knobs, corresponding to two
parameter values in Pellacini’s reparameterization of the Ward model, with which to
navigate in this space (Figure 2.6). Because the illuminations of the two spheres differed,
no reflectance parameter setting would achieve identical images. Instead, subjects tried
to adjust the Match image so that it might represent the same sphere as the Test,
but viewed in a different location. All spheres were shown over the same checkered
background, and the illumination maps used to render the spheres were not disclosed
to the subjects.

We used a variety of illuminations, both real-world and synthetic, to render the
Test spheres. The real-world illuminations consisted of eight photographically-acquired
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Figure 2.7. Spheres rendered under each of the illuminations used in the experiments. All spheres
have the same surface reflectance. Real-world illumination (e), highlighted with a perimeter, was the
standard Match illumination.
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(a) (b) (c)

Figure 2.8. Match values plotted as a function of Test values for individual subjects. Graphs in
the top row are matches for the strength of specular reflection, c; graphs in the bottom row are for
sharpness of specular reflection, d. The gray value represents the density of responses for a given
Test value. Thus, if subjects always responded with the same Match value to a given Test value, the
corresponding sample is white; the rarer the response, the darker the gray. The graphs in (a) are
subject RF’s matches for spheres under the “St. Peter’s” illumination; (b) shows RA’s matches for
spheres under the “Eucalyptus” illumination; (c) shows subject MS’s matches for spheres under the
“Grace” illumination.

illumination maps due to Debevec [24], described further in Section 4.2. The synthetic
illuminations included a single point source, multiple point sources, a single extended
rectangular source, Gaussian white noise, and Gaussian noise with a 1/f amplitude
spectrum (pink noise).5 The Match sphere that the subject adjusted was always viewed
under the same real-world illumination. Figure 2.7 shows a sphere of a fixed surface
reflectance rendered under each of the illuminations used in the experiments.

These experiments resulted in several findings:

• For spheres viewed under photographically-acquired real-world illumination, hu-
mans perform the task with high accuracy. The reflectance matching task is
underconstrained — if one makes no assumptions about illumination, a range
of reflectance parameters could produce the observed images. In practice, how-
ever, subjects’ parameter settings for the Match sphere correspond closely to the
parameters used to render the Test sphere. This serves as a demonstration of fea-
sibility for our goal of reflectance estimation from a single image under unknown

5We generated the white noise illumination map by summing spherical harmonics whose coefficients
up to a fixed order were chosen from independent Gaussian distributions of equal variance. For the
pink noise, the spherical harmonic coefficients were chosen independently from Gaussian distributions
with standard deviation inversely proportional to the spherical harmonic order, which is analogous to
frequency. This process produces noise whose power spectrum is similar to that of many real-world
illuminations and natural images (see Chapter 4).
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(a) (b)

Figure 2.9. (a) A shiny sphere rendered under illumination by a point light source. (b) The same
sphere rendered under photographically-acquired real-world illumination. Humans perceive reflectance
properties more accurately in (b).

illumination. Figure 2.8 shows example data from the matching experiments for
individual subjects under individual illumination conditions.

• Subjects estimate reflectance more consistently and accurately under real-world
illumination than under simple synthetic illuminations such as a point light source
or Gaussian noise. Figure 2.9 shows two identical shiny spheres, one rendered
under a point light source, and the other under photographically-acquired real-
world illumination. Even though the point source illumination is “simpler,” the
perception of realistic reflectance properties is much stronger under complex real-
world illumination. This result is consistent with the observation that computer
graphics scenes rendered under photographically-acquired illumination (image-
based lighting) appear more realistic than those rendered under traditional simple
illumination [23].

• Even though subjects match reflectances accurately under unknown real-world
illumination, they exhibit biases dependent on illumination. These biases are
statistically significant and are similar from one subject to the next. In other
words, certain illumination maps make surfaces viewed under those illuminations
appear to have higher or lower specular contrast or distinctness.

All of these observations suggest that subjects use stored assumptions about illumi-
nation in estimating reflectance. These assumptions seem to be valid for most real-world
illumination conditions, but less so for synthetic illuminations. Experimental work has
not yet pinpointed what assumptions the human visual system makes about illumina-
tion, or which image features actually cue humans to reflectance properties. One of
the goals of our computational work is to determine what information different image
features capture about reflectance under real-world illumination.

Nishida and Shinya found that humans failed to match reflectance accurately for
surfaces of different geometry rendered under point source illumination [71]. They found
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that subjects’ matches related strongly to luminance histograms of the observed images.
Their results also suggest that human reflectance recognition depends on stored assump-
tions about the real world. For arbitrary illumination and geometry, these assumptions
may not be valid.

! 2.4 Summary and Discussion

Opaque surfaces possess a wide range of reflectance properties, described by the bidi-
rectional reflectance distribution function. Although a number of authors, particularly
in the computer graphics community, have recently developed methods to recover sur-
face reflectance from images, they have assumed either that reflectance is known in
advance or that enough information is available about the scene to explicitly recover
both illumination and reflectance. By contrast, humans display an ability to recog-
nize reflectance properties from an image of a surface under unknown illumination, as
long as that illumination is somehow typical of the real visual world. In the following
chapter, we describe the process of image formation from reflectance and illumination
mathematically, and show how the problem of recovering reflectance under unknown
illumination is underconstrained. Later chapters discuss the statistical regularity of
real-world illumination and the relevance of this regularity to the reflectance recogni-
tion problem.



38 CHAPTER 2. BACKGROUND



Chapter 3

Problem Formulation

The illumination, reflectance, and geometry of a surface determine its appearance from
any viewpoint. While decades of computer graphics research have focused on rendering
images efficiently given this information, the process is conceptually straightforward.
Inferring surface reflectance from one or more images under unknown illumination is
more difficult. More than one combination of illumination and reflectance could ex-
plain the observed data, so the problem is underconstrained. We wish to select the
most likely reflectance properties given the available image data and available prior
information about the real world. In this chapter, we pose the reflectance estimation
problem mathematically as a blind inverse problem. We also consider several simplified
formulations of this problem. Table 3.1 defines the notation of this chapter.

We will assume in this chapter, as in most of this thesis, that surface geometry is
known in advance. Chapter 6 discusses relaxation of this assumption.

! 3.1 The Forward Problem: Rendering

! 3.1.1 The General Case

Given the BRDF of a surface, the position of a viewer, and the illumination incident
at a point on the surface from each direction, we can compute the reflected radiance
from that point to the viewer’s direction by summing the contributions of incident light
from all directions. To make this statement more precise, consider a small surface patch
with normal N (Figure 3.1). We define angles with respect to N as in Section 2.1.1
and consider a distant observer in direction (θr, φr). If L(θi, φi) gives the radiance of
incident illumination from direction (θi, φi), the total reflected radiance B of the surface
patch in the direction (θr, φr) is given by

B(θr, φr) =
∫ 2π

φi=0

∫ π/2

θi=0
L(θi, φi)f(θi, φi; θr, φr) cos θi sin θi dθi dφi, (3.1)

39
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θi, θ′i Incident elevation angle in global, local coordinates
φi, φ′i Incident azimuthal angle in global, local coordinates
θr, θ′r Reflected elevation angle in global, local coordinates
φr, φ′r Reflected azimuthal angle in global, local coordinates
γ, β Surface normal parameterization (elevation and azimuthal) angles
Rγ,β Rotation operator for surface normal (γ, β)
L Incoming radiance (illumination)
B Reflected radiance, either as a function B(γ, β; θ′r, φ′r) of

reflected direction and surface normal or as a
function B(θ′r, φ′r) of reflected direction only

f Surface BRDF
f̃ BRDF multiplied by cosine of incident elevation angle and

defined as 0 for incident elevations larger than π/2
f̂ Estimated BRDF
S2 A unit sphere, used as an integration region
dω Differential area element on the sphere

Table 3.1. Notation used in this chapter. Our notation follows that of Ramamoorthi and Hanrahan
[86], but we use r rather than o subscripts to denote reflected (outgoing) radiation, γ rather than α to
denote surface normal elevation angle, and f rather than ρ to denote the BRDF. We use f̂ to denote
the estimated BRDF, while Ramamoorthi and Hanrahan use ρ̂ to denote a modified transfer function
similar to our f̃ .

where f is the surface BRDF.1 Equation (3.1) is a form of the Radiance Equation, which
serves as the basis for rendering algorithms in computer graphics2 [39,56,118]. Because
image irradiance is proportional to scene radiance, Equation (3.1) gives the image in-
tensity associated with the surface patch [44]. Ideally, the integration of Equation (3.1)
should be carried out separately for each wavelength of light. One can approximate the
results by performing one integration for each of three color channels.

! 3.1.2 Reflectance as a Convolution

Equation 3.1 describes a linear relationship between the illumination of a surface point
and the amount of light it reflects in each direction. If we know the geometry of an entire
surface, we can determine a linear relationship between the amount of light incident on
each surface point from each direction and the irradiance of each point of the resulting
image. In fact, one can express the relationship between illumination and reflected

1The cos θi term in this equation accounts for the fact that the radiance used to measure the illu-
mination L(θi, φi) is defined in terms of foreshortened area. The sin θi term is the standard integration
factor for spherical coordinates.

2Equation (3.1) assumes that L(θi, φi) is measured near the surface, such that it takes all indirect
reflections and blocking effects into account. The equation can be amended to describe the effects of
a participating medium such as fog on the observed image, and to account for radiation emitted by a
luminous surface.
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N
(θr,φr)

L(θi,φi)

Figure 3.1. A viewer observes a surface patch with normal N from direction (θr, φr). L(θi, φi)
represents radiance of illumination from direction (θi, φi). The coordinate system is such that N points
in direction (0, 0).

light as a spherical convolution whose kernel is determined by the BRDF. Although
this observation is not novel (e.g., [27,68]), it was recently formalized by Ramamoorthi
and Hanrahan [85,86] and by Basri and Jacobs [4].

To express the reflection process as a spherical convolution, we make the following
assumptions:

• The surface is curved and convex.

• Sources of illumination, both direct and indirect, are distant relative to the size
of the surface.

• The surface is made of a homogeneous material, such that its BRDF is the same
everywhere. To simplify the derivations of this section, we will also assume that
the BRDF is isotropic.

The distant illumination assumption implies that the amount of light incident from a
particular direction is identical at nearby points. In other words, we can imagine that all
illumination comes from the inside of an infinitely large sphere centered on the surface
of interest. If L(θi, φi) denotes the radiance of illumination incident from direction
(θi, φi), then any point whose surface normal lies within the hemisphere centered at
(θi, φi) receives illumination L(θi, φi) from that direction. The surface itself occludes
illumination from direction (θi, φi) at any surface point whose normal lies outside this
hemisphere, giving rise to attached shadows.

Because the surface is convex and curved, we can parameterize it by the global
spherical coordinates of its surface normal (γ, β), where (γ, β) = (0, 0) points verti-
cally upward (Figure 3.2). To simplify the formulas relating illumination to reflected
light, we define local coordinates with respect to the surface normal (γ, β), as shown
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γ = 0°

γ = −60°

γ = 30°

(a)

γ = 0°

γ = 30°

γ = −60°

(b)

Figure 3.2. Parameterization of surface location by surface normal, for (a) a circular surface and
(b) an egg-shaped surface. Only the top halves of each surface are shown. For illustrative purposes,
we show two-dimensional surfaces parameterized by a single angle γ ranging from −180◦ to 180◦. In
the three-dimensional case, the elevation angle γ ranges from 0◦ to 180◦, while the azimuthal angle β
ranges from 0◦ to 360◦.

.

in Figure 3.3. Global coordinates are indicated by unprimed angles, while local coordi-
nates are indicated by primed angles. The BRDF of a surface point is most naturally
expressed in local coordinates, because it is defined relative to the surface normal. Un-
der the distant lighting assumption, illumination is more naturally expressed in global
coordinates.

For any particular surface normal (γ, β), the local and global coordinate systems are
related by rotation. In local coordinates, (0′, 0′) is the surface normal, corresponding to
(γ, β) in global coordinates. We define Rγ,β to be the rotation operator that maps local
coordinates to global coordinates. We can decompose this three-dimensional rotation
as Rγ,β = Rz(β)Ry(γ), where Rz(β) denotes rotation about the z axis by angle β and
Ry(γ) denotes rotation about the y axis by angle γ.3 We can now convert between local
and global coordinates with the following formulas:

(θi, φi) = Rγ,β(θ′i, φ
′
i) = Rz(β)Ry(γ)(θ′i, φ

′
i) (3.2)

(θ′i, φ
′
i) = R−1

γ,β(θi, φi) = Ry(−γ)Rz(−β)(θi, φi). (3.3)

We denote by B the reflected light field, the amount of light reflected in each direc-
tion at each point on the surface. In particular, B(γ, β; θ′r, φ′r) is the radiance reflected
by the surface patch with normal (γ, β) in a direction (θ′r, φ′r) relative to the surface
normal. Because the reflected angles are parameterized in local coordinates, the analog

3The z axis points vertically upward with direction given by (0, 0) in global coordinates. The y
axis is horizontal, pointing in direction (π/2, π/2). We are assuming an isotropic BRDF; otherwise, we
would include three components in this decomposition rather than two.
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SN

V θr'
θi'

θi

θr

Figure 3.3. Local and global coordinates, for a particular point with surface normal N. The local
coordinates θ′i and θ′r specify the illumination and view directions with respect to the local surface
normal, while the global coordinates θi and θr specify the same directions with respect to a global
vertical reference direction. S and V are the incident and reflected directions, as in Figure 2.1.

of Equation (3.1) for a surface patch with normal (γ, β) is simply

B(γ, β; θ′r, φ
′
r) =

∫ 2π

φ′i=0

∫ π/2

θ′i=0
L(θi, φi)f(θ′i, φ

′
i; θ

′
r, φ

′
r) cos θ′i sin θ′i dθ′i dφ′i. (3.4)

To simplify Equation (3.4), we define a modified reflectance function f̃ as the prod-
uct of the BRDF and the cosine of the incident elevation angle. We also replace the
double integral of Equation (3.4) by integration over the sphere S2 with respect to a
differential area element dω. The dω term replaces the sin θ′i dθ′i dφ′i terms of Equa-
tion (3.4). Because we will be integrating over the full sphere rather than only the
hemisphere surrounding the surface normal, we define f̃ to be 0 for incident elevation
angles between π

2 and π, where the BRDF f is by convention not defined. This leads
to

f̃(θi, φi; θr, φr) =
{

f(θi, φi; θr, φr) cos θi if θi ∈ [0, π
2 ]

0 if θi ∈ (π
2 , π]. (3.5)

We can then write Equation (3.4) as

B(γ, β; θ′r, φ
′
r) =

∫

S2
L(θi, φi)f̃(θ′i, φ

′
i; θ

′
r, φ

′
r)dω.
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Figure 3.4. The solid arrows indicate a set of reflected rays with identical values of the reflected angle
θ′r in the local coordinate system. Angles in the local coordinate system for a given surface point are
measured with respect to the surface normal, shown as a dashed arrow. The surface normals in this
figure are identical to those of Figure 3.2(a).

Converting the dependence on incident angles to global coordinates gives

B(γ, β; θ′r, φ
′
r) =

∫

S2
L(θi, φi)f̃

(

R−1
γ,β(θi, φi); θ′r, φ

′
r

)

dω. (3.6)

If one regards θ′r and φ′r as fixed, Equation (3.6) is a convolution of L with f̃ . This
convolution is based on a rotation operator over a spherical data domain, while “stan-
dard” convolution involves a translation operator over a Euclidean domain. For a fixed
reflected direction in the local coordinate system, the reflected radiance as a function
of surface normal is a convolution of the illumination and a two-dimensional cross-
section of f̃ corresponding to that reflected direction. Figure 3.4 shows the reflected
rays corresponding to a fixed reflected direction in the local coordinate system.

A planar convolution corresponds to multiplication of coefficients in the Fourier
transform domain. Likewise, a spherical convolution corresponds to multiplication of
coefficients in the spherical harmonic domain. Ramamoorthi and Hanrahan [86] trans-
form B, L, and f̃ to the spherical harmonic domain, where each coefficient of the
reflected light field can be written as a product of a coefficient of the illumination and
a coefficient of the modified reflectance function f̃ . If the BRDF is isotropic, then only
a three-dimensional subspace the spherical harmonic coefficients of f̃ contains non-zero
coefficients. The reciprocity condition on the BRDF (Section 2.1.2) translates into an
additional symmetry property on the coefficients of f̃ .

! 3.1.3 Image Formation

An image is a cross-section through the light field B consisting of a set of rays that
converge to a single viewpoint. Figure 3.5 shows two such sets of rays. Figure 3.5(a)
illustrates the typical case, in which converging rays form an image on a view plane
at a finite distance from the surface. Figure 3.5(b) illustrates the limiting case of an
observer at infinite distance. In this case, the rays are parallel.
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The rays corresponding to a fixed reflected direction (θ′r, φ′r) in the local coordinate
system diverge from a convex surface (Figure 3.4), so they do not correspond to the
image observed by a viewer in any position. An observable image, on the other hand,
represents a two-dimensional cross section4 through the light field B(γ, β; θ′r, φ′r) where
θ′r and φ′r vary along with γ and β. Such an image cannot, in general, be represented
as a convolution over the illumination.

In a few specific cases, however, the observed image does represent a convolution
of the illumination. One such case is that of a surface with a Lambertian BRDF. A
Lambertian surface reflects equal radiance in all directions, so the observed image is
independent of the relationship between (θ′r, φ′r) and (γ, β). Thus any image param-
eterized by (γ, β) is a convolution of the illumination L(θi, φi) with a clamped cosine
kernel.5

For a non-Lambertian surface, the radiance of an image point depends not only on
the illumination, but also on the position of the viewer. In general, the global coor-
dinates of the direction toward the viewer vary as one moves across the surface. The
appearance of a surface patch with a given BRDF under fixed illumination therefore
depends on its position as well as its surface normal. In the case of an infinitely distant
observer, however, the reflected rays are parallel, so the appearance of such a surface
patch depends only on its normal. This simplifies the analysis, because we can parame-
terize the observed image as a function of γ and β irrespective of the surface geometry.
We will make use of this property when dealing with different surface geometries in
Chapter 6. While the property holds strictly only for an infinitely distant observer, it
holds approximately whenever an observer is distant relative to the radius of curvature
of the surface. It breaks down for flat surfaces, whose appearance would be uniform to
an infinitely distant observer.

For a distant viewer, the image produced by the specular component of the Ward
or Phong reflectance models can also be described approximately as a convolution over
illumination. This convolution involves a different rotation operator from that of Equa-
tion (3.6). Appendix A presents a derivation of this result.

4This “cross section” is not typically planar. It corresponds to the values of the light field along a
two-dimensional manifold, parameterized by γ and β. For example, an infinitely distant viewer sees an
image comprised of rays whose direction (θr, φr) is constant in the global coordinate system. Therefore
θ′r and φ′r depend on γ and β as (θ′r, φ

′
r) = R−1

γ,β(θr, φr). The image point corresponding to the surface
point with normal (γ, β) therefore has radiance given by

B
(

γ, β; R−1
γ,β(θr, φr)

)

=

∫

S2
L(θi, φi)f̃

(

R−1
γ,β(θi, φi); R

−1
γ,β(θr, φr)

)

dω.

5For a Lambertian reflector, the BRDF f is a constant ρ, so the convolution kernel is

f̃(θi, φi; θr, φr) =

{

ρ cos θi if θi ≤ π
2

0 if θi > π
2 .
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(a) (b)

Figure 3.5. Imaging geometries for (a) a viewer at a finite distance from the surface and (b) an
infinitely distant viewer. In each case, the dashed arrows represent surface normals, and the solid
arrows represent light rays reflected in the direction of the viewer. In (b), the rays are parallel to one
another and perpendicular to the distant image plane. The surface normals in this figure are identical
to those of Figure 3.2(a) and Figure 3.4.

! 3.2 Reflectance Estimation as an Inverse Problem

! 3.2.1 Underconstrained Nature of the Problem

Reflectance estimation amounts to an inversion of the rendering process. Instead of
generating images from illumination and reflectance, we wish to recover reflectance
given image data. We wish to recover reflectance from a single image under unknown
illumination, but we first consider an easier problem, that of recovering reflectance from
the entire reflected light field under known illumination. That is, we assume we know
the illumination L(θi, φi) incident on every point from every direction, and that we have
access to images of the surface from all possible directions.

If we place no constraints on the BRDF and allow it to vary arbitrarily from one
point on the surface to another, the reflectance recovery problem is hopeless despite
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all the information we have available. For each point on the surface, we have a two-
dimensional array of measurements, corresponding to variations in θ′r and φ′r, but we
wish to recover a three- or four-dimensional array of values specifying an isotropic
or anisotropic BRDF. One can make the problem more tractable by assuming that
the BRDF is the same everywhere on the surface [65, 66]. Then, if the illumination
consists simply of a point light source, each image point constitutes a separate BRDF
measurement, and variations in the surface normal across the surface lead to BRDF
samples over a wide range of incident illumination angles.

Even when the reflected light field is available for all surface normals and illumi-
nation at every point is known, however, the BRDF is only recoverable under certain
illuminations. In the case of a convex surface under distant illumination, the reflected
light field is a convolution of the illumination and the BRDF. If the illumination field
contains no energy at certain frequencies (i.e., at certain spherical harmonic orders),
modes of the BRDF at those frequencies cannot be recovered [86]. The BRDF can
be recovered completely under illumination by points sources, which contain energy at
all frequencies, but not under illumination by a slowly-varying illumination field that
contains no power at high frequencies.

Next, we consider the more difficult case when the entire reflected light field is avail-
able but the illumination is unknown. Again we assume that the BRDF is constant
across the surface. Ramamoorthi and Hanrahan examine the combinations of BRDFs
and illuminations that could produce a given reflected light field under the assump-
tions of Section 3.1.2 [86]. The symmetry of the BRDF spherical harmonic coefficients
required by reciprocity ensures that the BRDF is unique up to a global scaling factor
when all spherical harmonic coefficients of the reflected light field are nonzero. This
factorization breaks down when certain coefficients of the reflected light field vanish.
This causes problems in reflectance recovery, even when reflection is restricted to a sim-
ple parameterized reflectance model such as the Phong or Ward models. In particular,
increasing the specular roughness parameter (α in the Ward model) has a virtually
identical effect on the reflected light field as blurring the illumination L(θi, φi) with an
appropriate filter.

Finally, we consider the case where only one image of the surface is available, and
the illumination is unknown. The light field factorization technique of Ramamoorthi
and Hanrahan no longer applies. One cannot recover a three- or four-dimensional array
of BRDF coefficients from a two-dimensional cross-section of the light field. Because the
space of physically realizable BRDFs is much larger than the space of possible images,
many different combinations of BRDFs and illuminations will produce identical images.

Even when we constrain the BRDF to a reflectance described by the Ward model,
the reflectance estimation problem remains underconstrained. As in the case when the
entire light field was available, reflectance recovery suffers from the ambiguity between
increasing specular roughness and blurring the illumination, as well as unknown global
scaling factors for illumination and reflectance. Appendix A describes an additional
ambiguity that confounds diffuse reflectance under one illumination with specular re-
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Figure 3.6. A photograph of a matte sphere, shown against a uniform gray background. This image
could also be produced by a chrome sphere under appropriate illumination, but that scenario is highly
unlikely.

flectance under another.

! 3.2.2 Statistical Formulation

Because multiple reflectances could explain an observed image under unknown illumi-
nation, we wish to choose the most likely reflectance given the image. That is, we wish
to regularize the underconstrained estimation problem using prior information about
illumination and reflectance. For example, the image of Figure 3.6 could be explained
either as a highly specular sphere under perfectly diffuse illumination or as a matte
sphere under more typical illumination. The latter explanation is more likely, if only
because real-world illumination typically contains some sharp edges.

Ideal Bayesian estimation of reflectance would require marginalizing over all pos-
sible illuminations to find the most likely BRDF f̂ for a given observed image. If L
denotes illumination from every direction at each point on the surface, and I denotes
the observed radiance of each point in the image, then

f̂ = arg max
f

P (f |I)

= arg max
f

∫

L
P (f, L|I)dL

= arg max
f

∫

L
P (f, L)P (I|f, L)dL

= arg max
f

P (f)
∫

L
P (L)P (I|f, L)dL. (3.7)

The prior probability over reflectances P (f) captures the fact that some BRDFs are
more common than others in the real world; for example, white matte surfaces are
more common than holograms. Likewise, P (L) captures the statistical structure of
real-world illumination patterns. The last equality of Equation (3.7) is justified by the
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independence of illumination (L) and surface reflectance (f).
As we showed in Section 3.1, the image I depends linearly on f . The estimation

problem described by Equation (3.7) is nevertheless difficult for several reasons. First,
it requires explicit formulations of P (L) and P (f), the prior probabilities of any given
illumination and reflectance. Even under the assumptions of Section 3.1.2, where illu-
mination and reflectance remain constant across a surface, illumination corresponds to
a function of two variables and reflectance to a function of four variables. Although
we demonstrate in Chapter 4 that real-world illumination displays a great deal of sta-
tistical regularity, an explicit probability distribution over all possible illuminations
remains difficult to specify. Likewise, a general distribution over reflectances in the real
world remains unknown, although some authors have studied the color distributions of
Lambertian reflectors [12].

Evaluation of Equation (3.7) is also difficult because the expression to be maximized
involves an integral over all possible illuminations. The unknown illumination consti-
tutes a high-dimensional set of nuisance parameters that strongly affect our observed
data but that we do not wish to estimate explicitly.

Replacing the integration with a simple maximum over illumination is not desirable,
because the most likely combination of illumination and reflectance may not correspond
to the most likely reflectance. Consider a photograph of a white matte sphere (e.g.,
Figure 3.6), corrupted by slight high-frequency imaging noise. One could explain this
image approximately as a white matte sphere under any of a number of illuminations,
but none of these would predict the noisy image exactly. On the other hand, one could
explain the photograph precisely as a chrome sphere under just the right illumination.
This combination of illumination and reflectance may well be the single most likely
explanation for the image. Integrating over all possible illuminations, however, would
reveal that a more likely reflectance is white matte, because for that reflectance a large
number of illuminations produce approximately the observed image.6

We wish to avoid integration over all illuminations and instead proceed by determin-
ing a set of informative statistics, computable from the observed image, that capture
the information relevant to estimating reflectance.7 Ideally, this set of statistics would
be small and insensitive to variations in the illumination nuisance parameters.

We propose a solution along these lines in Chapters 5 and 6, in the form of a classifier
that learns the relationship between reflectance and certain image statistics empirically.
This circumvents the need for an explicit probability distribution over illuminations, and
also avoids large-scale integration. We cope with the problem of explicitly specifying
probabilities for all possible BRDFs by restricting our estimated reflectance to a set of
common reflectances.

6This distinction between integration over illumination and maximization over illumination is related
to the classic “generic viewpoint” assumption. Freeman [37] showed that integration over “generic”
variables such as illumination strongly affects the outcome of certain reflectance estimation problems.

7An optimal solution might involve a set of sufficient statistics that capture all information relevant
to reflectance estimation, but deriving a concise set of sufficient statistics requires a precise probability
distribution over illuminations and proves impractical.
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! 3.3 Restricting the Reflectance Space

One can naturally restrict the space of reflectances among which an estimator must
choose in one of two ways, leading to either a parameter estimation problem or a
classification problem. In either case, we would like the estimator to choose the “best
fit” to the observed surface reflectance among its set of candidate reflectances.

! 3.3.1 Parameter Estimation

Previous authors have typically restricted the reflectance space by using a parameterized
reflectance model from computer graphics, such as the Ward, Phong, or Torrance-
Sparrow models [9, 65, 86, 92, 123]. We use this approach in analyzing the relationships
between reflectance, illumination statistics, and image statistics (Chapter 5). We also
used a parameterized reflectance space in the psychophysical experiments described in
Section 2.3. In a practical estimation system, this approach suffers from the problem
that no parameterized reflectance model provides a good fit to the entire space of real-
world reflectances (Section 2.1.2).

! 3.3.2 Classification

An alternative, non-parametric approach is to restrict reflectance to a finite set of
BRDFs. In this case, the estimator acts as a classifier, selecting the best fit among the
candidate BRDFs. We emphasize classification in the reflectance recognition system of
Chapters 5 and 6. An advantage of this approach is that the candidate reflectances can
be completely arbitrary. In fact, one does not even need to know their BRDFs. Using
machine learning techniques, one can train such a classifier on sets of photographs of
different materials (Figure 3.7). Chapter 6 provides several such examples.

! 3.4 Normalization for Overall Illumination Intensity

The analysis of this thesis relies solely on a monochrome image of the surface of interest.
Because we ignore image context, we are unable to resolve the ambiguity between overall
strength of illumination and overall albedo of the surface. A white matte surface under
dim illumination and a gray matte surface under bright illumination will produce iden-
tical images. Statistical characterization of real-world illumination distributions does
not suffice to resolve this ambiguity, because similar illumination patterns occur at a
wide range of overall intensities. One can, however, estimate overall intensity of illumi-
nation from the ensemble of surfaces visible in an image. The mean luminance of an
image containing a number of surfaces provides an elementary estimate of this intensity.
One can improve the estimate by taking the typical structure of real-world scenes into
account [1, 10]. Because we wish to focus on the relationship between an image of a
surface and its reflectance properties rather than overall scene structure, we eliminate
the overall illumination ambiguity from the current study by assuming that an accurate
estimate of overall illumination strength is available. In particular, we normalize our
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Figure 3.7. The problem addressed by a classifier of Chapter 6, illustrated using a database of
photographs. Each of nine spheres was photographed under seven different illuminations. We trained a
nine-way classifier using the images corresponding to several illuminations, and then used it to classify
individual images under novel illuminations.

images by the luminance of a standard white surface positioned perpendicular to the
viewer near the surface under observation.

! 3.5 Summary and Discussion

The image of a surface depends on the surface’s reflectance properties, its geometry,
and the amount of light incident on it from every direction. One can express the light
field reflected by a surface with homogeneous reflectance properties as a convolution of
the illumination and the surface reflectance function. An observed image represents a
cross-section through the reflected light field. Inverting this rendering process to recover
reflectance is difficult. Even when illumination is known and images of the surface are
available from all directions, one cannot always recover the BRDF. When illumination
is unknown and only one image of the surface is available, reflectance recovery is even
more underconstrained; multiple combinations of illumination and reflectance could ex-
plain the observed image. We wish to resolve the ambiguity by finding the most likely
reflectance given the observed image. An explicit Bayesian solution of this problem
is daunting, but this thesis develops an approximate, computationally tractable solu-
tion. The following chapter takes a step in that direction by describing the statistical
properties of real-world illumination.
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Chapter 4

Real-World Illumination Statistics

Computer vision systems have traditionally relied on idealized models of illumination,
such as a single point light source or a uniform hemispherical source. Real-world illu-
mination, on the other hand, is highly complex. Surfaces are illuminated not only by
luminous sources such as the sun, sky, or indoor lights, but also by light reflected from
other surfaces in the environment. Figure 2.9 illustrates the difference in appearance
between a realistically illuminated surface and a surface under point source illumination.

The variability of real-world illumination complicates not only reflectance estimation
but also a variety of other common visual recognition tasks. For example, shape-
from-shading algorithms depend on the relationship between surface orientation and
reflected surface radiance, which in turn depends on both illumination and reflectance.
Motion estimation, object recognition, and scene recognition algorithms also depend
on assumptions of illumination. Techniques that assume that all light radiates from a
single point source may suffice for images acquired in a laboratory, but they often fail
in the real world.

Despite its complexity, real-world illumination does possess some level of regularity.
When looking at a chrome sphere, one expects to see some sharp edges, some bright
light sources, some areas of slowly varying illumination, and so on. We recognize the
sphere as chrome because we know what the world it reflects typically “looks” like. In
other words, we have an intuitive feel for the spatial patterns of real-world illumination.
We would like to convert these intuitions into a statistical description of real-world
illumination that can be used to design better computer vision and graphics systems
or to help understand the workings of biological visual systems.

! 4.1 Measuring Illumination as an Image

One can measure the illumination incident from every direction at a particular point in
the real world using a camera whose optical center is located at the point of interest.
By combining photographs taken in different directions, one can compose a spherical
map describing illumination at that point. Such spherical images are used as environ-
ment maps in computer graphics [23]. If all sources of direct and indirect illumination
are relatively distant, the illumination map changes slowly as the hypothetical camera
moves through space.

53
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An illumination map is a type of image. However, accurate real-world illumination
maps differ from typical photographs in two regards. First, illumination maps cover
a much wider view angle, spanning the entire sphere instead of a narrow view angle
near the horizontal. Second, accurate illumination maps must possess a much higher
dynamic range than typical photographs to capture accurately the luminance of both
the brightest and darkest areas. This is particularly true for illumination maps that
contain localized primary light sources such as incandescent lights or the sun.

A number of researchers have devoted a great deal of effort to capturing statistics
of typical photographs, or “natural image” statistics [13,31,47,89,102,109]. They have
found that normal photographs of indoor and outdoor scenes display a great deal of
regularity, particularly in power spectra and distributions of wavelet coefficients. These
statistics have led to effective image denoising and compression schemes [13,82,99] and
helped explain the architecture of biological visual systems [31,57,96, 101].

We wish to determine whether illumination maps display statistical regularities of
the same form. This chapter examines the statistics of illumination maps using dis-
tributions of illumination intensities (Section 4.4), spherical harmonic power spectra
(Section 4.5), and distributions of wavelet coefficients (Section 4.6). Each section high-
lights both similarities and differences between traditional natural image statistics and
the statistics of illumination maps.

! 4.2 Data Sets

We worked with two different sets of illumination maps, each consisting of high dynamic
range images that represent the radiance incident at a point in the real world. The first
set consisted of 95 illumination maps based on imagery acquired by Teller et al. [108] in
the environs of the MIT campus (http://city.lcs.mit.edu/data). The second set consisted
of nine maps from Debevec’s Light Probe Image Gallery (http://www.debevec.org/Probes/ )
[24]. Debevec’s maps represent diverse lighting conditions from four indoor settings and
five outdoor settings. Two examples from each data set are shown in Figure 4.1.

The images in both sets were acquired by combining photographs at multiple ex-
posures to obtain pixel values that are linear in luminance, using the technique of
Debevec and Malik [25]. We converted them all to gray-scale images with pixel values
proportional to luminance. Debevec’s illumination maps, which were computed from
photographs of a chrome ball, cover the entire sphere. Teller’s illumination maps were
each mosaiced from multiple calibrated narrow-angle images. These mosaics cover the
entire upper hemisphere as well as a band below the equator.

We compare our results to those of previously published studies of the statistics of
traditional restricted-angle photographs. Huang and Mumford performed a number of
statistical analyses on a particularly large set of images, consisting of 4000 photographs
collected and calibrated by van Hateren and van der Schaaf [114]. These images were
collected outdoors, but include photographs of buildings and roads as well as more
“natural” scenes. Other image sets such as that of Tolhurst [109] include indoor images.
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Teller Images Debevec Images

(a) (b)

(c) (d)

Figure 4.1. Examples of the illumination maps we used, shown in equal-area cylindrical projection
(see Section 4.3). (a) and (c) are drawn from Teller’s data set, while (b) and (d) are drawn from
Debevec’s. Dynamic range has been compressed for display purposes.

! 4.3 Spherical Projection

Whereas image statistics have previously been analyzed on a planar domain, illumi-
nation maps are naturally defined on a sphere. We will describe our handling of this
issue in each of the following sections. We found that storing illumination maps in
equal-area cylindrical projection [16] facilitated certain computations. To construct
this projection, one places the sphere at the center of a vertically oriented cylinder and
projects each point on the spherical surface horizontally outward to the surface of the
cylinder (Figure 4.2). One then unwraps the cylinder to obtain a rectangular map of
finite extent. Regions of equal area on the sphere map to regions of equal area on the
cylinder.1 Figure 4.1 displays illumination maps in equal-area projection with k = 2

π ,
where k is the ratio of the radius of the cylinder to the radius of the sphere.

1In particular, an infinitesimal patch on the sphere at latitude θ will find itself expanded by a factor
of k 1

cos θ in the horizontal direction and reduced by a factor of cos θ in the vertical direction. Because
the product of these two factors is a constant k, this projection preserves areas, even though it heavily
distorts angles near the poles.
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θ

Figure 4.2. To produce the equal-area cylindrical projection of a spherical map, one projects each
point on the surface of the sphere horizontally outward onto the cylinder, then unwraps the cylinder to
obtain a rectangular map.

! 4.4 Illumination Intensity Distribution

! 4.4.1 Marginal Distribution of Intensity

Although light is typically incident on a real-world surface from every direction, the
strongest illumination usually comes from primary light sources in a few directions. To
quantify this intuition, we examined the marginal distribution of illumination intensity
for our sets of illumination maps. This distribution is effectively just a histogram of
pixel values. To compute it accurately, we must take into account the solid angle
corresponding to each pixel of the illumination map. For an equal-area projection, this
solid angle is constant, so we can compute the marginal distribution of illumination
intensities with an unweighted pixel histogram.

Figure 4.3 shows total illumination intensity distributions for the 95 Teller images
and for the 9 Debevec images. Panels (a) and (b) show the distribution of linear
luminance values, while panels (c) and (d) show the distribution of log luminance values.
The linear luminance distribution plots reveal the general trend we expect — a majority
of pixels at low intensity, with a heavy positive tail corresponding to pixels of much
higher intensities. A typical digital photograph stored in eight-bit format necessarily
lacks this heavy positive tail due to limited dynamic range.

The log luminance histograms of Figure 4.3(c) and (d) show that a majority of
pixels fall near the mean log luminance, with a smaller proportion of particularly dark
or bright pixels. Huang and Mumford [47] attributed the asymmetry in the distribution
of log luminance values for the 12-bit images they analyzed to the presence of sky in
many of their images. Our distributions exhibit more striking asymmetries, partly
because both the Teller and Debevec data sets contain not only sky but also more
localized light sources. The distribution for the Teller set is particularly asymmetric



Sec. 4.4. Illumination Intensity Distribution 57

Teller Images Debevec Images

0 200 400 600 800 1000

10−6

10−4

10−2

100

luminance

pr
ob

ab
ilit

y

(a)

0 200 400 600 800 1000

10−6

10−4

10−2

100

luminance

pr
ob

ab
ilit

y

(b)

−5 0 510−5

100

log luminance

pr
ob

ab
ilit

y

(c)

−5 0 510−5

100

log luminance

pr
ob

ab
ilit

y

(d)

Figure 4.3. Illumination intensity distributions. (a) and (b) show mean histograms of linear luminance
values for the 95 Teller images and 9 Debevec images, respectively. (c) and (d) show median histograms
of natural log luminance values for the two image sets. The vertical bars extend from the 20th percentile
to the 80th percentile of the distribution values over the image set. All image intensities were scaled
linearly before analysis such that their mean log value was zero (i.e., such that their geometric mean
was one).

due to the presence of the sun in many images and to underexposure in the imaging
system at very low light intensities.

The distribution of log luminance values for the Teller image set has standard de-
viation σ = 1.04, kurtosis κ = 4.04, and differential entropy H = 2.06.2 The Debevec
image set has σ = 1.32, κ = 12.49, and H = 2.21. Huang and Mumford found σ = 0.79,
κ = 4.56, and H = 1.66. The kurtosis values are influenced heavily by individual
outliers. The variance and entropies of the distributions are higher for our data sets
than for those of of traditional photographs, due to the higher dynamic range and the
presence of concentrated illumination sources.

2The kurtosis of a random variable X with probability density f(x) is defined as κ =
∫

(x−x̄)4f(x)dx

(
∫

(x−x̄)2f(x)dx)2
.

The kurtosis of a Gaussian is 3, and distributions with kurtosis higher than 3 are often referred to as
heavy-tailed. The differential entropy H of X is defined as H(X) = −

∫

f(x) log f(x)dx.
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Figure 4.4. Dependence of illumination on elevation. (a) and (b) show mean log luminance as a
function of elevation. (c) and (d) each show two histograms of illumination intensities, one for directions
within 30◦ of the upward vertical and the other for directions from 0◦ to 15◦ below the equator.

Despite the aforementioned overall trends, marginal intensity distributions vary a
great deal from one illumination to the next. The degree of variation in the distribution
between images is summarized by the vertical lines in Figure 4.3(c) and (d), which
extend from the 20th percentile to the 80th percentile of the distribution values over
all the images.

! 4.4.2 Non-Stationarity

Most researchers in image processing treat images as samples of a stationary statistical
process. That is, they assume that all parts of the image possess identical statistical
properties and they therefore treat each part of the image in the same way. Illumination
maps clearly violate this stationarity assumption, if only because primary light sources
such as the sun, sky, and indoor lights are more likely to appear in the upper hemisphere.

Figure 4.4(a) and (b) show mean luminance as a function of elevation for the two
data sets. As expected, illumination generally increases with elevation. Interestingly,
the mean intensity reaches a local minimum at the horizontal view direction. Both
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Figure 4.5. This image, due to Torralba, represents the pixelwise mean of over 300 images of outdoor
scenes containing a person whose head spans approximately two pixels. The images are aligned with
respect to the person’s head before averaging, so that a human-like shape is visible in the center. The
remainder of the average image is of non-uniform intensity, with increased intensity near the top of the
image and a noticeable dip in intensity near the horizon. Reprinted from [113] with author’s permission.

data sets contain illumination maps in which the ground reflects a significant amount
of light from above, while visible surfaces in the horizontal direction are shadowed (e.g.,
Figure 4.1b). Torralba [112,113] observed that images of large-scale scenes viewed from
a horizontal direction also have non-stationary means. He aligned large sets of images
with respect to a feature of interest, such as a person, and averaged the images within
each set pixelwise to obtain “average images” such as that shown in Figure 4.5. In most
outdoor urban and natural settings, the average images exhibit a dip in intensity near
the horizon [112], similar to the dip we observed for illumination maps in Figure 4.4(a)
and (b).

Panels (c) and (d) of Figure 4.4 each show two illumination intensity histograms
at different ranges of elevations. The marginal distributions for higher view directions
have a larger mean as well as heavier positive tails, reflecting the larger probability of
bright localized sources at higher elevations.

! 4.4.3 Joint Distribution of Illumination from Adjacent Directions

To describe the spatial structure of real-world illumination maps, we must use statistics
that depend on joint distributions of multiple pixels. The simplest way to do this is to
examine the joint distributions of pairs of pixels with some specific spatial relationship.
Figure 4.6 shows contour plots of the joint histograms of horizontally adjacent pixels
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Figure 4.6. Joint histograms of log luminance at horizontally adjacent pixels p1 and p2 in the Teller
images (left) and Debevec images (right).

from all of the Teller illumination maps and from all of the Debevec maps.3

Figure 4.6 shows that log luminance values at horizontally adjacent pixels p1 and
p2 are highly correlated. Much of the mass of the joint histogram concentrates near the
diagonal where p1 = p2. In agreement with Huang and Mumford, we found that p1 +p2

and p1 − p2 are more nearly independent than p1 and p2. In particular, the mutual
information of p1 and p2 is 2.41 bits for the Teller images and 3.25 bits for the Debevec
images, while that of p1 + p2 and p1− p2 is only 0.10 bits for the Teller images and 0.07
bits for the Debevec images.4 Hence, the percentage difference between the luminance
incident from two horizontally adjacent spatial directions is roughly independent of the
mean luminance from those two directions.

The variability of marginal pixel histograms from image to image leads to variability
in the joint pixel histogram from image to image. The ensemble pixel histograms of
Figure 4.6 also vary between the two data sets. In both panels of Figure 4.6, the
increased extent of the joint distributions in the upper right quadrant compared to the
lower left reflects the asymmetry of the marginal distribution illustrated in Figure 4.3.

The utility of joint pixel histograms for examining spatial illumination structure
is limited by the difficulty of visualizing joint histograms of three or more pixels. In
addition, the histograms vary from one illumination map to another. We wish to

3We define the horizontal direction in the global coordinate frame such that “horizontally adjacent”
pixels lie along the same line of latitude. We divide each line of latitude into 512 “adjacent” pixels.
Requiring that each pixel pair be separated by a fixed distance on the sphere results in virtually identical
histograms.

4The mutual information of random variables X and Y is defined as I(X, Y ) = H(X) + H(Y ) −
H(X, Y ), where H(X) and H(Y ) are the entropies of X and Y , respectively, and H(X, Y ) is the entropy
of their joint density.
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identify specifically the statistical regularities in illumination. We therefore turn to two
image processing techniques that have formed the basis for statistical characterization of
spatial properties of natural images — frequency domain analysis and wavelet analysis.

! 4.5 Spherical Harmonic Power Spectra

Much early work on natural image statistics focused on the regularity of their power
spectra. A number of authors [31, 89, 109] have observed that two-dimensional power
spectra of natural images typically fall off as 1/f2+η, where f represents the modulus
of the frequency and η is a small constant that varies from scene to scene.

The natural spherical equivalent of the planar Fourier transform is a spherical har-
monic decomposition. The spherical harmonics form a countable orthonormal basis for
square integrable functions on the sphere. Associated with each basis function is an
order L, a nonnegative integer analogous to frequency. The 2L+ 1 spherical harmonics
of order L span a space that is closed under rotation [49].

Just as planar white noise has a flat two-dimensional power spectrum, white noise
on the sphere produces equal power in every spherical harmonic. Similarly, if the
regularities observed in the natural image statistics literature carry over to spherical
illumination maps, the average power of the spherical harmonics at order L will fall off
as 1/L2+η.

We computed spherical harmonic coefficients for the illumination maps in both data
sets using the formulas given by Inui [49]. We obtained average power at each order L
as the mean of squares of the coefficients at that order. Teller’s data lacks information
about the lowest portion of the illumination hemisphere. We applied a smooth spatial
window to these illumination maps before transforming them to the spherical harmonic
domain.

Figure 4.7 shows the relationship between average power and harmonic order for the
four illumination maps of Figure 4.1, when pixel value is proportional to log luminance.
All four images have power spectra that lie close to a straight line of slope −2 on log-
log axes, corresponding to a power spectrum of the form k/L2. The great majority of
images in both data sets exhibit similar behavior.

We obtain very different results for the same illuminations when we compute power
spectra for illumination maps whose pixel values are linear in luminance. Illumination
maps that lack concentrated primary light sources, such as those of Figure 4.1(a) and
(b), have spherical harmonic spectra that are well approximated by k/L2+η with η small.
On the other hand, illumination maps that contain intense, localized light sources have
smooth power spectra that remain flat at low frequencies before falling off at higher
frequencies. The illuminations of Figure 4.1(c) and (d) both display this behavior; the
power spectrum of a linear luminance version of Figure 4.1(c) is shown in Figure 4.8.
In these images, one or a few luminous sources, such as the sun or incandescent lights,
dominate the power spectrum. Because these light sources approximate point sources,
their spectrum is flat at low frequencies. If one clips the brightest pixel values in these
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Figure 4.7. Spherical harmonic power spectra (solid lines) of illumination maps (a), (b), (c), and (d)
in Figure 4.1, with pixel value proportional to log luminance. The dotted lines of slope −2 correspond
to power spectra of the form k/L2.

images, the power spectra return to the familiar k/L2+η form (Figure 4.8).
Figure 4.9 shows the mean spherical harmonic power spectrum of all the illumina-

tions in the Teller data set, with vertical bars indicating the variability from one image
to another. Panels (a) and (b) represent the spectra of linear luminance images, while
(c) represents the spectra of log luminance images, and (d) represents the spectra of
images where the brightest pixel values have been clipped. In panel (a), the images
were normalized to have identical mean luminance values before computation of the
power spectra. The power spectra exhibit a great deal of variability, but this results
predominantly from differences in the total variance (power) of the different images. If
the images are normalized for total variance instead, the variability of the power spec-
tra decreases. The error bars are still quite large at low frequencies, however, because
images dominated by one or a few point sources have flat power spectra at low frequen-
cies. Clipping the brightest luminances or log transforming the image leads to more
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Figure 4.8. Left, the spherical harmonic power spectrum of the illumination map in Figure 4.1(c),
with pixel values linear in luminance. Right, the corresponding spectrum after the pixel values cor-
responding to the sun have been clipped to a luminance value only slightly greater than that of the
sky. Clipping these extremely bright pixels reduces power at all frequencies and produces a more linear
power spectrum. The dotted lines of slope −2 correspond to power spectra of the form k/L2.

regularly shaped power spectra, as indicated by the smaller error bars of (c) and (d).5

Previous work on natural images has reported 1/f2+η power spectra whether pixel
values are linear or logarithmic in luminance [89]. These results on linear luminance
images differ from ours because most previous researchers have avoided photographs of
point-like luminous sources and have used cameras of limited dynamic range, such that
a few maximum intensity pixels could not dominate the image power spectra. A natural
illumination map, on the other hand, may be dominated by light sources occupying a
small spatial area. Once the relative strength of such sources is reduced through clipping
or a logarithmic transformation, illumination maps have power spectra similar to those
of typical photographs.

! 4.6 Wavelet Statistics

The fact that a single bright source can dominate the power spectrum of an illumina-
tion map represents a shortcoming of frequency domain analysis. Wavelets6 allow a
more localized analysis; a single point-like source will affect only a few wavelet coef-
ficients. Indeed, wavelet-domain analysis forms the basis for most recent work in the
natural image statistics literature [89,101,117]. The distributions of wavelet coefficients
at various scales and orientations capture not only power spectral properties, but also
the non-Gaussian nature of real-world images. These distributions tend to be highly
kurtotic, with many small coefficients and a few larger ones, indicating that wavelets
provide a sparse representation of natural images. The scale-invariant properties of

5Log transforming an image tends to amplify camera noise and discretization noise at small pixel
values, introducing variability in the power spectrum at high frequencies. This variability is notable in
the rightmost error bars of Figure 4.9(d).

6We use the term “wavelet” to refer generally to image decompositions based on multiscale bandpass
filter pyramids, including quadrature mirror filter pyramids and overcomplete steerable pyramids.
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Figure 4.9. Mean power spectra of the 95 Teller images. Heavy solid lines indicate the mean of
the individual power spectra at each spherical harmonic order, while each vertical bar extends both
above and below this line by one standard deviation. The power spectra of (a) and (b) were computed
on images whose pixel values were linear in luminance. In (a), images were scaled to have the same
mean, while in (b), images were scaled to have the same pixelwise variance (i.e., the same total non-DC
power). In (c), power spectra were computed for “clipped” images, which were linear in luminance up
to a ceiling value slightly brighter than the typical brightness of the sky. The power spectra of (d)
were computed for log luminance images. The images of (c) and (d) were scaled to have the same
variance. The dotted lines are best-fit lines corresponding to power spectra of the form k/L2+η, where
η is -0.16 in (a) and (b), 0.31 in (c) and 0.29 in (d). Each point on the heavy solid curve represents the
average power of an interval containing one or more discrete frequencies. Note that the vertical lines
are not traditional error bars, because they represent standard deviation rather than standard error of
the mean. These standard deviations were computed on log power values.

natural images translate into predictable relationships between wavelet coefficient dis-
tributions at different scales. The regular nature of these distributions facilitates image
denoising [82, 99], image compression [13], and texture characterization [43, 81], and
has also proven useful in understanding neural representations in biological visual sys-
tems [96,101].

Previous analysis of natural images and textures has assumed that the data is defined
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on a planar domain. Because illumination maps are defined as functions of orientation,
they are most naturally analyzed in a spherical domain. To this end, we utilized the
spherical wavelet framework introduced by Schröder and Sweldens [95]. These wavelet
transforms operate on data defined on a subdivided icosahedron whose vertices are
quasi-regular on the surface of the sphere. We used a transform based on second-
generation wavelets with vanishing zero- and first-order moments, constructed from
simple hat functions using a linear lifting scheme.7 We computed wavelet coefficients
using a fast lifted wavelet transform implementation by Amaratunga and Castrillon-
Candas [3].

Figure 4.10 shows marginal distributions of spherical wavelet coefficients at three
successive scales for the 95 Teller images. The distributions are highly kurtotic, with the
great majority of coefficients near zero and a few much larger coefficients. Figure 4.11
summarizes the variation from image to image for the distribution at one scale, for
both linear luminance and log luminance images. The distributions are remarkably
similar from one image to another, although the distributions associated with the lin-
ear luminance images exhibit variations in the overall scale of the wavelet coefficient
distribution. The sun and other bright localized sources that dominate the entire power
spectra of some of the illumination maps (Section 4.5) have a less noticeable effect on
the distributions of wavelet coefficients because they influence only a handful of wavelet
coefficients.8 Several authors have observed that generalized Laplacian distributions of
the form P(x) ∝ exp(−|x/s|α) accurately model the wavelet coefficient distributions
of typical photographs and of ensembles of photographs [13, 47]. Panels (a) and (b) of
Figure 4.10 show maximum likelihood fits of this form to the ensemble histogram of
wavelet coefficients from the Teller images. The fits are reasonably accurate, although
they tend to underestimate the actual distribution for high wavelet coefficient magni-
tudes. We observed similar behavior for fits to empirical wavelet coefficient distributions
for individual illumination maps. This discrepancy from results reported in the natural
image statistics literature may be due to the higher dynamic range of the illumination
maps we analyzed.

The wavelet coefficient distributions of Figure 4.10 also exhibit evidence of scale
invariance in illumination maps. Distributions of coefficients at different scales are sim-
ilar apart from an overall normalization constant. Scale invariance requires that all
statistics computed on an ensemble of images I(x) be identical to those computed on
normalized, rescaled versions of the images βνI(βx), where the exponent ν is indepen-
dent of the scale β [89]. An exponent ν = 0 leads to two-dimensional power spectra of
the form spectra 1/f2, where f is the modulus of frequency. More generally, a nonzero

7These wavelets are known as second-generation because they are not exact translates and dilates
of a single function. Their first-order moments vanish only approximately, because the arrangement of
vertices on the sphere is not completely regular.

8The variance of wavelet coefficients at a particular scale and orientation provides a measure of
spectral power in some frequency band. A single localized light source can greatly influence this variance
by contributing a few large outlying wavelet coefficients. However, it will have a relatively small effect
on the shape of the histogram.
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Figure 4.10. Distributions of spherical wavelet coefficients at successive scales (thick lines), along
with generalized Laplacian fits (thin lines in (a) and (b)), for the 95 Teller images. In (a) and (b), as
elsewhere in this chapter, the spherical wavelet basis functions are normalized to have identical power
at every scale. In (c) and (d), their amplitudes are divided by 4 at the finest scale and by 2 at the next
finest scale. (a) and (c) were computed on images whose pixel values were linear in luminance, while (b)
and (d) were computed on log luminance images. The α parameters of the generalized Laplacian fits
ranged from 0.50 to 0.52 for the linear luminance images, and from 0.41 to 0.59 for the log luminance
images. We windowed the illumination maps as described in Section 4.5 before computing the wavelet
transform, and discarded wavelet coefficients corresponding to the absent portions of the illumination
map. We divided each linear luminance image by its mean before computing wavelet coefficients.

exponent ν leads to power spectra of the form 1/f2−ν . For a scale-invariant image en-
semble, the variance of wavelet coefficient distributions will follow a geometric sequence
at successively coarser scales. If the wavelet basis is normalized such that wavelets at
different scales have constant power, as measured by the L2 norm, then the variance
will increase by a factor of 22+ν at successively coarser scales. If we increase the am-
plitude of these wavelets by a factor of 2 at each coarser scale, then the variance of the
coefficients will increase by a factor of only 2ν at successively coarser scales. Panels
(c) and (d) of Figure 4.10 illustrate the results of such rescaling. Because ν is small,
the distributions change little from one scale to the next. Note that linear luminance
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Figure 4.11. Variation in marginal distributions of wavelet coefficients from one image to another,
for the second-finest-scale band of Figure 4.10. The heavy dashed lines indicate the median of the
histogram values across the 95 images. The vertical bars extend from the 20th percentile to the 80th
percentile of the distribution values across images. We divided each linear luminance image by its mean
before computing wavelet coefficients but did not normalize either linear or log luminance images for
variance.

illumination maps are not strictly scale invariant, as evidenced by the fact that their
power spectra often deviate significantly from the 1/f2−ν form. The distributions of
wavelet coefficients at successive scales suggest, however, that illumination maps do
possess scale-invariant properties apart from the contributions of bright localized light
sources.

The spherical wavelet basis used to generate Figures 4.10 and 4.11 consists of wavelet
functions with approximate radial symmetry. Oriented wavelet pyramids have proven
indispensable in characterizing natural image statistics and in other areas of image
processing. A potentially productive line of future research involves construction of
oriented pyramids, including steerable pyramids, for a spherical data domain. Because
such transforms are not readily available, however, we applied planar wavelet analy-
sis to equal-area cylindrical projections of the Teller and Debevec illumination maps.
Although this projection introduces spatially-varying distortion that may affect the im-
age statistics, it allows direct comparison of our results to the existing literature on
natural image statistics and texture analysis. Horizontal lines in the projected images
correspond to lines of latitude on the sphere, while vertical lines correspond to lines of
longitude.

Figure 4.12 shows marginal distributions of wavelet coefficients at several successive
scales for quadrature mirror filter pyramids constructed on cylindrical projections of
the Teller illumination maps. The coefficient distributions for both vertically- and
horizontally-oriented wavelets are similar to those observed for spherical wavelets in
Figure 4.10.

Authors in the natural image statistics literature have noted that even though
wavelet coefficients are approximately decorrelated, coefficients that are near one an-
other in position, scale, or orientation exhibit codependencies that are remarkably re-
producible for different images and different wavelet transforms [13,47,102]. Figure 4.13
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Figure 4.12. Distributions of planar quadrature mirror filter (QMF) wavelet coefficients at successive
scales (thick lines), along with generalized Laplacian fits (thin lines), for the 95 Teller images. Left, hor-
izontal bands. Right, vertical bands. These distributions were computed for log luminance images and
are therefore best compared to the spherical wavelet coefficient distributions shown in Figure 4.10(c).
The finest scale in this decomposition is slightly finer than that of the finest scale in Figure 4.10(c),
such that the variances of the distributions in this figure are somewhat lower. The α parameters of
the generalized Laplacian fits ranged from 0.48 to 0.63 for the horizontal bands and from .42 to .58
for the vertical bands. The QMF pyramid was computed on an equal-area projection of the spherical
illumination map (as defined in Section 4.3), with k = 2

π . We used an eight-tap quadrature mirror filter
pyramid described by Johnston [53] and implemented by Simoncelli [98].

shows the conditional distributions of the horizontal wavelet coefficents of the Teller il-
lumination maps given the the values of several nearby coefficients. These distributions
are shown as images, with each column representing the distribution of the horizontal
coefficient given a particular value of a related coefficient. Brighter pixels represent
higher probabilities, with the probabilities in each column summing to one.

All four of the joint distributions exhibit a “bowtie” shape characteristic of natural
images [13, 102]. The variance of a wavelet coefficient increases with the magnitude of
neighboring coefficients at the same scale and orientation, and also with the magnitude
of coefficients of other scales and orientations at the same spatial location. Intuitively,
edges and bright sources tend to produce large wavelet coefficients at multiple scales and
orientations and at nearby positions. Figure 4.13(d) shows that two horizontally adja-
cent, horizontally-oriented wavelet coefficients at the same scale also exhibit significant
correlation. This correlation reflects the tendency of edges in an image or illumination
to continue in the same direction; horizontally-oriented wavelets respond strongly to
horizontal edges.

! 4.7 Summary and Discussion

Despite their complexity and variability, real-world illuminations display a great deal
of statistical structure. Many of the regularities observed through earlier studies of
low-dynamic-range, restricted field-of-view photographs carry over to real-world illu-
mination maps. The pixel histograms, power spectra, and wavelet coefficient distribu-
tions of spherical illumination maps share some of the characteristics previously noted
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Figure 4.13. Conditional histograms for a horizontal wavelet coefficient given the values of its neigh-
bors. The brightness of each pixel indicates a probability; the probabilities in each column sum to unity.
The vertical axis is a fine-scale horizontal coefficient of an 8-tap quadrature mirror filter decomposi-
tion [53]. The horizontal axis represents (a) the horizontal coefficient at the same position but at the
next coarser scale, (b) the vertical coefficient at the same scale and position, (c) a vertically adjacent
horizontal coefficient at the same scale, and (d) a horizontally adjacent horizontal coefficient at the
same scale. The conditional histograms represent average distributions over the 95 Teller log luminance
images. Note that the horizontal axis of (a) is compressed by a factor of two relative to the other axes.

in the image statistics literature. Illumination maps, however, display non-stationary
statistical properties, such as the predominance of illumination from upward direc-
tions. In addition, the fact that one or a few primary light sources may contain a
majority of the power in an illumination map sometimes leads to power spectra that
deviate significantly from the k/f2+η model, violating scale invariance. Wavelet co-
efficient distributions are fairly regular from image to image, but fits to generalized
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(a) Original (b) 1/f2 power spectrum

(c) Heeger and Bergen texture (d) Portilla and Simoncelli tex-
ture

Figure 4.14. Spheres of identical reflectance properties rendered under a photographically-acquired
illumination map (a) and three synthetic illumination maps (b-d). The illumination in (b) is Gaussian
noise with a 1/f2 power spectrum. The illumination in (c) was synthesized with the procedure of Heeger
and Bergen [43] to match the pixel histogram and marginal wavelet histograms of the illumination in
(a). The illumination in (d) was synthesized using the technique of Portilla and Simoncelli, which also
enforces conditions on the joint wavelet histograms. The illumination map of (a) is due to Debevec [24].

Laplacian distributions are less tight than those previously observed for more typical
photographs [13, 47].

The domains in which we have characterized natural illumination statistics — dis-
tributions of intensities, power spectra, and distributions of wavelet coefficients — are
also used to characterize texture [43, 82]. This suggests that we might think of illumi-
nation patterns as types of textures. We can test the extent to which a set of statistics
captures the perceptually essential characteristics of real-world illumination by apply-
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ing texture synthesis algorithms to generate novel illuminations whose statistics match
those of real illuminations. Panel (a) of Figure 4.14 shows a sphere rendered under the
photographically-acquired illumination map of Figure 4.1(d). Panels (b), (c), and (d)
show identical spheres rendered under synthetic illumination maps. The illumination
map of (b) consists of Gaussian noise with a 1/f2 power spectrum; although the power
spectrum resembles that of natural illumination, the resulting sphere does not look re-
alistic at all.9 The illumination map of (c) was synthesized to have a pixel intensity
distribution and marginal wavelet coefficient distributions identical to those of (a) us-
ing the texture synthesis technique of Heeger and Bergen [43]. This sphere looks much
more realistic, and human observers are able to recognize that its reflectance proper-
ties are similar to those of the sphere in (a) [34]. Finally, the illumination map of (d)
was created using the texture synthesis technique of Portilla and Simoncelli [82], which
ensures that not only its pixel intensity distribution and marginal wavelet coefficient
distributions, but also certain properties of its joint wavelet coefficient distributions,
match those of (a). This synthetic illumination map captures the presence of edges in
the real illumination map, leading to a sphere whose reflectance properties are even
more similar to that of (a). This suggests that the statistical properties of natural
illumination discussed in this chapter play an important role in reflectance estimation
by the human visual system [34].

In Chapters 5 and 6, we consider the implications of illumination statistics in re-
flectance estimation. These statistics have other potential applications that suggest
additional lines of future research. A statistical characterization of illumination could
enable shape-from-shading under unknown illumination, or even joint estimation of
shape and reflectance. In computer graphics applications, one often wishes to recover
the illumination of an object or scene for re-rendering purposes. A statistical model of
real-world illumination may help reconstruct a particular illumination from sparse or
incomplete measurements.

One could extend our treatment of real-world illumination by considering the statis-
tics of the five-dimensional plenoptic function that describes all the rays of light passing
through every point in a three-dimensional volume [2]. The plenoptic function can be
described as the set of two-dimensional spherical illumination maps at every point in a
three-dimensional volume. Understanding its statistics requires understanding how an
illumination map tends to change as the camera recording it moves in space. Because

9The illumination map of Figure 4.14b was synthesized in the spherical harmonic domain. The maps
of (c) and (d) were synthesized in a rectangular domain corresponding to an equal-area cylindrical
projection of the sphere. In (c) and (d), we performed principle component analysis in color space
to produce three decorrelated color channels, each of which is a linear combination of the red, green,
and blue channels. We then synthesized textures independently in each channel of this remapped
color space, as suggested by Heeger and Bergen [43]. Unfortunately, the dependencies between the
decorrelated color channels are much more severe for high-dynamic-range illumination maps than for
the 8-bit images common in the texture analysis literature. To reduce artifacts associated with these
dependencies, we passed the original illumination maps through a compressive nonlinearity on luminance
before wavelet analysis, and then applied the inverse nonlinearity to the synthesized illumination maps.
The compressive nonlinearity leads to a less heavy-tailed distribution of pixel intensities.
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image-based rendering involves resampling the plenoptic function [67], statistical priors
on this function could facilitate image-based rendering with sparse data.



Chapter 5

From Illumination Statistics to
Image Statistics

The statistical regularity of real-world illumination leads to statistical regularity in
images of reflective surfaces. Certain image statistics vary little from one real-world
illumination to another but vary substantially from one reflectance to another. We can
exploit these regularities to estimate surface reflectance properties, disambiguating an
otherwise underconstrained recognition problem.

As an example, Figure 5.1 shows images of two spheres, each photographed in two
locations. The two illuminations differ substantially, but both contain sharp edges.
Both images of the chrome sphere therefore contain sharp edges, while both images of
the rough metal sphere contain blurred edges. The presence of such features depends
not only on the physical laws governing reflection, but also on the empirical properties
of real-world illumination.

One can quantify regularities in surface images with statistical measures similar to
those used in Chapter 4 to describe regularities in illumination. In Section 5.1, we
use a parameterized reflectance model to examine the dependence of individual image
statistics on reflectance. In Section 5.2, we propose a reflectance classifier based on these
relationships. By utilizing a machine learning approach, we are able to build classifiers
for arbitrary reflectances, not restricted to reflectances described by the parameterized
model. Chapter 6 considers these machine learning techniques in more detail, and
extends our classification scheme to surfaces of arbitrary known geometry.

! 5.1 Dependence of Image Statistics on Reflectance

To gain insight into the relationship between illumination statistics, surface reflectance,
and surface image statistics, we consider surface reflectances defined by the isotropic
Ward model. This model, defined by Equation (2.4), represents reflectance as a sum
of specular and diffuse components. The monochromatic version of the Ward model
contains only three parameters. The diffuse reflectance ρd specifies the energy in the
diffuse, Lambertian component. The specular reflectance ρs specifies the energy in
the specular component, while the roughness parameter α specifies the blur in the
specular component. Conservation of energy implies that ρd + ρs ≤ 1. For a highly

73
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(a) chrome sphere in of-
fice

(b) rough metal sphere
in office

(c) chrome sphere on
street

(d) rough metal sphere
on street

Figure 5.1. A chrome sphere and a rough metal sphere, each photographed under two different
real-world illuminations.

reflective surface, ρd+ρs will be close to 1; for a dark surface that absorbs most incident
illumination, ρd + ρs will be closer to 0.

Given the geometry of a surface, its BRDF, and a description of illumination from
every direction at every point on the surface, we can use Equation (3.1) to render the
surface as it would appear to a viewer at any position. Assuming that sources of di-
rect and indirect illumination are distant relative to the size of the surface, we can
represent illumination at all points on the surface with a single spherical illumination
map. Evaluating Equation (3.1) at a single point on the surface under arbitrary illu-
mination requires integration over a hemisphere of the illumination map and therefore
represents significant computational expense. Traditional computer graphics systems
often assume lighting by a collection of point sources to simplify this computation, but
such renderings fail to capture the appearance of surfaces under complex real-world
illumination (Figure 2.9). We rendered surfaces of various geometries and reflectance
under photographically-acquired illumination maps using Ward’s Radiance rendering
package [56]. Radiance employs stochastic sampling algorithms that accelerate the ren-
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(a) (b) (c) (d)

Figure 5.2. (a) A photographically-acquired illumination map, illustrated on the inside of a spherical
shell. The illumination map is identical to that of Figure 4.1d. (b-d) Three surfaces of different geometry
and reflectance rendered under this illumination map using the methods of Appendix B.

(a) Original
reflectance

(b) Increased ρd (c) Increased ρs (d) Increased α

Figure 5.3. Effect of changes in Ward model reflectance parameters on images of a sphere, rendered
under a photographically-acquired illumination map due to Debevec [24].

dering process but also introduce image artifacts. We developed techniques to reduce
these artifacts such that they are barely detectable visually, for images of individual
surfaces under real-world illumination maps. Appendix B describes these rendering
techniques. Figure 5.2 shows surfaces of several geometries and reflectance properties
rendered under one photographically-acquired illumination map.

Figure 5.3 illustrates the effect of varying each Ward model parameter on a sphere
rendered under fixed illumination. The diffuse component of these images, considered
as a function of surface normal direction, represents a convolution of the illumination
map with a clamped cosine kernel (Section 3.1.3). This component therefore varies
slowly over the image. The specular component of the image can also be expressed as a
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(a) Distant viewer

φ

φ

(b) Nearby viewer

φ

(c) Projection of illu-
mination

Figure 5.4. Specular reflection from a planar surface. (a) If the viewer is infinitely distant from the
surface, then each point of the image represents a reflection of light from the same global direction. (b)
If the viewer is close to the surface, then each point of the image represents a reflection of light from
different directions. The diagram shows the direction of reflected light for a perfect chrome reflector.
We will assume that the surface is perpendicular to the view direction. We define the distance from the
viewer to the surface as 1, and measure distance on the surface accordingly. (c) An image of a chrome
planar surface represents a gnomonic projection of the spherical illumination map onto the surface. If
the surface is horizontal and the view direction is vertically downward, a surface point at angle φ from
the viewer reflects light incident at an angle φ from the upward vertical.

convolution of the illumination map, using a different rotation operator (Appendix A).
The smaller α is, the smaller the associated kernel, and the more quickly the specular
component varies across the image.

To further simplify the analysis, we consider a particularly simple surface geometry,
namely a flat tile. We assume distant illumination, such that the radiance incident on
the surface from a particular direction does not vary from one point on the surface
to another. To a distant viewer, the surface will appear to have constant brightness
(Figure 5.4(a)). For a viewer close to the surface, on the other hand, the view angle
changes from one point on the surface to another (Figure 5.4(b)). The radiance of a
Lambertian reflector is independent of view direction, so the diffuse component of the
observed image is still constant across the surface. The specular component, however,
depends on view direction and therefore varies across the surface. In particular, one can
approximate the specular reflectance over a narrow field of view as a blurred projection
of the illumination map onto the plane (Figure 5.4(c)). For the view geometry shown
in Figure 5.4(b), the blur is a Gaussian filter of variance 2α2. We can therefore write
the observed image as

I(x, y) = ρsL̃(x, y) ∗Gα(x, y) + ρdD (5.1)

where I(x, y) is the projected illumination, Gα is a radially symmetric Gaussian ker-
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Figure 5.5. Effect of changes in Ward model reflectance parameters on an image and its pixel intensity
histogram. The top row shows images of a flat surface under the illumination map of Figure 5.2(a).
The bottom row shows corresponding histograms for each image, with logarithmic vertical axes. The
leftmost image has reflectance parameter values ρd = .1, ρs = .1, and α = 0. The remaining images
have the same parameter values as the first except that ρd increases to .3 in the second column, ρs

increases to .3 in the third column, and α increases to .1 in the fourth column. The surface normal
direction is 45◦ from the vertical in each case, the view direction is perpendicular to the surface, and
the images have a 90◦ field of view.

nel Gα(x, y) = 1
4πα2 exp(−x2+y2

4α2 ), and D is a measure of overall illumination intensity
that is constant across the surface. Over a field of view of 90◦ or less, this simple
approximation produces renderings that are visually almost indistinguishable from ren-
derings computed directly from Equation (3.1). The top row of Figure 5.5 shows the
effect of varying each reflectance parameter on an image of a tile rendered under one
photographically-acquired illumination map.

Note that D represents the radiance of a perfectly reflective Lambertian surface,
positioned perpendicular to the viewer. To resolve the ambiguity between overall scal-
ing of illumination and reflectance, we will assume that an accurate estimate of D is
available for each illumination (see Section 3.4). We therefore normalize the rendered
image by D:

I(x, y)
D

= ρs
L̃(x, y)

D
∗Gα(x, y) + ρd. (5.2)

! 5.1.1 Statistics of Intensity Distribution

Figure 5.5 shows the pixel histogram of the image observed under each reflectance
parameter setting. Increasing the diffuse reflectance ρd adds a constant to the entire
image, shifting the pixel histogram uniformly to the right. Increasing the specular
reflectance ρs multiplies the specular component of the image by a constant, stretching
the histogram to the right. Increasing the roughness α blurs the image, making the



78 CHAPTER 5. FROM ILLUMINATION STATISTICS TO IMAGE STATISTICS

∆ρd ∆ρs ∆α

mean var skew kurt 10% 50% 90% −50

0

50

100

150

se
ns

itiv
ity

mean var skew kurt 10% 50% 90% −50

0

50

100

150

se
ns

itiv
ity

mean var skew kurt 10% 50% 90% −50

0

50

100

150

se
ns

itiv
ity

Figure 5.6. Sensitivity of pixel histogram statistics to ρd, ρs, and α. The bars in each plot represent
sensitivity of the mean, variance, skewness, kurtosis, 10th percentile, median, and 90th percentile of the
pixel intensity distribution. Sensitivity values were computed at parameter values ρd = .25, ρs = .05,
and α = .01, using the Teller illumination set.

pixel histogram more symmetric and reducing its heavy positive tail.
Although the observed image of a surface will vary under different illuminations, the

pixel histograms of different real-world illumination maps tend to have similar shapes
(Section 4.4.1). This suggests that we may be able to find summary statistics, based on
the distribution of pixel intensities, that depend on reflectance but vary little from one
real-world illumination to another. We define the “sensitivity” of an image statistic to
a reflectance parameter as the ratio between the derivative of the statistic with respect
to the parameter and the standard deviation of the statistic across illuminations.1 This
sensitivity measure depends on the values of the reflectance parameters at which the
derivatives are evaluated. Nevertheless, sensitivity values indicate which image statistics
provide reliable information about each reflectance parameter. Large sensitivity values,
either positive or negative, indicate that variations in a particular statistic due to change
in a parameter are large relative to variations of that statistic between illuminations.
To compute sensitivity values, we need a database of real-world illuminations. We
computed sensitivity values separately for the Teller and Debevec illumination sets
(described in Chapter 4), and obtained similar results. We present values computed for
the Teller illumination set in this section.

Figure 5.6 shows sensitivities of several image statistics to each of the Ward model
reflectance parameters. The image statistics in this figure are simply moments and
percentiles of the pixel intensity distribution. Figure 5.6(a) suggests that the 10th
percentile of pixel intensity may be particularly informative in estimating ρd. Most
illumination maps contain regions of low illumination, where the specular component
contributes little to observed radiance. The darkest areas of the observed image, as
measured by the 10th percentile of pixel intensities, therefore prove indicative of the

1Let xi denote the values of a particular statistic at a fixed parameter setting for illuminations
i = 1, 2, . . . , N . Let x̃i be the corresponding value of the statistic for each illumination when a particular
parameter increases by a small quantity ∆p. Let µ and σ denote the mean and standard deviation of
xi, while µ̃ and σ̃ denote the corresponding quantities for x̃i. We measure the local sensitivity of the
statistic to the reflectance parameter as µ̃−µ

∆p
√

(σ2+σ̃2)/2
.
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diffuse reflectance of the surface.2

The pixel intensity distribution also provides some information about specularity.
Increasing the strength of specular reflectance ρs scales the specular component of the
reflectance, increasing the mean and variance of the pixel distributions. Increasing the
surface roughness α tends to eliminate the heavy positive tail of the pixel distribution,
reducing its variance, kurtosis, and skewness.

! 5.1.2 Statistics of Marginal Distributions of Wavelet Coefficients

We can capture more information about ρs and α by examining statistics that capture
spatial structure of the image. Motivated by the results of Chapter 4, we use wavelet
domain statistics to describe this structure.3 The variance of wavelet coefficients at a
particular scale and orientation provides a measure of total spectral energy in a certain
frequency band. As discussed in Chapter 4, distributions of wavelet coefficients also
capture additional information about natural images and illuminations not specified by
their second order statistics.

We found that the precise choice of wavelet basis is not critical in gathering image
statistics. We chose to use a quadrature mirror filter (QMF) pyramid based on nine-tap
even-symmetric filters [98].4 We summarized the distributions of pyramid coefficients
at each scale and orientation by computing moments and percentiles, as we did for the
distributions of pixel coefficients in Section 5.1.1. Figure 5.7 shows the sensitivities of
these statistics to the α and ρs reflectance parameters. The statistics are invariant with
respect to the ρd parameter.5

Varying ρs scales the specular component of the image. For this simplified geometry,
where the diffuse component is constant across the image, varying ρs also scales all the
wavelet coefficients, regardless of orientation or scale, by a constant factor. Increasing
ρs scales the coefficient distribution in each subband, without changing its shape. The
10th and 90th percentiles of the distribution scale with ρs, and the variance of the
distribution scales with ρ2

s, but the skewness and kurtosis do not change. The presence
of the sun in some of the Teller illuminations leads to significant deviations in the

2For this simple geometry, where the diffuse component is constant across the image, using a min-
imum of the observed luminance gives an even higher sensitivity. However, the 5th or 10th percentile
is more robust to image noise and proves a more reliable indicator of diffuse reflectance for curved
surfaces, for which the diffuse image component varies spatially.

3Once again, we use the term “wavelet” loosely to refer to oriented bandpass filters computed at
multiple scales.

4The use of even-symmetric filters in this chapter is significant only in our examination of skew in
wavelet coefficient distributions, at the end of this section; we do not use the skewness in the reflectance
classification algorithms of Chapter 6. In our examination of illumination statistics, described in Chap-
ter 4, we originally chose odd-symmetric (8-tap) filters in order to compare our results to those of
Huang and Mumford [47]. Both pyramids were computed using Eero Simoncelli’s matlabPyrTools tool-
box, available at http://www.cns.nyu.edu/∼eero/software.html. We modified the buildWpyr function
to avoid subsampling the pyramid at each scale.

5Because the basis functions of the pyramid are not exactly zero-mean, we subtract the image mean
before computing the pyramid coefficients.
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Figure 5.7. Sensitivities of wavelet coefficient statistics to the ρs and α parameters. Statistics shown
are the variance, kurtosis, 10th percentile and 90th percentile of the horizontal, vertical, and diagonal
wavelet coefficients at the second, third, and fourth finest scales. As in Figure 5.6, derivatives are
computed at parameter values ρd = .25, ρs = .05, and α = .01.

variance of coefficients from image to image, so the 10th and 90th percentiles of the
subband coefficients give higher sensitivity measures than the variance (Figure 5.7).

The effects of changing α are more subtle. Blurring the specular component of the
image lowers the energy in each high-frequency subband, but how much will it lower the
energy, and how will it affect the shape of the coefficient distribution? To facilitate this
analysis, note that applying a Gaussian blur to the image and then computing wavelet
coefficients is equivalent to applying the same blur to the wavelet basis functions before
using them to compute coefficients for the original image. Convolution of the basis
functions with the Gaussian kernel Gα amounts to multiplication of their frequency
response6 by e−ω2α2 . This multiplication decreases the response of the filter at every
nonzero frequency, particularly at high frequencies. When applied to a basis function
whose frequency response is flat over some passband and zero elsewhere, it tends to pro-
duce a filter with a narrower radial passband. Figure 5.8 shows the frequency response
of one basis function of the QMF pyramid before and after Gaussian blur.7

Field has observed that the kurtosis of filter outputs for natural images tends to peak
for a radial filter bandwidth around one octave [32]. The QMF has a bandwidth of one
octave, and we indeed find that narrowing that bandwidth through Gaussian filtering

6We use both f and ω to denote the modulus of frequency. The units of f are cycles per unit distance
while those of ω are radians per unit distance, so ω = 2πf .

7The effects of a Gaussian blur on the passband of the basis functions depend on the wavelet basis.
In particular, the steerable pyramid filters proposed by Simoncelli et al. [100] fall off slowly as radial
frequency decreases, so multiplication by a Gaussian may actually increase their effective bandwidth.
The nine-tap QMFs used in this section also pass some energy at very low frequencies. Under sufficient
blur, this energy begins to dominate the frequency response.
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Figure 5.8. (a) Frequency response of the second-finest horizontal basis function of a QMF pyramid.
The center of the image represents zero frequency. (b) Frequency response of the same basis function
after convolution with a Gaussian filter.

tends to lower the kurtosis. However, this effect is minor (Figure 5.7); bandpass filters
of various bandwidths all produce highly kurtotic distributions when applied to natural
images or illumination. The primary effect of image blur on the distributions of wavelet
coefficients is simply to reduce their scale. Thus the kurtosis of wavelet coefficients does
not provide a reliable indicator of image blur.

Increasing α and decreasing ρs have similar effects on the distribution of coefficients
in an individual wavelet subband. While decreasing ρs affects each subband similarly,
however, increasing α affects them differently. Blurring reduces power more for higher
frequency subbands. The Gaussian filter has frequency response F (ω) = e−ω2α2 , so its
derivative with respect to α is

dF

dα
= −αω2e−ω2α2

. (5.3)

This derivative attains a maximum with respect to frequency when ω = 1/α. The out-
put variance for a filter whose passband is centered around frequency ωo will therefore
be most sensitive to blur parameters near 1/ωo. At the value of α used to compute the
sensitivities in Figure 5.7, distributions of coefficients at the second-finest scale show
the greatest sensitivity to α.

The fact that a change in the roughness α affects different subbands differently
suggests a means to distinguish an increase in α from a decrease in ρs. For a given
illumination map, the ratio of coefficient variances for a high frequency subband and a
low-frequency subband remains constant as ρs changes. On the other hand, this ratio
decreases as α increases. Despite the variability of power spectra of real-world illumi-
nations noted in Chapter 4, power falls off with some regularity at high frequencies
(Figure 4.9b). Ratios of variances of subbands at different scales therefore serve as reli-
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able indicators of α.8 For the illumination set and reflectance parameters of Figure 5.7,
for example, the variances of horizontal coefficients at the second- and third-finest scales
have sensitivities with respect to α of −81 and −49, while the sensitivity of their ratio
is −623.9 Unlike the variance or percentiles of the individual bands, this ratio statistic
is invariant to changes in ρs.

We chose to use even-symmetric filters in the pyramidal decomposition because we
hypothesized that the skewness of each wavelet coefficient distribution might provide
information about reflectance. In real-world illumination maps, intense light sources
surrounded by dark areas are more common than very dark areas surrounded by intense
light. This often leads to skewed distributions of wavelet coefficients, but we were
not able to identify relatonships between reflectance properties and wavelet coefficient
skewness that were sufficiently consistent to be useful in the reflectance classification
tasks of Chapter 6.

! 5.1.3 Statistics of Joint Distributions of Wavelet Coefficients

Statistics that depend only on marginal distributions of wavelet coefficients, including
ratios of such statistics across scale, are sensitive to image noise. Figure 5.9 shows
the rough metal sphere image of Figure 5.1(d) corrupted by white and pink Gaussian
noise. The noise introduces power at high spatial frequencies, altering the variances
and ratios of variances of the fine-scale wavelet coefficients. The image of Figure 5.9(a)
actually has more power at high frequencies than a noise-free image of a chrome sphere
under the same illumination (Figure 5.1(c)). Yet, neither of the images in Figure 5.9
appear any more chrome-like than the image of Figure 5.1(d). A human observer easily
distinguishes the effect of introducing high-frequency noise from that of sharpening the
specular reflectance.

A computational algorithm can distinguish between high-frequency image content
due to noise and that due to specular reflection by taking advantage of the cross-scale
dependencies of wavelet coefficients. Real-world illumination maps tend to contain
edge-like structures that introduce large wavelet coefficients in corresponding positions
at different scales (Section 4.6). The magnitudes of wavelet coefficients at a particular
image location therefore tend to be strongly correlated across scales. Noise such as that
of Figure 5.9 lacks this property.

A measure of specular energy or sharpness that is robust to image noise should
8If one assumes that real-world illuminations have power spectra of the form k

f2+η , then blur by

a Gaussian results in a spectrum k
f2+η exp

(

−(2πf)2α2
)

. Fitting such a model to the high-frequency

portion of the spectrum of images rendered using Equation (5.1) gives an accurate estimate for α, but
the accuracy of such an estimate degrades in the presence of noise or edge effects. We found that, in
practice, the reflectance classifiers discussed in Chapter 6 performed equally well with simple ratios of
variances.

9Note that large negative sensitivity values, like large positive values, indicate informative statistics.
These sensitivity values are negative because the variances of wavelet coefficients at a particular scale
decrease as α increases, with the variance of fine-scale coefficients decreasing faster than that of coarse-
scale coefficients.
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(a) White noise (b) Pink noise

Figure 5.9. The image of Figure 5.1(d), corrupted by (a) Gaussian noise with a flat power spectrum
and (b) Gaussian noise with a power spectrum that falls of with the square of frequency. In both cases,
the standard deviation of the noise is 20% that of the standard deviation of the noise-free image.

respond preferentially to large fine-scale wavelet coefficients that coincide spatially with
large coefficients at coarser scales. One such measure is the covariance of the magnitude
of coefficients Wj(x, y) at scale j with the magnitude of coefficients Wk(x, y) at a coarser
scale k but at the same orientation:

cjk = λ|Wj ||Wk| = E
[

(|Wj | − E[|Wj |])(|Wk| − E[|Wk|])
]

. (5.4)

This statistic depends on the absolute scale of the wavelet coefficients in both bands.
Like the variance of coefficients in a single band, it is sensitive to changes in both ρs

and α. If we divide cjk by the variance of |Wk|, we obtain a statistic that is sensitive
to changes in α but invariant to scaling of the specular component by ρs:

rjk =
λ|Wj ||Wk|

σ2
|Wk|

=
E

[

(|Wj | − E[|Wj |])(|Wk| − E[|Wk|])
]

E
[

(|Wk| − E[|Wk|])2
] . (5.5)

The statistic rjk typically has a sensitivity to α slightly lower than the sensitivity of

the variance ratio
σ2

j

σ2
k

of the corresponding bands, but proves significantly more robust
to noise. For the reflectance parameters and illuminations of Figure 5.7, for example,
the sensitivity of r23 is −623 and that of σ2

2
σ2
3

is −498. Decreasing α from .01 to .005

in the absence of noise increases the mean of σ2
2

σ2
3

over all illuminations approximately
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Figure 5.10. Two painted clay surfaces. The visible bumpiness of these surfaces introduces high
spatial frequencies in the image.

four-fold and the mean of r23 two-fold.10. However, adding a small amount of white
noise increases the mean of σ2

2
σ2
3

by a factor of 2.6 while changing that of r23 by only

21%. The same noise increases the mean of σ2
1

σ2
2

fifty-fold while that of r12 increases by
less than 10%.

Statistics that exploit the dependencies of wavelet coefficients across scale are also
useful in distinguishing reflected illumination patterns from high-frequency intensity
variation due to three-dimensional texture, dirt, or surface imperfections. For example,
Figure 5.10 shows images of two painted clay surfaces with visible fine-scale variations
in surface normal. Although this variation introduces high frequencies in the image, the
spatial structure is different from that of a reflected illumination map. We found that
the statistics cjk and rjk improved the accuracy with which we could recognize such
surfaces from photographs (Chapter 6). We discuss three-dimensional surface texture
further in Section 7.2.5.

The relationships between reflectance parameter values and the observed image be-
come more complicated as we relax assumptions on the geometry of the surface and
the position of the viewer. For curved geometries such as a sphere, for example, the

10For reflectance parameters ρd = .25, ρs = .05, and α = .01, the mean values of
σ2
2

σ2
3

and
σ2
1

σ2
2

in the

absence of noise were .013 and .0088, respectively. Adding white Gaussian noise with standard deviation

approximately 4% the mean value of the specular image component increased the mean values of
σ2
2

σ2
3

and
σ2
1

σ2
2

to .035 and .44, respectively. For the same reflectance parameters, the respective means of

r23 and r12 were .076 and .047 in the noise-free case and .061 and .066 after addition of noise. For

reflectance parameters ρd = .25, ρs = .05, and α = .005, the mean values of
σ2
2

σ2
3

and r23 in the absence

of noise were .055 and .15, respectively.
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Figure 5.11. At left, synthetic spheres of 6 different reflectances, each rendered under one of Debevec’s
illumination maps. Ward model parameters are as follows: black matte, ρd = .1, ρs = 0; black shiny,
ρd = .1, ρs = .1, α = .01; white matte, ρd = .9, ρs = 0; white shiny, ρd = .7, ρs = .25, α = .01;
chrome, ρd = 0, ρs = .75, α = 0; gray shiny, ρd = .25, ρs = .05, α = .01. We rendered each sphere
under the nine photographically-acquired illuminations depicted in Figure 2.7 and plotted a symbol
corresponding to each in the two-dimensional feature space at right. The horizontal axis represents
the 10th percentile of pixel intensity, while the vertical axis is the log variance of horizontally-oriented
QMF wavelet coefficients at the second-finest scale, computed after geometrically distorting the original
image as described in Section 6.1.2.

radiance of the diffuse component varies across the surface. This slow variation tends
to decrease the kurtosis of the wavelet coefficient distributions because it increases
their variance without contributing extreme values. This decrease in kurtosis becomes
more pronounced when the variance of wavelet coefficients due to the specular com-
ponent alone decreases. Kurtoses of the wavelet coefficient distributions do therefore
carry information about Ward model reflectance parameters for curved surfaces. As
α increases, for example, the contribution of the specular component to the fine-scale
wavelet coefficients tends to drop relative to the contribution of the diffuse component,
so the kurtosis decreases.

Figure 5.11 shows how differently illuminated spheres of a particular reflectance
tend to cluster in a space defined by appropriately chosen image statistics. We rendered
six spheres of different reflectances under nine photographically-acquired illumination
maps, and plotted the position of each image in a two-dimensional feature space. The
horizontal axis represents the 10th percentile of pixel intensities, while the vertical
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axis represents the variance of wavelet coefficients at one scale. The former correlates
strongly with diffuse reflectance, while the latter depends on the strength and sharpness
of the specularity.

! 5.2 Reflectance Classification Based on Image Features

One can exploit the relationships between image statistics and reflectance either to
classify reflectance (Section 3.3.2) or to estimate reflectance parameters (Section 3.3.1).
We focus on the classification approach, because it allows us to handle reflectances
not described by a simple parameterized model and even to build a classifier using
photographs of real surfaces whose BRDFs are unknown. We attempt to select from
a finite set of reflectances the one that most closely represents the reflectance of an
observed surface, as illustrated in Figure 3.7. The candidate reflectances may be defined
by different parameter settings of a reflectance model such as the Ward model, but they
could also be arbitrary BRDFs specified as lookup tables or by a set of photographs
of a real surface. Given images of several surfaces under various illuminations, we
wish to classify photographs under unknown, novel illumination according to surface
reflectance.

Although the analysis of Section 5.1 guides our choice of image statistics, we deter-
mine the relationships between reflectance classes and image statistics from empirical
data. This transforms the problem to a machine learning problem. We choose a set of
image features, and then divide the feature space into regions corresponding to different
reflectances based on a set of example images of each. Figure 5.12 shows the regions
of a feature space assigned to different reflectance classes by a support vector machine
learning algorithm described in Section 6.1.1, using the examples of Figure 5.11 as
training data.

For purposes of illustration, the classifier in Figure 5.12 uses only two image statis-
tics. It incorrectly classifies three of the training images; it will misclassify images under
novel illumination at least as often. By adding additional image statistics as features,
however, one can improve classifier performance. In Chapter 6, we show that a classi-
fier based on six image statistics achieves nearly perfect performance in cross-validation
tests for images of these six reflectances under real-world illumination conditions.

An alternative approach to reflectance classification involves explicit derivation of
the distributions of image statistics for each reflectance, under an assumed probabilis-
tic model for illumination. Such an approach requires the determination of the joint
probability distribution of a set of image statistics given the surface reflectance. Unfor-
tunately, an accurate generative model for illumination is not readily available, although
several authors have proposed generative models that capture some of the statistics of
natural images [40, 58, 90]. The learning approach also offers important practical ad-
vantages over analytic derivation:

• One can train a learning-based classifier with photographs of surfaces of known
material types whose BRDF has not been measured explicitly. Accurate measure-
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Figure 5.12. The curved lines separate regions assigned to different reflectances by a simple classifier
based on two image features. The training examples are the images described in Figure 5.11. The
classifier is a one-versus-all support vector machine, described in Section 6.1.1. Using additional image
features improves classifier performance.

ment of a BRDF is a laborious process because of the high dimensionality of the
data involved.

• A learning-based classifier has greater flexibility, as it can be trained to compen-
sate for variations in imaging geometry, surface texture, or camera nonlinearities.
We return to these points in Chapter 6.

The machine learning approach suffers from several disadvantages relative to an
approach based on explicit estimator derivation:

• In practice, collection of training data is time-consuming because it requires pho-
tography of surfaces. One can also render training images for surfaces with known
BRDFs, but this requires real-world illumination maps, which in turn must be
collected photographically.

• Without assumptions on the ensemble of images to be classified, one cannot guar-
antee the performance of such a classifier theoretically. We therefore resort to
empirical testing.

Whether we rely on machine learning methods or explicit derivation from a gen-
erative illumination model, the performance of a classification scheme depends on the
statistical regularity of real-world illumination. A classifier trained on images under
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such illumination will often misclassify surfaces rendered under synthetic illuminations
with significantly different statistics. Human performance in reflectance recognition
tasks also degrades under synthetic illumination (Section 2.3).

! 5.3 Summary and Discussion

Certain statistics of an image of a surface act as useful indicators of reflectance because
their dependence on reflectance properties is significant relative to their variation from
one real-world illumination to another. We have identified several such statistics, based
on distributions of pixel intensities, distributions of wavelet coefficients at various scales,
and joint distributions of co-located wavelet coefficients at different scales.

One can classify surface reflectance on the basis of these statistics by using machine
learning techniques to partition a feature space into regions corresponding to the various
reflectance classes. One can train such a classifier using either photographs of surfaces in
each reflectance class or synthetic images of surfaces rendered under photographically-
acquired real-world illumination. Chapter 6 addresses issues involved in the design
of an effective reflectance classifier. These issues include the choice of an appropriate
machine learning technique, the choice of a specific set of image statistics as features for
a particular classification problem, and compensation for differences in image statistics
due to differences in surface geometry. The resulting reflectance classifiers rival human
performance when surface geometry is known in advance and reflectance is homogeneous
across the surface.



Chapter 6

Designing a Reflectance Classifier

The previous chapter showed that the statistical regularity of real-world illumination
leads to predictable relationships between the reflectance of a surface and certain statis-
tics of its image. That chapter also pointed out that one can use these statistics to clas-
sify surface reflectance on the basis of an image under unknown, real-world illumination.
The present chapter discusses issues involved in building a practical reflectance classifier
— in particular, the use of machine learning techniques for training a classifier on the
basis of sample images (Section 6.1), and classification for different surface geometries
(Section 6.2). Each section includes examples of classification from photographs as well
as from synthetic images rendered under photographically-acquired illumination maps.

! 6.1 Machine Learning Techniques for Reflectance Classification

To build a reflectance classifier, we select a set of image statistics as features and then
partition the resulting feature space into regions corresponding to each reflectance class.
We first consider the problem of classifier construction given a feature set, and then
discuss the selection of a sensible feature set.

! 6.1.1 Classification Techniques

Suppose that we wish to classify each image into one of m classes r1, . . . , rm on the
basis of the statistical image features1 x = x1, x2, . . . , xn by selecting the most likely
reflectance class given the observed feature values. A direct approach to constructing
a maximum likelihood classifier involves estimating the probability distribution p(x|rk)
for each reflectance class from sample images of surfaces in that class. One then classifies
a new sample by computing the probability of each reflectance class given the observed
feature values:2

p(rk|x) =
p(x|rk)p(rk)

p(x)
(6.1)

1We use x = x1, x2, . . . , xn to denote a random vector of features, and x = x1, x2, . . . , xn to denote a
sample value of that random vector.

2Because k takes on discrete values, p(rk) and p(rk|x) represent discrete probability distributions,
while p(x|rk) represents a continuous distribution.

89
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where p(rk) is the probability of observing reflectance class rk. Equation (6.1) fol-
lows the Bayesian approach of Section 3.2.2, but assumes that the statistical features
x1, x2, . . . , xn capture all information about the observed image that is relevant to clas-
sifying reflectance. The classifier selects the reflectance class rk that maximizes p(rk|x).

Given an unlimited number of samples of each reflectance class, one could estimate
the densities p(x|rk) to arbitrary accuracy using non-parametric methods.3 In practice,
the number of available training samples is typically small relative to the number of
features and reflectance classes, because either the training images themselves or the
illuminations used to render them must be acquired photographically. In Section 6.1.2,
for example, we discuss classifiers that distinguish between 9 reflectance classes in a
36-dimensional feature space, given only 6 sample images of each class. This amount
of training data does not suffice to build an accurate non-parametric density model.
One alternative is the use of a parametric density model. Unfortunately, we lack a
convenient parametric form for these densities. In particular, a Gaussian distribution
with a diagonal covariance matrix will typically provide a poor fit to the data, because
many of the statistical image features discussed in Chapter 5 are highly correlated
with one another. We generally lack sufficient data to fit Gaussian distributions with
arbitrary covariance matrices. A classifier based on 36 features, for example, would
require a covariance matrix with 666 independent elements to describe the distribution
of each class in the feature space.

We turn instead to discriminative learning methods that separate classes without
estimating the entire distribution p(x|rk). One such method relies on support vector
machines (SVMs). We provide a brief introduction to SVMs in the context of the
present work, but refer the reader to several reviews [15, 88] for more thorough and
general discussion.

The basic support vector machine operates as a binary classifier that separates two
classes in an n-dimensional feature space using a linear boundary. If the class labels
are denoted by +1 and −1, the classifier takes the form

f(x) = sign(x ·w + b). (6.2)

The parameters w and b that specify the separating hyperplane depend on a set of
training samples4 xi and their corresponding labels yi. One determines w and b by
minimizing 1

2 ||w||2 subject to the constraints

xi ·w + b ≥ +1 for yi = +1 (6.3)
xi ·w + b ≤ −1 for yi = −1. (6.4)

A solution satisfying these constraints exists only when the training samples are linearly
separable — that is, when there exists a hyperplane in the feature space such that all

3For example, one might use a Parzen density estimator with arbitrarily small windows [7].
4Note that xi denotes the feature vector corresponding to the ith training sample, while xi denotes

the ith element of feature vector x.
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Figure 6.1. Class boundaries assigned by three different discriminative classifiers on the basis of the
same training data points, for a simple toy problem. Circles indicate data points of one class, while
crosses indicate data points in the other. (a) Linear SVM. (b) Gaussian SVM with σ2 = 1. (c) Nearest
neighbor classifier.

the samples in one class lie on one side of the hyperplane, and all the samples in
the other class lie on the other side. In this case, the SVM selects as a boundary the
separating hyperplane that maximizes the classifier’s “margin,” defined as the minimum
distance from the boundary to any point in the training set. Figure 6.1(a) shows the
class boundary assigned by a linear SVM for a simple toy problem, where 10 training
samples are available from each of two data sets. The values of x1 were sampled from
a uniform distribution between 0 and 0.5 for one class, and between 0.5 and 1 for the
other class. The values of x2 were sampled from a uniform distribution between 0 and
1 for both classes. Thus, the “ideal” boundary in this case is a line at x1 = 0.5.

One can apply the SVM framework to non-separable data by adding “slack vari-
ables” ξi that specify classification error for each data point. In particular, one mini-
mizes 1

2 ||w||2 + C
∑

i ξi subject to the constraints

xi ·w + b ≥ +1− ξi for yi = +1
xi ·w + b ≤ −1 + ξi for yi = −1

ξi ≥ 0 ∀i. (6.5)

The parameter C determines the relative importance of achieving a large margin and
of minimizing error on the training set.

The optimization problem of Equation (6.5) can be solved using quadratic program-
ming techniques. Analysis of the dual problem leads to a solution of the form

w =
Ns
∑

i=1

αiyisi (6.6)
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where the “support vectors” s1, s2, . . . , sN are a subset of the training points xi and
the αi are positive real weights. The support vectors typically lie close to the class
boundary. The test function of Equation (6.2) can be written in terms of the support
vectors as

f(x) = sign

(

Ns
∑

i=1

αiyisi · x + b

)

. (6.7)

One can generalize the SVM framework to allow non-linear boundaries between
classes by mapping the data points to a higher-dimensional space and then performing
linear classification in that space. The test function of Equation (6.7) depends on the
test sample x only in terms of the dot product of x with training data points. Likewise,
one can rewrite the optimization problems defined above such that they depend only
on dot products xi ·xj between training data points. One may avoid explicitly mapping
the data points to a higher dimensional feature space by defining a kernel function
K(xi,xj) = Φ(xi) · Φ(xj), where Φ is the mapping from the original feature space to
the higher-dimensional space. Equation (6.7) becomes

f(x) = sign

(

Ns
∑

i=1

αiyiK(si,x) + b

)

. (6.8)

This “kernel trick” provides an efficient method to implement nonlinear SVMs. The
mapping Φ need not even be defined explicitly, as long as a kernel is available. Training
and testing a nonlinear kernel-based classifier is little more expensive than training the
linear classifier. A particularly popular choice for the kernel function is the Gaussian
kernel, defined by

K(xi,xj) = exp
(

−||xi − xj ||2

2σ2

)

. (6.9)

The kernel variance σ2 determines the degree of regularization on the class boundary.
Smaller values of σ allow the classifier to achieve better performance on the training
data set, but may lead to overfitting and therefore to poorer performance on novel data.
Figure 6.1(b) shows the boundary assigned by a Gaussian SVM with σ2 = 1, given the
same training data points as in Figure 6.1(a).

Researchers have proposed several methods for extending SVMs to multiclass prob-
lems in which one wishes to associate each possible feature vector with one of m
classes [88]. The simplest of these is known as one-versus-all (OVA) classification.
One trains m separate binary classifiers, each of which distinguishes a single reflectance
class from all the other classes. To classify a novel feature vector x, one evaluates
∑Ns

i=1 αiyiK(si,x) + b for each of the m classifiers (see Equation (6.8)) and chooses the
class corresponding to the largest value of the sum. Rifkin argues that the OVA scheme
typically performs as well as or better than the more complicated alternatives [88].

Support vector machines are an attractive machine learning method for reflectance
classification for several reasons:
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• Statistical learning theory suggests that SVMs should generalize well given a
limited amount of training data. The performance of a classifier on novel test
data depends both on its ability to accurately fit the training data by describing
a sufficiently complex boundary between classes, and on its ability to regularize
that boundary in order to avoid overfitting the training data. SVMs are based on
a theoretical foundation for balancing these two conflicting requirements [30,115].

• SVMs have been found empirically to outperform most other classification tech-
niques, particularly in problems where the number of available training samples
is small relative to the number of features and the number of classes [15,88]. For
example, Ramaswamy et al. achieved high (78%) accuracy in assigning cancers to
one of 14 tumor types on the basis of over 16,000 gene expression features, using
SVMs constructed with a total of 143 training samples [87].

• The application of an SVM to novel data via Equation (6.8) is computation-
ally efficient. Recent work has also led to more efficient methods for training
SVMs [52,80,88]. Because we typically have a limited number of training images,
training efficiency tends not to be a major issue for reflectance classification. Our
experience is that the primary computational demand of SVM-based reflectance
classification lies in feature computation, both in the testing and training phases.
Some alternative classification methods, such as the nearest-neighbor scheme dis-
cussed below, lead to more computationally expensive classifiers.

• If the prior probability p(rk) of observing reflectance class k is known, SVMs
provide a straightforward method to incorporate it into classifier design. The
previously described training framework assumes that p(rk) = q(rk), where q(rk)
is the fraction of the training samples corresponding to class k. In the more
general case where p(rk) and q(rk) may differ, one trains the SVM corresponding
to the kth class in the OVA scheme by minimizing

1
2
||w||2 + C+

∑

{i|yi=k}

ξi + C−
∑

{i|yi $=k}

ξi, (6.10)

subject to the constraints of Equation (6.5), with C+ = C p(rk)
q(rk) and C− = C 1−p(rk)

1−q(rk) .
This is equivalent to replicating the training samples for each class such that the
total number of training samples for a class is proportional to the probability of
observing that class.

We built one-versus-all SVM classifiers using Version 1 of Collobert’s freely available
SVMTorch5 software [18]. The design of a such a classifier involves several heuristic
choices. Most importantly, one must select a kernel. Most authors either select a
kernel arbitrarily or use some form of cross-validation, although some have observed

5The Torch library is available at http://www.torch.ch.
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that Gaussian kernels with appropriately chosen variances tend to perform as well
as or better than other common kernels on a variety of data sets [88]. We selected
Gaussian kernels because we found that, on several data sets of real and synthetic
images, they outperformed linear and quadratic kernels in cross-validation tests. We
selected the kernel variance σ2 and the training error weight C using a similar cross-
validation approach. Rifkin points out that C should scale roughly inversely with the
number of training samples, while σ2 should increase with the number of features and
decrease with the number of training samples [88]. He also notes that the optima for
C and σ2 tend to be broad; we made similar observations on the data sets discussed in
Section 6.1.2. The SVM performance results reported in this thesis all use6 C = 100
and σ2 = 12.5. One could obtain slightly better performance results by adjusting these
parameters according to the training data set.

The Gaussian kernel depends on the distance between data points ‖xi−xj‖. Scaling
the units of a feature therefore changes its relative importance in the classification
scheme. For each reflectance classification problem discussed in the following sections,
we scaled the features to have identical mean magnitudes across training illuminations
for one particular “standard” reflectance. For each classification problem, we choose a
reflectance with large specular and diffuse components as the standard. The classifier
therefore considers proportional changes in feature values relative to their typical values
for the standard reflectance. Changing the standard reflectance typically has only a
minor effect on classifier performance.

While we have obtained better reflectance classification results using support vector
machines than other methods, the use of SVMs is not critical to the construction of
an effective reflectance classifier. Other multiclass discriminative classification meth-
ods with regularization on the class boundaries produce similar results. In particular,
we compared the performance of SVM classifiers to nearest-neighbor classifiers, which
assign a test feature vector to the class associated with the closest training point in
feature space. Figure 6.1 illustrates the boundary assigned by this classifier in a simple
problem.

The nearest-neighbor classifier will correctly classify the training data, no matter
how complex a boundary is required. It therefore suffers from a tendency to overfit
the training data, particularly when abundant training data is available. One can
regularize the classifier by using a k-nearest neighbor (k-NN) scheme, which assigns a
test feature vector to the class best represented among the k closest training samples.
The parameter k ≥ 1 may be set proportional to the density of the training points
in the feature space. In Section 6.1.2, we compare the performance of SVM, NN, and
k-NN classifiers for reflectance classification problems.

6The SVMTorch software, like much of the SVM literature, defines the Gaussian kernel as

K(xi,xj) = exp
(

− ||xi−xj ||2

σ2

)

. In this notation, σ2 is double the variance, so we set σ = 5.



Sec. 6.1. Machine Learning Techniques for Reflectance Classification 95

! 6.1.2 Feature Selection and Classifier Performance

The analysis of Chapter 5 suggests use of the following image statistics as features for
reflectance classification:

• The mean and 10th percentile of pixel values

• The variance of the coefficients in each wavelet subband

• The kurtosis of the coefficients in each wavelet subband

• The ratios of variances of coefficients in wavelet subbands of identical orientation
at different scales

• The cross-scale statistics rjk and cjk defined by Equations (5.4) and (5.5), for
wavelet coefficients of identical orientation at different scales

The classifiers discussed in this section use wavelet coefficient statistics based on the
quadrature mirror filter pyramid of Chapter 5. Our experience is that the precise
choice of pyramidal decomposition is not critical in gathering image statistics. The
basis functions of the QMF pyramid have power spectra that fall off quickly outside
their single-octave bandwidth (Figure 5.8). Ratios of variances at successive scales are
most sensitive to changes in specular blur when the power spectra of basis functions
at successive scales do not overlap, so the QMF decomposition leads to slightly better
classifier performance than the difference of Gaussian filters of Section 6.2.

The set of statistics listed above is redundant in the sense that some of the statistics
can be expressed in terms of others — for example, ratios of variances of wavelet coeffi-
cients are deterministic functions of individual variances. We found that including these
redundant statistics improves the separability of the classes in the feature space. Like-
wise, we found that taking logarithms of the statistics computed in the wavelet domain
improves classifier performance by giving each class a more symmetric distribution in
the feature space.

The examples of this section involve photographs and rendered images of spheres.
Section 6.2 considers classification for surfaces of other geometries and shows that such
problems can be expressed in terms of classification of spheres. However, the geometry
of a spherical surface leads to variations in image statistics between different regions of
the image. The image of a chrome sphere, for example, is simply a distorted version of
an illumination map, but each region of the illumination map is distorted differently.
We have found that classifier performance typically improves if one “unwraps” the
observed image as shown in Figure 6.2 before computing image statistics. A vertical
cross-section of the unwrapped image corresponds to a radial cross-section of the original
image. Appendix C justifies this unwrapping procedure in terms of the effect of surface
geometry on local image statistics.

Table 6.1 summarizes the performance of reflectance classifiers based on various
image statistics for four different image sets. Three sets consist of synthetic images ren-
dered under photographically-acquired illumination maps, while the fourth set consists



96 CHAPTER 6. DESIGNING A REFLECTANCE CLASSIFIER

Original image

Unwrapped annulus

Figure 6.2. Before computing statistics on the image of a sphere, we extract an annulus of the image
and unwrap it using a polar-to-rectangular coordinate transformation. In the examples of this section,
the annulus omits the inner 20% and the outer 10% of each radial cross-section, because image statistics
of the unwrapped image would vary most significantly in these regions (Appendix C).

Image set

(1) (2) (3) (4)

Feature set

6 classes,
9 Debevec
illums
(rendered)

6 classes,
95 Teller
illums
(rendered)

11 classes,
95 Teller
illums
(rendered)

9 classes,
7 illums
(photos)

(a) Chance 16.7 16.7 9.1 11.1
(b) Image mean 51.9 72.3 26.6 42.9
(c) Full set (4 levels) 81.5 98.8 98.9 81.0
(d) Full set (3 levels) 81.5 99.3 99.1 79.4
(e) No rjk, cjk (3 levels) 87.0 99.5 98.9 81.0
(f) 6 selected statistics 100.0 99.8 98.0 93.7
(g) Not unwrapped 90.7 98.2 96.8 74.6

(no rjk, cjk; 3 levels)

Table 6.1. Cross-validation performance (in % accuracy) for SVM classifiers using different features
on different image sets.

of photographs of surfaces. The reflectances of the surfaces in the rendered images were
specified by the Ward model, described in Sections 2.1.2 and 5.1. The first two image
sets included spheres of the 6 reflectances shown in Figure 5.11. The third set included
spheres of 11 reflectances, shown in Figure 6.3. These 11 reflectances were chosen to
present a more difficult classification problem in which several spheres share each total
reflectance (ρs + ρd). Each sphere in the first image set was rendered under each of
the nine spherical illumination maps due to Debevec et al. (Section 4.2). Each sphere



Sec. 6.1. Machine Learning Techniques for Reflectance Classification 97

a b c d

e f g h

i j k

Figure 6.3. Synthetic spheres representing 11 reflectances, each rendered under one of Teller’s illu-
mination maps. Ward model parameters are as follows: (a) ρd = .1, ρs = 0, (b) ρd = .9, ρs = 0, (c)
ρd = .35, ρs = 0, (d) ρd = 0, ρs = .75, α = 0, (e) ρd = .05, ρs = .05, α = 0, (f) ρd = .7, ρs = .2, α = 0,
(g) ρd = .05, ρs = .05, α = .02, (h) ρd = .7, ρs = .2, α = .02, (i) ρd = .25, ρs = .1, α = 0, (j) ρd = .25,
ρs = .1, α = .02, (k) ρd = 0, ρs = .75, α = .02. The total reflectance ρs + ρd is .1 for (a), (e), and (g);
.35 for (c), (i), and (j); .75 for (d) and (k); and .9 for (b), (f), and (h).

in the second and third image sets was rendered under the 95 illumination maps due
to Teller et al. (Section 4.2). Because Teller’s illumination maps do not capture the
entire lower hemisphere of the environment, we mirrored the upper hemisphere into the
lower hemisphere before rendering surfaces under these illuminations. Each sphere was
rendered from a view angle midway between a top view and a horizontal view. The
pixel values of the images used to train and test the classifier were linear in luminance,
although we applied a compressive nonlinearity to produce the images shown in figures.

We acquired the fourth image set by photographing nine spheres made of different
materials under seven diverse illumination conditions, including both indoor and out-
door settings. Figure 6.4 shows photographs of all nine spheres under one illumination,
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Figure 6.4. Photographs of nine spheres, all under the same illumination. Our classifiers use image
data only from the surface itself, not from the surrounding background.

while Figure 6.5 shows photographs of one sphere under all seven illuminations. Fig-
ure 3.7 provides additional examples of these photographs. Several of the spheres were
somewhat translucent. Images were acquired in 24-bit RGB format using a Nikon D1
digital camera and then converted to gray-scale for further processing. Using standard
calibration methods, we found that the pixel values are a sigmoidal function of lumi-
nance.7 We worked with the original pixel values rather than the luminance values in
order to show that our techniques apply to uncalibrated photographs.8

We normalized for overall strength of illumination as discussed in Section 3.4. For
rendered images, we scaled the intensities in each illumination map such that a matte
white surface perpendicular to the view direction had a fixed luminance. For pho-
tographs, we scaled intensities of images under each illumination such that the mean
value of the white matte surface was constant across illuminations.

7In other words, pixel value x can be expressed in terms of luminance y as x = d yg

yg+k , where d, g,
and k are constants.

8Calibration of the photometric response of the camera may be necessary in order to train a clas-
sifier using photographs from one camera and apply it to photographs from a second camera with a
significantly different response.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.5. Chrome spheres photographed under each of seven illuminations.

Table 6.1 lists the accuracy of classifiers based on different feature sets, as measured
by a cross-validation test for each image set. We used the images under a particular
illumination to test a classifier trained on images under other illuminations. Each
image therefore serves as a test image once. The numbers in the table represent the
percentage of images classified correctly. For images sets (1) and (4), with a total of 9
and 7 illuminations respectively, we trained each classifier using the images under all
but one illumination. For image sets (2) and (3), we split the 95 illuminations into 5
groups of 19 and used the images in each group to test a classifier trained on the other
4 groups.

Each row of the table lists the performance of SVM classifiers based on different
image statistics. As a baseline, row (a) indicates the expected performance of a random
classifier, and row (b) indicates the performance of a classifier based only on the image
mean. Row (c) lists the performance of classifiers based on the following “full” set of
36 image statistics, computed using the four finest levels of the QMF pyramid for a
256x128 unwrapped image:9

• The mean and 10th percentile of pixel values (2 statistics)
9Including statistics based on the diagonally-oriented coefficients has little impact on classifier per-

formance.
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• The variance of horizontally- and vertically-oriented wavelet coefficients at each
of four scales (8 statistics)

• The kurtosis of horizontally- and vertically-oriented wavelet coefficients at each
of four scales (8 statistics)

• Ratios of variances at successive scales (σ2
1/σ2

2,σ2
2/σ2

3, and σ2
3/σ2

4) for horizontally-
and vertically-oriented wavelet coefficients (6 statistics)

• The statistics r12, r23, r34, c12, c23, and c34 for horizontally- and vertically-oriented
wavelet coefficients (12 statistics)

The classifiers for image sets (2) and (3), which are based on a large number of
training images, achieve high classification performance (around 99%) using this large
set of features. For image sets (1) and (4), however, only 8 and 6 examples respectively
of each class are used to train each classifier. In these cases, classifier performance is
significantly lower.

In principle, providing a classifier with fewer features limits the amount of infor-
mation available for classification. Given only a small number of training examples,
however, classification accuracy typically increases with the elimination of uninforma-
tive features. Figure 6.6 illustrates this phenomenon with a toy example. Figure 6.6(a)
shows the training data points of Figure 6.1. In Figure 6.6(b), the uninformative feature
x2 has been eliminated. The classification problem is now significantly easier, because
one need only choose a boundary point on the line rather than a boundary curve in the
plane. Figure 6.6(c) illustrates a classification problem based on two identical features.
This classification problem is no more difficult than that of Figure 6.6(b). Elimination of
redundant features does not necessarily improve classifier performance, but elimination
of uninformative features with high variance tends to improve performance.

Rows (d), (e), and (f) of Table 6.1 show examples of reduced feature sets that lead
to improved classifier performance for these particular sets of reflectances. In row (d),
we have eliminated the ten statistics based on wavelet coefficients at the fourth-finest
scale. These statistics are useful for differentiating between highly blurred specular
components, but most of the specular reflectances in these four image sets are relatively
sharp. In row (e), we have further eliminated the cross-scale statistics rjk and cjk.
These statistics are useful for classification of images with high frequency components
due either to noise or three-dimensional surface texture. The image sets of Table 6.1,
however, exhibit little noise or surface texture. The classifiers in line (e) therefore
perform as well as or better than those in line (c). The painted clay surfaces discussed
in Section 6.2.2, on the other hand, have blurrier specular components and more evident
surface texture. For these images, eliminating the cross-scale statistics or the statistics
based on coarser-scale wavelet coefficients leads to a reduction in classifier performance.

Row (f) shows classifier performance for a set of six hand-selected features. This
set consists of the mean and tenth percentile of the pixel intensities, the variance of
wavelet coefficients in the finest and second-finest radially-oriented subbands, the ratio
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Figure 6.6. Elimination of uninformative features improves classifier performance. (a) The data points
of Figure 6.1. (b) The same data set, with the uninformative feature x2 removed. (c) The data set of
(b), with x2 = x1. The classification problems of (b) and (c) are easier than that of (a).

of variances of the second- and third-finest radially-oriented subbands, and the kurtosis
of the second-finest radially-oriented subband. For image sets (1) and (4), where the
classifiers are trained on very few samples, this reduction in features leads to a significant
improvement in performance. Classifiers based on this set of statistics made no cross-
validation errors for the set of 6 reflectances under 9 illuminations, and misclassified
only 4 of the 63 photographs.

Row (g) of Table 6.1 represents the performance of a classifier based on the same
statistics as row (e), but computed on the observed image without the “unwrapping”
transformation of Figure 6.2. For three of the four data sets, the unwrapping transfor-
mation improves classifier performance.

Table 6.2 compares the performance of support vector machine, nearest neighbor,
and 5-nearest neighbor classifiers for classification of the 11 synthetic reflectances of
Figure 6.3. The table shows cross-validation results for classifiers trained using different
numbers of sample images and different numbers of features. The SVM matches or
exceeds the performance of the alternative classifiers in each case, but in most cases,
the NN and k-NN classifiers are also quite accurate.

! 6.1.3 Misclassifications

One can gain further insight into the performance of these reflectance classifiers by ex-
amining common misclassifications. Not surprisingly, certain reflectances are confused
more often than others. For example, a classifier based on the full set of 36 statistics
(row (c) of Table 6.1) incorrectly classifies 11 of 1045 images in image set (3). Eight
of these misclassifications involve confusion between reflectances (d), (f), and (i) of
Figure 6.3. These three reflectances all share a sharp specular component (α = 0).
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Classification 6 features 36 features
technique 10 illums 95 illums 10 illums 95 illums
SVM 92.7 98.0 90.0 98.9
nearest neighbor 92.7 96.0 86.4 95.3
5-nearest neighbor 90.0 96.2 81.8 93.9

Table 6.2. Comparison of performance of support vector machine, nearest neighbor, and k-nearest
neighbor (k = 5) classifiers for the 11 reflectances of Figure 6.3. The first two columns shows cross-
validation performance using the set of 6 features from row (f) of Table 6.1. The latter two columns
show cross-validation performance for the set of 36 features from row (c) of Table 6.1. For each feature
set, we performed cross-validation using images rendered under all 95 Teller illuminations, with each
classifier trained on 76 illuminations and tested on the remaining 19. We also performed cross-validation
using images rendered under 10 randomly selected Teller illuminations, with each classifier trained on
9 illuminations and tested on the remaining one.

They differ in the relative energies of the specular and diffuse components, as well as in
total reflectance. Some of the illumination maps contain substantial amounts of light
incident from almost all directions; under these conditions, the relative strengths of
the specular and diffuse reflectance are difficult to distinguish. In the remaining three
misclassifications, reflectance (k) is misclassified as (j) or (h). These three reflectances
are identical to (d), (f), and (i), except for a difference in the specular blur α.

A small fraction of illuminations often accounts for a majority of the misclassifica-
tions. These illuminations are generally “atypical” in that their statistics differ signifi-
cantly from the majority of the training set. This is precisely the behavior one would
expect from a classifier based on training examples, given that the problem of reflectance
estimation under arbitrary illumination is underconstrained. For example, two of the
four misclassifications for the set of photographs in row (f) of Table 6.1 corresponded
to the one illumination created by the photographer specifically for the purpose of col-
lecting these photographs (Figure 6.5(e)). These images were photographed directly
under a desk lamp in an otherwise dark room. The first row of Figure 6.7 shows the
more egregious of the misclassifications, where a white matte surface was misclassified
as metallic because its appearance was so different from that of the white matte surface
under other illuminations. The upper portion of the misclassified image is saturated
to the maximum pixel value, leading to a distinct edge at the boundary of the region
directly illuminated by the lamp. The second row of the figure shows an example of a
misclassification under a different illumination.

! 6.2 Geometry

The previous section considered reflectance classification for spherical surfaces. This
section discusses methods for applying a reflectance classifier to surfaces of arbitrary
known geometry. Figure 6.8 illustrates an example of a classification problem where the
classifier is trained on surfaces of one geometry, and then applied to surfaces of several
geometries. We also consider the effect of surface geometry on the statistics of the
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Misclassified image Actual reflectance Classification

Figure 6.7. Examples of classification errors for the set of photographs. The left-hand column shows
the misclassified image. The middle column shows a sphere with the same reflectance as the sphere
at left, while the right-hand column shows a sphere with the reflectance assigned by the classifier to
the image at left. The images in the middle and right-hand columns are under illumination (g) of
Figure 6.5. The misclassified image in the first row is under illumination (e), while that in the second
row is under illumination (d).

observed image of a surface. If the image statistics proposed for reflectance estimation
in Chapter 5 were invariant to changes in surface geometry, one could effectively ignore
surface geometry in classifying reflectance. Unfortunately, this is not generally the case.
Before proceeding with further analysis, we provide two simple examples to illustrate
this point.

Figure 6.9 shows three spheres rendered under a single photographically-acquired
illumination map. Spheres (a) and (b) share identical reflectance properties, but sphere
(a) is three times the size of sphere (b). The image of sphere (a) is therefore identical to
that of sphere (b), but three times larger. Image (b) possesses spectral energy at higher
spatial frequencies than image (a). This leads to differences in the variances of wavelet
coefficients, as well as other image statistics, at particular spatial scales. In fact, the
power spectral characteristics of sphere (a) are similar to those of sphere (c), a smaller
sphere whose reflectance has a larger specular blur parameter.

Given images of differently sized spheres, one can account for the effect of geometry
on image statistics by simply scaling the images appropriately. Eliminating differences
in image statistics due to more general differences in geometry is less trivial. Figure 6.10
shows two surfaces of different shapes, made of the same material and photographed
under the same illumination. Although both images exhibit specular reflections of
the same bright light sources, the reflections are distorted in image (b) relative to
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Figure 6.8. Classification for surfaces of arbitrary known geometry. We wish to train a reflectance
classifier using images of surfaces under several real-world illuminations, and then apply that classifier
to images of surfaces of different known geometries under novel, unknown illuminations.

their appearance in image (a). In image (b), distinctive image structures tend to be
elongated in a direction parallel to the contours separating the metallic surface from
the background. The regions highlighted by rectangles, for example, all correspond to
reflections of the same fluorescent lamp. These distortions affect the power spectrum
and wavelet coefficient statistics in each region of the image.

Section 6.2.1 proposes a method for reflectance classification that applies to surfaces
of arbitrary known geometry. Section 6.2.2 considers the robustness of this method to
differences between assumed and actual geometry, including an analysis of the effects
of surface geometry on image statistics.

! 6.2.1 Handling Known Differences in Geometry: Remapping to the Equiv-
alent Sphere

Our approach to handling differences in surface geometry depends on the observation
that, for a surface of given reflectance under given illumination, the intensity of an
image point depends primarily on the orientation of the corresponding surface patch.
More precisely, when a distant viewer observes a convex surface under distant illumina-
tion, the radiance reflected toward the viewer depends on the orientation of a surface
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(a) α = .01

(b) α = .01

(c) α = .03

Figure 6.9. Three spheres rendered under the same illumination. Sphere (a) is three times the size of
spheres (b) and (c). Spheres (a) and (b) have identical reflectances, described by the Ward model with
α = .01. The reflectance of sphere (c) has a blurrier specular component, with α = .03. The edges of
the specularities in image (a) are blurrier than those in image (b) but similar to those in image (c).

Figure 6.10. Two surfaces with the same reflectance photographed under the same illumination. The
rectangles indicate specular reflections of the same lamp. The different appearances of these reflections
illustrate the fact that the image structure depends on surface geometry.
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patch, not on its position (Section 3.1.3). Under these conditions, one can associate
each possible surface orientation with a unique image intensity. This mapping from
orientation to intensity underlies shape-from-shading techniques [45].

One can specify the relationship between surface orientation and image intensity for
a surface of a particular reflectance under a particular illumination using a hypothetical
sphere with the same reflectance under the same illumination. We will refer to this
sphere as the Gaussian sphere.10 This representation is identical to the “Lit Sphere”
proposed by Sloan et al. [103] for use in artistic rendering.

Given an image of a surface with arbitrary known geometry, one can partially recon-
struct the Gaussian sphere for that combination of illumination and reflectance. One
maps each point on the observed image to the point on the sphere with the same sur-
face normal. Figure 6.11 shows several examples of such reconstructions. For nonconvex
surfaces such as those shown in the figure, multiple image points may map to the same
point on the sphere. The intensities of these image points may differ due to variations
in illumination. In particular, a non-convex surface may give rise to interreflections or
cast shadows on itself. In the examples of Figure 6.11, these phenomena have only a
minor effect on the reconstructions.

Because the Gaussian sphere is a geometry-invariant image representation, we can
build reflectance classifiers for surfaces of arbitrary known geometry by using recon-
structed spheres in both the training and test phases. This approach presents two
complications. First, the data is naturally defined on a sphere rather than on a plane,
because image intensity depends on surface orientation. Planar wavelet transforms are
not directly applicable in this domain. One might employ the spherical wavelet frame-
work introduced in Section 4.6. However, this transform is based on radially symmetric
basis functions that are less sensitive to the oriented structures in natural images and
illumination maps than the oriented filters of Chapter 5. We elected instead to simply
project the sphere onto a plane. An image of the sphere as observed by a distant viewer
is simply an orthographic projection of the sphere. We “unwrap” this image about its
center, as discussed in Section 6.1.2, before computing the wavelet transform.11 The
unwrapped orthographic projection is equivalent to a cylindrical projection of the Gaus-
sian sphere. Appendix C further discusses the distortions introduced by projection of
the sphere onto the plane. Section 7.2.2 proposes an alternative approach to dealing
with differences in geometry that avoids such distortion.

The second complication stems from the sampling of surface normals in the original
image. Regions of high curvature in the observed surface lead to sparse sampling
of surface normals. Moreover, the observed surface may simply lack certain normal

10Although we use the term Gaussian sphere, we concern ourselves only with the hemisphere visible
from the view direction.

11When “unwrapping” the images of spheres in Section 6.1, we used an annulus that omitted regions
of the image near the center and near the boundaries. In the examples of the present section, we do not
omit these regions. If the observed surface lacks densely sampled surface normals in many directions,
ignoring these regions may lead to a significant reduction in the amount of image data remaining for
reflectance estimation, causing degradation of classifier performance.
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Original image
Reconstructed 
Gaussian sphere

Cylindrical projection 
of Gaussian sphere

Figure 6.11. Images of surfaces of three geometries, each mapped to a Gaussian sphere of the same
reflectance and illumination, then “unwrapped” to a cylindrical projection of the sphere. All three
original surfaces have the same reflectance and were rendered under the same illumination. Black
regions within the Gaussian spheres and cylindrical projections indicate missing data, due to sparse
sampling of surface normals in the observed geometries.

directions.12 The reconstructions of Figure 6.11, which were constructed by forward
mapping from the observed image to the Gaussian sphere and its cylindrical projection,
use black pixels to indicate normal directions that are not sampled in the original
image. One might fill in these regions by using backward sampling or by performing
interpolation on the reconstructed image, but one cannot accurately estimate fine-scale
wavelet coefficients in areas of the reconstructed sphere where the normal directions are
sampled too sparsely.

We estimate wavelet coefficients from the incompletely sampled cylindrical pro-
jection using an instantiation of normalized differential convolution [121]. For com-
putational convenience, we approximate the outputs of derivative of Gaussian filters
rather than the quadrature mirror filters used in Section 6.1.2. At each point in

12Strictly speaking, any surface that is topologically equivalent to a sphere has all possible surface
normals. For non-differentiable surfaces such as the pedestal-shaped surface of Figure 6.11, an entire
region of the Gaussian sphere may map to a curve or point in the image, so that hardly any information
about the intensity associated with surface normals of that region is available. One may also wish to
estimate reflectance from an image of a portion of a surface, either because an image of the rest of the
surface is not available or because the rest of the surface has different reflectance properties. In this
case, information about certain regions of the Gaussian sphere may be entirely absent.
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Test geometry

Training geometry Spheres Worms Pedestals
(a) spheres 99.5 98.2 93.5
(b) worms 97.5 98.6 90.7
(c) pedestals 98.6 96.5 96.7
(d) spheres (geometry ignored) 98.9 74.0 80.5
(e) spheres (with fine-scale 98.9 80.2 87.2

statistics)

Table 6.3. Cross-validation performance (in % accuracy) for SVM classifiers trained and tested on
different geometries.

the reconstructed image, we find the linear combination of a constant function, a
horizontally-oriented ramp, and a vertically-oriented ramp that best approximate, in a
weighted mean-squared sense, the observed samples over a Gaussian window surround-
ing that point. The coefficients of the two ramp functions represent our estimate of the
derivative-of-Gaussian filter outputs at that point.13 The size of the Gaussian window
varies by a factor of two from scale to scale. Following Westelius [120], we compute a
confidence measure for the filter output estimates based on the amount of data present
within a particular Gaussian window. When computing statistics based on filter out-
puts, we use only those outputs whose associated confidence exceeds a threshold value.

Table 6.3 shows the performance of reflectance classifiers trained and tested on
images of surfaces of three different geometries. We rendered images of each surface
with each of six reflectances under each of the 95 Teller illumination maps. Figure 6.12
shows images of each surface geometry and reflectance under the same illumination.

Row (a) of Table 6.3 list the performance of a classifier trained on spheres and tested
on all three geometries. This classifier uses the features described in Section 6.1.2, but
computed using difference of Gaussian filters at two scales, corresponding roughly to
the second- and third- finest scales of the QMF pyramid.14 As in Section 6.1.2, we
measured performance using a cross-validation procedure. We split the illuminations
into five groups, and used images rendered under each group of illuminations to test a
classifier trained on the other four groups. The second and third rows represent cross-
validation performance values for classifiers using the same feature set, trained on the
worm-shaped and pedestal-shaped surfaces, respectively.

Each of the classifiers based on reconstructed Gaussian spheres achieves over 90%
13A Matlab implementation of such a decomposition, by Gunnar Farnebäck, is available at

http://www.isy.liu.se/∼gf/software/. The results presented in this thesis relied on our own imple-
mentation of these algorithms.

14More specifically, the feature set included the mean and 10th percentile of pixel values, the variance
and kurtosis of horizontally- and vertically-oriented wavelet coefficients at the second- and third-finest
scales, and ratios of variances at the second- and third-finest scales for horizontally- and vertically-
oriented wavelet coefficients.
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Figure 6.12. Synthetic images of surfaces of three different geometries, each rendered with 6 re-
flectances under one of Teller’s illumination maps. The set of images of spheres is identical to image set
(2) of Table 6.1. Ward model parameters corresponding to each reflectance are specified in Figure 5.11.

accuracy on each of the test sets, despite the lack of convexity of the worm and pedestal
shapes. By contrast, row (d) of Table 6.3 shows the performance of a classifier trained
and tested using statistics computed directly on the observed image. In computing
these statistics, we ignored surface geometry, apart from the specification of the region
of the image occupied by the surface. This classifier performs well when trained and
tested on surfaces of the same geometry, but poorly when tested on surfaces of other
geometries.

Although the Gaussian sphere itself is independent of geometry, each of the classifiers
based on reconstructed Gaussian spheres achieves highest performance when the test
set geometry is identical to the training set geometry. This stems primarily from the
fact that one can compute statistics of the Gaussian sphere with different degrees of
confidence for different surface geometries. For example, a highly curved surface leads to
sparse sampling of surface normals on the sphere, such that fine-scale wavelet coefficients
cannot be estimated accurately. A classifier trained on a particular geometry tends to
weight more heavily the features that prove reliable for that geometry.

Row (e) of Table 6.3 shows the performance of a classifier similar to that of row (a),
but trained using an expanded set of features that includes image statistics computed
on wavelet coefficients at a finer scale. Given the resolution of the observed images,
these wavelet coefficients can be estimated reliably from images of spheres, but not from
images of geometries such as the worm-shaped surfaces. The classifier therefore proves
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significantly less accurate when tested on a surface of this geometry than a classifier
that does not use the fine-scale statistics at all (row (a)). The design of a reflectance
classifier that takes the confidence of feature estimates into account represents an area
for future research (Section 7.2.1).

! 6.2.2 Robustness to Incorrect Assumed Geometry

Most previous approaches to reflectance estimation have relied on some form of inverse
rendering [9,73,86,123,124], where one optimizes reflectance parameters by minimizing
the difference between a synthesized image and the observed image. Such an approach
requires an accurate description of surface geometry. Incorrect assumed geometry will
prevent the synthesized and reflected images from matching, even when the reflectance
is correct.

Reflectance estimation based on image statistics, on the other hand, is robust to
some errors in the assumed geometry. Figure 6.13 shows an example where a sphere
and an elongated ellipsoid of identical reflectance have been rendered under identical
illumination. Although both surfaces have identical circular contours when viewed from
the front, the two images differ significantly at the pixel level. In particular, the specular
highlights appear at different locations. We trained a classifier using images of spheres
of six reflectances (Figure 5.11). We then tested this classifier on images of ellipsoids
such as that shown in Figure 6.13. When we correctly specified the geometry of the
ellipsoid, the classifier correctly labelled 53 of 54 test examples. When we incorrectly
specified the geometry as spherical, the classifier still labelled 51 of 54 images correctly.
This robustness to a change in geometry is hardly surprising. The image statistics we
use for reflectance classification are similar for the two images of Figure 6.13. In fact,
a human observer recognizes the similarity in reflectance of the two objects more easily
than the difference in geometry.

Robustness to differences between actual and assumed geometry is desirable in a
reflectance classifier because it lightens the burden of geometry recovery and repre-
sents a step toward joint estimation of geometry and reflectance. We therefore wish
to understand how unknown deviations in geometry will affect the performance of our
classification techniques. To this end, we first address the more basic question of how
geometry affects the image of a reflective surface and the statistics of that image.

Effect of geometry on local image statistics

The image of a convex surface observed by a distant viewer is a distorted version of
the Gaussian sphere. In the neighborhood surrounding a differentiable point on the
surface, the image is simply a warped version of a corresponding neighborhood on the
Gaussian sphere. The map from the Gaussian sphere to the image depends on the
local geometry of the surface — in particular, on its orientation and curvature. The
distortions introduced by this transformation affect wavelet coefficients computed at
that point in the image.

To quantify these relationships, we first consider a two-dimensional world, in which
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front view (rendered) top view (schematic)

Figure 6.13. Images of a sphere and an ellipsoid with identical reflectance, rendered under the same
illumination. The major axis of the ellipsoid, directed toward the viewer, is twice the length of its other
two axes. Schematic top views of these geometries are shown at right.

surfaces are simply curves and images are one-dimensional (Figure 6.14). We introduce
a coordinate system (x, z), where the z-axis is in the direction of a distant viewer and
the x-axis is orthogonal to the viewer. One can parameterize the observed image by x.
The Gaussian sphere in this two-dimensional world is a function of surface normal angle
γ. Suppose that at a point (x0, z0) on the surface, the surface normal angle is γ0. The
image of the surface near x0 is a contracted or dilated version of the Gaussian sphere in
the neighborhood of γ0. The amount of contraction depends on the rate at which the
surface normal angle changes as a function of image position x. Mathematically, this
rate is given by γ′(x0) = dγ

dx

∣

∣

x=x0
. If γ′(x0) = 1, then the image near x0 matches an

orthogonal projection of the Gaussian sphere onto its local tangent at γ0. If γ′(x0) > 1,
the image near x0 is a contracted version of the corresponding region on the Gaussian
sphere; if γ′(x0) < 1, then the image near x0 is a dilated version of that region of the
Gaussian sphere.

The rate dγ
dx depends on the local orientation and curvature of the surface. One can

express the surface normal angle as γ = π
2 − arctan
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dz
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)
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Figure 6.14. Sample surface geometry in a two-dimensional world. The viewer is distant and the view
direction is given by θr = 0. We parameterize the image by x and the Gaussian sphere by γ.

The curvature of the surface [105], as a function of image position x, is given by

κ(x) =
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We can therefore rewrite Equation (6.11) as
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The amount by which the Gaussian sphere is contracted in the mapping to the observed
image increases as surface curvature increases or as the angle between the view direction
and the surface normal direction increases.

Appendix C describes similar analysis for a two-dimensional image of a surface in
a three-dimensional world. Although the mathematics are more involved, the mapping
from the Gaussian sphere to the image can still be described locally as a linear warping
that depends on the first and second derivatives, or orientation and curvature, of the
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surface. This analysis describes, for example, the distortions noticeable in the images
of Figures 6.9 and 6.10. The large sphere of Figure 6.9(a) has lower curvature than
the smaller sphere of Figure 6.9(b), so each region of the image of the large sphere is
dilated relative to the corresponding region in the image of the small sphere. In regions
near the contours separating the surfaces of Figure 6.10 from the background, surface
orientation changes more quickly as one moves toward the contour in the image than
as one moves parallel to it. The reflection of the Gaussian sphere is therefore elongated
along the direction of the contour and compressed in the perpendicular direction.

If the assumed surface geometry is incorrect, the image will be warped incorrectly
when mapped to the Gaussian sphere. Locally, the difference in the mapping depends on
the change in local surface orientation and curvature. Applying a local linear distortion
to part of the Gaussian sphere affects the local wavelet coefficients. Each wavelet
coefficient represents the output of a bandpass filter. Distorting the image locally
also distorts its local frequency spectrum. Small rotations and scaling transformations
will typically have only a limited effect on the distributions of filter outputs. As long
as the differences in local orientation and curvature between the assumed and actual
surface geometry are small, one would expect a classifier based on these distributions
to perform accurately. Such is the case for the sphere and the ellipsoid of Figure 6.13.
On the other hand, the wavelet coefficient distributions of the reconstructed Gaussian
sphere will change substantially if one uses an assumed surface geometry that differs
substantially in local orientation and curvature from the actual geometry. This will be
the case, for example, if the actual surface geometry contains sharp corners while the
assumed geometry is smooth.

Throughout this chapter, we have assumed a distant viewer. If the viewer is not
distant relative to the extent of the surface, the view direction will vary significantly
from one point on the surface to another. Under these conditions, the radiance reflected
from a surface patch toward the viewer depends on the position of that surface patch
as well as on its orientation.

If the surface geometry is known and convex, one could take this effect into account
by mapping each point on the observed image to a point on the sphere that would reflect
light from the same direction if both surfaces were mirrors. For a flat surface observed
by a nearby viewer with a relatively narrow view angle, the image information will map
to a small region of the Gaussian sphere that can be approximated by a plane. When
examining flat surfaces under such a view geometry in Chapter 5, we therefore assumed
that image statistics were stationary across the image. For a nearby viewer, the image
of the reconstructed sphere will not be identical to the image of an actual sphere of the
same reflectance under the same illumination. The diffuse reflection of a homogeneous
material, for example, is constant across a flat surface under distant illumination. Under
the same illumination and view conditions, the diffuse reflection varies across the surface
of a sphere. However, we have found that the statistics of spheres reconstructed from
convex surfaces are not particularly sensitive to view distance. When trained on images
of spheres rendered from a distant viewpoint, for example, classifiers such as those in
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Section 6.1.2 accurately classify spheres rendered from a nearby viewpoint.

! 6.2.3 Misalignment Artifacts for Non-Convex Surfaces

For a non-convex surface, even minor deviations from the assumed surface geometry,
the distant viewer assumption, or the distant illumination assumption can introduce
severe artifacts to the Gaussian sphere reconstruction. Several points on a non-convex
surface may share the same surface orientation and therefore map to the same point
on the Gaussian sphere. Misalignment of the image information from different parts of
the image on the Gaussian sphere can lead to severe artifacts in the reconstruction.

Figure 6.15 illustrates this point using an example. We attempted to reconstruct
a Gaussian sphere based on the image of the snake-shaped object in Figure 6.15(a).
A photograph of a sphere made of the same material under the same illumination
conditions, shown in Figure 6.15(b), provides a “ground truth” for this reconstruction.

As in many vision applications, we lack an accurate geometric model for the snake
of Figure 6.15(a). However, we can obtain a reasonable estimate of the geometry using
a technique known as inflation [48,122]. This technique involves segmenting the snake-
shaped object from the background and then treating the contour separating the object
and background as the boundary of an elastic balloon. We performed the segmentation
by hand and then applied an inflation algorithm due to Tappen [106], which assumes
that all surface points on the boundary contour lie in a plane perpendicular to the
viewer. Panels (c) and (d) of Figure 6.15 illustrate the estimated geometry in terms
of its surface normals. The image of the snake in panel (c) is shaded such that the
gray level of a pixel is proportional to the component of the unit normal vector in the
direction of the observer. The image in panel (d) is shaded according to the component
of the unit normal vector in the direction toward the top of the page. Although not
exact, the estimated geometry is reasonable.

We reconstructed a Gaussian sphere from the image of Figure 6.15(a) using this
estimated geometry. Figure 6.15(e) shows the result of forward mapping pixels of the
observed image onto pixels of the reconstructed sphere. In panel (f), the missing pixels
of panel (e) have been filled in by interpolation on the image. The reconstruction
is reasonable in the sense that many of the reflected structures visible in panel (b)
are also discernible in (f). The reconstruction contains edge-like artifacts absent from
the photographed sphere, however, particularly in the upper half of the image. These
coincide with boundaries between pixels mapped from different parts of the original
image. The errors in estimated geometry, combined with variations in illumination
from one portion of the surface to another, lead to spurious edges in the reconstructed
image. Unfortunately, such artifacts lead to large spurious wavelet coefficients and may
heavily influence the statistics that we use for reflectance classification.

Even if the assumed surface geometry is correct, illumination from nearby surfaces
may lead to artifacts in the reconstruction. The surfaces in Figure 6.15, for example,
were photographed on a carpet. The reflections of this carpet vary between different
points on the snake-shaped surface with the same orientation.
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(a) Original photograph (b) A sphere of the same re-
flectance, photographed under
the same illumination

0 0.2 0.4 0.6 0.8 1

(c) Component of estimated surface nor-
mal toward viewer

−1 −0.5 0 0.5 1

(d) Component of estimated surface nor-
mal toward top of page

(e) Pixels of snake photo-
graph, mapped to Gaussian
sphere

(f) Interpolated Gaussian
sphere

Figure 6.15. Reconstruction of a Gaussian sphere for a non-convex shape, using approximate geome-
try. See text for details.
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In an experiment using real photographs and approximate geometries, we found a
large difference in classifier performance for convex and non-convex geometries. We
used objects fashioned of clay and painted to produce nine different reflectances. For
each reflectance, we used one convex, approximately spherical object and one non-
convex, snake- or crescent-shaped object. We photographed the objects using a Nikon
D1 camera. In this case, pixel values were linear in luminance.15 The convex objects
were photographed under eight illuminations, while the non-convex objects were pho-
tographed under four of these illuminations. Figure 6.16 shows convex objects of all
nine reflectances under one illumination. Figure 6.17 shows the non-convex shapes with
the corresponding reflectances under the same illumination. Several of the reflectances
are quite similar, leading to a difficult classification problem.

We reconstructed Gaussian spheres from each image, using geometries approximated
from hand-segmented contours. We used circular contours for the convex objects, even
though the shapes were crafted by hand and therefore were not perfectly spherical.
We then trained reflectance classifiers using a full set of image statistics, as defined in
Section 6.1.2, computed using difference of Gaussian filters at four scales. In a cross-
validation test, the resulting classifiers correctly classified 76% of the images of the
convex surfaces, including 79% of the images photographed under the four illuminations
used for the non-convex surfaces. When applied to images of the non-convex surfaces,
the same classifiers achieved only 43% accuracy. A classifier that ignores geometry
entirely, apart from from the specification of the region of the image occupied by the
surface, achieved higher performance (49%) when trained on the convex shapes and
tested on the non-convex shapes.

Section 7.2.2 proposes an alternative approach to dealing with surfaces of different
geometries that avoids explicit reconstruction of the Gaussian sphere. By computing
wavelet coefficients on appropriately distorted local neighborhoods of the observed im-
age, this alternative approach circumvents the artifacts discussed in this section for
non-convex objects with inaccurate geometry estimates.

! 6.3 Summary and Discussion

By taking advantage of the consistent relationships between image statistics and surface
reflectance properties, one can reliably classify the reflectance of surfaces viewed un-
der unknown real-world illumination. In this chapter, we performed such classification
using the image statistics discussed in Chapter 5 — statistics summarizing the distri-
bution of pixel intensities, the distributions of wavelet coefficients at various scales and
orientations, and the joint distributions of co-located wavelet coefficients at different
scales. We found that one-versus-all support vector machine classifiers lead to high
accuracy in reflectance classification, even given only a few examples of each reflectance
in a multi-way classification task. We also demonstrated the successful application of

15We used the camera’s native “raw” format, and converted the images to 48-bit TIFFs. We verified
that pixel values were linear in luminance using standard calibration techniques.
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Figure 6.16. Painted clay shapes with approximately spherical geometries, all photographed under
the same illumination. Each is painted to have a different reflectance.

classifiers constructed using these techniques to surfaces of various known geometries.
In an informal test, the author of this thesis attempted to classify the reflectances

of the convex surfaces from the two sets of monochrome photographs discussed in this
chapter (Figures 6.4 and 6.16 include some of the more easily classified images in these
two sets). In both cases, the author was unable to match the performance of the
reflectance classifiers reported in this chapter.

While our classification techniques are robust to certain errors in assumed geome-
try for convex surfaces, their performance degrades substantially with deviations from
assumed geometry for non-convex surfaces. The human visual system, on the other
hand, recognizes reflectance robustly without assuming that geometry is known in ad-
vance or that reflectance is homogeneous across the surface. The concluding chapter
of this thesis suggests possible approaches to overcoming the current limitations of our
classification techniques.
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Figure 6.17. Painted clay shapes with non-convex geometries. The reflectances correspond to those
of Figure 6.16.



Chapter 7

Conclusions and Suggestions for
Future Research

This thesis represents progress toward the goal of allowing a computer vision system to
recognize material properties in the real world. We have shown that the regular statis-
tical properties of illumination lead to predictable relationships between reflectance and
certain image statistics. One can use these statistics to classify reflectance properties
reliably, even though the problem of reflectance recognition under arbitrary illumination
is underconstrained. Real-world illumination statistics are relevant to other problems
in vision and graphics, including recovery of illumination and geometry. Our computa-
tional work also provides a foundation for investigation of the mechanisms underlying
reflectance recognition in the human visual system. This computational work has mo-
tivated experimental work by ourselves and others [33, 34, 41].

Although the algorithms described in this thesis are applicable in a variety of vision
and graphics systems requiring the ability to recognize materials or recover reflectance
properties, effective application in most cases requires further research. In particu-
lar, one might generalize the techniques developed in this thesis to handle shadows,
unknown geometry, and spatially varying reflectance. One could also improve perfor-
mance by exploiting additional image cues such as motion, color, and context. This
chapter summarizes the contributions of the thesis before discussing these future re-
search directions. We also discuss the relationship between reflectance and texture in
the broader context of material recognition.

! 7.1 Thesis Contributions

The most substantial contributions of this thesis may be in the basic problem formu-
lation. We suggest that reflectance recognition be approached as a statistical problem,
and that statistical properties of illumination be used to regularize underconstrained
visual recognition problems.1 This section recapitulates the specific results of Chapters
4, 5, and 6.

1Both of these ideas also arise in contemporary work by Weiss [119], although in a different form
and for different applications.

119



120 CHAPTER 7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

! 7.1.1 Illumination Statistics

One can characterize illumination at a single point using a spherical illumination map
that indicates the amount of light incident at that point from every direction. We
analyzed two collections of illumination maps acquired photographically at points in
the real world, and found that certain statistics are relatively invariant from one illu-
mination map to another. For example, the pixel intensity distributions peak at low
intensities, with fewer pixels of much higher intensity. The frequency spectra, computed
using spherical harmonics, fall off at a predictable rate at high frequencies. Wavelet
coefficients at each scale and orientation have highly kurtotic distributions of a pre-
dictable shape. Wavelet coefficients adjacent in scale, orientation, and position exhibit
strong statistical dependencies. Although the coefficients themselves are roughly uncor-
related, their magnitudes are heavily correlated. These predictable statistics correspond
to intuitive notions such as the presence of sharp edges at different scales in real-world
illumination patterns.

A large existing literature on natural image statistics has emphasized the fact
that real-world images display predictable statistical structure. Computer graphics
researchers have pointed out that one can represent illumination at a point with a
spherical map, and that such a representation proves useful in rendering surfaces under
distant illumination. To the best of our knowledge, however, the combination of these
two concepts is novel.

Illumination maps are “natural images,” in the sense of images acquired in the
real world. Unlike the photographs analyzed in most of the natural image statistics
literature, however, the illumination maps we analyzed have a very wide field of view
and contain primary light sources represented with high dynamic range. The statistics
we report for real-world illumination are similar to those reported in the natural image
statistics literature. One significant difference is the variability of illumination power
spectra at low frequencies, caused by the presence of strong point-like light sources in
some scenes. Illumination maps lack statistical stationarity, as evidenced by different
distributions of illumination intensity at different elevations. Typical photographs also
likely lack stationarity, but their non-stationary properties have received little attention
in the literature.

! 7.1.2 Relationship Between Surface Reflectance and Image Statistics

The regularity of real-world illumination leads to informative relationships between the
reflectance of a surface and certain statistics of an image of that surface. We studied
these relationships empirically and analytically using a parametrized reflectance model
from computer graphics, the Ward model. Although this model does not capture the full
range of real-world reflectances, it allows us to examine the effects of common variations
in surface reflectance on statistics of the observed image. We identified several statistics
that provide information about surface reflectance:

• The brightness of the darkest portions of the image, as quantified for example by
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the tenth percentile of pixel intensity, is indicative of the diffuse reflectance.

• Mean pixel intensity increases with overall surface reflectance, both specular and
diffuse.

• The heavy positive tail of the distribution of image pixel intensities, as measured
by its kurtosis or 90th percentile, decreases for surfaces with blurrier specular
components.

• The variance of wavelet coefficients at each scale and orientation provides a mea-
sure of total spectral energy in an oriented frequency band. This variance de-
creases as the specular component becomes less intense or less sharp.

• Ratios of variances of wavelet coefficients at different scales are insensitive to
changes in intensity of the specular component, but sensitive to changes in sharp-
ness.

• Blurring a real-world illumination pattern does not have a major effect on the kur-
tosis of its wavelet coefficient distributions. However, when the diffuse component
varies slowly across the surface, as is the case for a curved surface, the kurtosis
of wavelet coefficient distributions tends to decrease with blur in the specular
component.

• By exploiting cross-scale dependencies of wavelet coefficients, one can construct
more robust indicators of specularity. These statistics distinguish reflections of
structures such as edges from high frequency content due to noise.

! 7.1.3 Classification of Reflectance Based on Image Statistics

One can take advantage of the relationship between image statistics and reflectance to
classify surfaces according to their reflectance properties, given an image under unknown
real-world illumination. Such a classifier involves the partitioning of a multi-dimensional
feature space into regions corresponding to different reflectance classes. We use the
image statistics proposed in Chapter 5 and recapitulated in Section 7.1.2 as features.
We assign regions of the feature space to reflectance classes on the basis of empirical
examples, using machine learning techniques. One can train such a classifier using either
photographs of real surfaces, or renderings of surfaces under photographically-acquired
illumination.

Because the number of training samples available is typically limited, the perfor-
mance of such a classifier depends upon an appropriate choice of machine learning
techniques. We obtained high accuracy in cross-validation tasks using classifiers based
on support vector machines.

With an appropriately chosen feature set, the performance of such classifiers for
surfaces with homogeneous reflectance and known geometry rivals or exceeds human
performance. The human visual system, however, operates robustly under a far broader
range of conditions.
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! 7.1.4 Effect of Surface Geometry

The geometry of a surface affects the aforementioned image statistics, so ignoring surface
scale and geometry degrades the performance of a reflectance classifier. We demonstrate
a method to incorporate known geometry into reflectance estimation. This method ex-
ploits the observation that, given a distant viewer and distant illumination, the radiance
of a surface patch of a particular reflectance depends only on its orientation. One can
therefore map the observed image to the image of a hypothetical sphere of the same re-
flectance under the same illumination, and apply a reflectance classifier to that sphere.
Reflectance classification based on this technique proves robust to errors in assumed
geometry for convex surfaces, but much less so for non-convex surfaces.

! 7.2 Suggestions for Future Work

! 7.2.1 Refinement of Reflectance Estimation Algorithms

The reflectance classification algorithms presented in this thesis leave room for a num-
ber of potential algorithmic refinements and extensions. First of all, one could recast
reflectance recognition as a parameter estimation or regression problem, as described
in Section 3.3.1. Such a system might estimate Ward model parameters from an ob-
served image, for example. The image statistics we use for reflectance classification are
likely to prove useful for parameter estimation as well. One could train a parameter
estimation system from sample images using appropriate machine learning techniques.

Although we have found an effective set of features for reflectance classification,
we cannot claim that they are in any sense optimal. One could likely find additional
and better features, particularly for classification of reflectances not captured by the
Ward model. If one assumes a generative probabilistic model for illumination and a
parametric model for reflectance, one could derive optimal estimators for reflectance
parameters. An accurate generative model for natural images and illumination maps
remains an open research problem in its own right, but even analysis using an existing
image model (e.g., [40,58,90]) may yield further insight into the reflectance estimation
problem.

The best choice of features for reflectance classification depends on the specific
classes to be distinguished. One could improve classifier performance by tailoring the
feature set to the particular classification or parameter estimation problem at hand.
For example, statistics based on wavelet coefficients at fine scales are important in
distinguishing a mirrored surface from a rough metallic surface, but coefficients at
coarser scales are more important in distinguishing rough metal from a matte surface.
Selecting the optimal feature set for a particular classification task remains an open
problem. Feature reduction via an unsupervised learning technique such as Principle
Components Analysis (PCA) generally degrades classifier performance.

The confidence with which particular statistical features can be recovered depends
on the geometry of the observed surface. A highly curved surface compresses the re-
flected image, for example, eliminating or aliasing local information about the finest-
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scale features. A reflectance classifier will perform best on a wide range of surface
geometries if it takes the uncertainty associated with various observed image statistics
into account, basing its classification primarily on the higher-confidence statistics. The
design of such a classifier represents an area for future research.

! 7.2.2 An Alternative Approach to Compensating for the Effects of Surface
Geometry

The approach to handling surface geometry described in Section 6.2.1 suffers from severe
degradation in performance when the surface is non-convex and the assumed geometry
is inaccurate. This degradation is due to inconsistencies between different image regions
mapped onto the same part of the Gaussian sphere (Section 6.2.3). One could prevent
these problems by avoiding explicit reconstruction of a Gaussian sphere.

Instead, one could compute bandpass filter outputs directly on neighborhoods of the
observed image, compensating locally for the effects of surface geometry on the image.
One can think of the neighborhood of any point in the observed image as a warped
version of a neighborhood of a Gaussian sphere. The statistics of the Gaussian sphere
itself are approximately stationary (Appendix C), but the statistics of the observed
image are nonstationary because the mapping from the Gaussian sphere to the observed
image depends on local surface geometry.

Appendix C shows that one can approximate the transformation locally as a linear
warping that depends only on local surface orientation and curvature. If one knows the
orientation and curvature associated with each point on the surface, one can apply the
inverse warping transformation to a neighborhood of each point in the observed image
before computing local wavelet filter outputs. Alternatively, one could warp the wavelet
filters themselves before applying them to each neighborhood of the image. One could
then compute statistics of marginal and joint wavelet coefficient distributions as if the
coefficients had been evaluated directly on the Gaussian sphere.

Each wavelet coefficient computed using this scheme depends on only one neigh-
borhood of the observed image. Differences in image intensity between distant surface
points with the same normal will therefore not give rise to large spurious wavelet coef-
ficients, as they did on the reconstructed Gaussian sphere. The local analysis approach
is robust to variation in illumination across the surface, as long as the illumination in
each region has characteristic real-world statistics and the changes in illumination are
not abrupt. This approach to handling geometry provides a more reasonable model
than explicit reconstruction of a Gaussian sphere for the mechanisms employed by the
human visual system. For example, Ostrovsky et al. [76] have found that humans are
insensitive to inconsistencies in illumination from one part of a scene to another. The
local analysis approach also permits the use of oriented planar wavelet basis functions
without the distortions of a global cartographic projection.

These advantages come at a computational price. The warped wavelet basis func-
tions may differ at every point in the image. Instead of a traditional wavelet pyramid,
one must therefore compute outputs of spatially varying filters. One may be able to
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reduce the computational burden by approximating the desired filter outputs as linear
combinations of outputs of a spatially invariant filter bank applied to the entire image,
using for example the deformable kernel approach of Perona [78].

! 7.2.3 Shadows, Unknown Geometry, and Spatially Varying Reflectance

For most practical applications involving recognition of materials and material proper-
ties from real-world photographs, one needs a vision system free of the assumptions of
distant illumination, known geometry, and homogeneous surface reflectance properties.
Relaxing the assumption that both direct and indirect sources of illumination are distant
introduces complications due to cast shadows, which may lead to high-contrast edges
even in images of diffuse surfaces. To deal with this issue in the present framework, we
need to understand statistically how real-world illumination varies as one moves across
a surface. Weiss [119] used one such statistical characterization to eliminate the effects
of shadows, but he assumed the availability of multiple registered images of a scene
under different illumination conditions.

In most vision applications, surface geometry is not known in advance.2 We there-
fore wish either to recover surface geometry and reflectance properties simultaneously
or to recognize reflectance in a manner that is invariant to surface geometry. One might
approach these challenges by first addressing the easier problem of recovering surface
geometry for a specular surface of known reflectance under unknown real-world illu-
mination. If one thinks of real-world illumination patterns as instances of a random
process with known statistical properties, this problem parallels that of shape-from-
texture [17, 62]. Its solution may exploit the analysis of Appendix C.1, which relates
the local statistics of a surface image under real-world illumination to its geometry as
well as its reflectance.

One rarely begins image analysis with an image segmented into surfaces of different
materials. Instead, one must distinguish reflectance boundaries between surfaces and
between different materials within a surface. Strong indicators of reflectance proper-
ties, such as specular highlights, typically occupy only a small portion of the observed
image of a surface. Image segmentation based on reflectance properties is therefore a
difficult open problem. One may be able to make progress on this front by associating
uncertainty measures with local reflectance estimates and then propagating reflectance
estimates across the image using the framework proposed by Freeman et al. [36] and
Tappen [107].

Surface reflectance also varies spatially across the surface of a textured material. In
this case, the pattern of spatial variation itself represents an important visual charac-
teristic of the material. We discuss textured surfaces in more detail in Section 7.2.5.

Removing the assumptions of distant illumination, known geometry, and spatial
homogeneity makes the reflectance recognition problem more difficult. Fortunately, one

2Geometry may be known in advance in some applications. Sato et al. [92] suggest the use of a
camera equipped with a laser range finder that captures an optical image and the corresponding range
image simultaneously.
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can also exploit additional cues that make it easier.

! 7.2.4 Exploiting Additional Image Cues

This thesis explored the problem of reflectance estimation given only a single mono-
chrome image of the surface of interest, without image context. We restricted ourselves
to this minimal problem in order to determine what information about reflectance
properties one can glean from basic image structure. A practical reflectance recogni-
tion system should combine that information with cues from other sources, including
color, motion, and image context.

Surface color represents an important material characteristic in its own right. De-
ducing surface color from image information under unknown illumination represents
the challenging problem of color constancy, which has itself been the focus of extensive
research (see Section 2.3). Image color also facilitates the separation of specular and
diffuse reflections for a dielectric surface [97, 111], because for this class of materials,
the diffuse reflections are colored by the surface while specular reflections are not.

Image motion in a video sequence provides additional information about reflectance.
As either the observer or the surface moves, the changes in the observed image depend
on the reflectance properties of the surface under observation. In particular, specular
and diffuse components of the reflected image will move differently. Szeliski et al. [83]
used image motion to separate a sharp reflection in a glass plane from a photograph
behind the pane, treating the observed image sequence as a sum of two transparent
layers moving at different velocities. A popular model for surfaces in computer graphics
assumes that the specular reflectance properties are homogeneous while the diffuse
reflectance varies spatially [56]. The specular and diffuse reflections of such a surface
will move as if they were separate transparent layers similar to those of Szeliski et al.,
and one may be able to separate them using similar techniques.

In estimating the reflectance properties of a surface, one can make use of the en-
tire image, not just the portion of the image corresponding to the surface of interest.
We discussed the importance of context in estimating overall illumination strength in
Section 3.4. Image context can also provide information about the spatial structure
of illumination, because the illumination of nearby surfaces in an image tends to be
similar, and because some sources of direct and indirect illumination may actually be
visible in the image. For example, the reflections visible in a chrome surface typically
resemble the surrounding image.

! 7.2.5 Relationship Between Reflectance and Texture

To recognize materials and their properties, one cannot rely on reflectance alone. One
must also exploit texture, the fine-scale variations in geometry and reflectance that
characterize materials such as burlap, granite, plaster, and sand. Most researchers have
treated texture as a two-dimensional image property, as if it were due to variation
in the albedo of a Lambertian surface. Recent authors have noted, however, that
reflectance and texture are intricately connected [21, 22]. Surface appearance depends
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Figure 7.1. Images from the Columbia-Utrecht Reflectance and Texture database [22], which has
formed the basis for recent work on discrimination of three-dimensional textures. The images in the
database are all photographed under point source illumination, but with a variety of illumination
directions and from a variety of view directions.

on illumination and on the position of the viewer both because of non-Lambertian
reflectance properties and because of fine-scale variation in three-dimensional surface
geometry. The distinction between reflectance and texture is largely a matter of scale.
When one views grass at a distance, one cannot see the individual blades, but both their
geometric structure and their reflectance properties will contribute to the BRDF of the
observed surface. In fact, many physically-based reflectance models are formulated in
terms of surface texture below the visible scale (e.g., [42, 54, 69]). The remote sensing
community also uses BRDFs to capture the average reflectance properties of structured
surfaces [104].

Recent work by Leung and Malik [59], Cula and Dana [19], and Varma and Zis-
serman [116] has shown that one can classify three-dimensional textures from images
using the statistical distribution of filter responses. Figure 7.1 shows examples of the
images they considered. While these authors have focused on recognition of textured
surfaces under point source illumination, this thesis has concentrated on recognition of
untextured surfaces under complex illumination. A material recognition system should
be able to combine image cues due to surface texture and those due to the texture-like
properties of real-world illumination.

In this broader context of material recognition, a wider range of image statistics
becomes relevant. Statistics that were not useful in distinguishing the reflectances of
texture-free surfaces from one another may allow one to distinguish those texture-free
surfaces from textured surfaces. In Section 5.1.2, for example, we noted that the kurtosis
of wavelet coefficients in a particular band is of limited use in reflectance recognition
for flat surfaces, because it does not change significantly with the parameters of a
reflectance model. Textured surfaces, on the other hand, may have wavelet coefficients
with less kurtotic wavelet distributions, so these kurtoses could be useful in recognizing
that a reflective surface is free of texture in the first place.

High-frequency variations in an image due to reflected illumination typically exhibit
edge-like structures (Section 5.1.3), while those due to geometric texture may not.
Statistics based on correlations of wavelet coefficient magnitudes at adjacent scales,
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orientations, and positions may therefore be useful in distinguishing smooth specular
surfaces from textured surfaces. A potentially fruitful line of further research involves
development of a material recogntion system that handles both textured and untextured
surfaces under real-world illumination.
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Appendix A

Expression of a Specular Image as a
Convolution

For a distant viewer, the image produced by the specular component of the Ward
reflectance model described in Section 2.1.2 can be approximated by a convolution
over illumination. This convolution differs from that relating the illumination to the
reflected light field, derived in Section 3.6. The expression of a specular image as a
convolution depends on the fact that a mirrored surface patch with normal elevation
angle γ reflects light from an elevation angle 2γ toward a vertically upward viewer
(Figure A.1). Under Ward-like reflectance models, the specularity visible on the surface
at a position specified by surface normal (γ, β) corresponds to to an integral over an
illumination region centered around direction (2γ, β). While we utilize the Ward model
BRDF in the derivation below, a similar derivation applies to the specular components
of the Phong and Blinn-Phong shading models.

Let I(γ, β) represent the observed image of a convex surface under distant illumina-
tion, parameterized by surface normal (γ, β). This image corresponds to a cross-section

γ
2γ

Figure A.1. A viewer at elevation angle 0 observing a surface patch whose normal has elevation angle
γ will see the specular reflection of a light source at elevation angle 2γ.
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of the reflected light field B(γ, β; θ′r, φ′r). For a distant viewer in direction (θr, φr), it
can be expressed as

I(γ, β) = B(γ, β; R−1
γ,β(θr, φr)),

where R−1
γ,β(θr, φr) is a rotation operator mapping local coordinates to global coordi-

nates, as defined by Equations 3.2 and 3.3 of Section 3.1.2.
Because we are concerned only with a single image, we can assume without loss of

generality that the observation direction (θr, φr) is (0, 0). We can then write the image
as

I(γ, β) = B
(

γ, β; R−1
γ,β(0, 0)

)

=
∫

S
L(θi, φi)f̃

(

θ′i, φ
′
i; R

−1
γ,β(0, 0)

)

dω

=
∫

S
L(θi, φi)f̃

(

θ′i, φ
′
i; Ry(−γ)Rz(−β)(0, 0)

)

dω

=
∫

S
L(θi, φi)f̃

(

θ′i, φ
′
i; γ, π

)

dω. (A.1)

We draw upon the properties of specular reflection to further rewrite this expression.
The specular component of the Ward model has BRDF

f(θ′i, φ
′
i; θ

′
r, φ

′
r) = ρs

1
√

cos θ′i cos θ′r

exp(− tan2 δ/α2)
4πα2

.

The corresponding modified reflectance function, defined as in Equation (3.5), is

f̃(θ′i, φ
′
i; θ

′
r, φ

′
r) =

{

ρs

4πα2

√

cos θ′i
cos θ′r

exp(− tan2 δ/α2) if θ′i ≤ π
2

0 if θ′i > π
2 .

In Section 2.1.2 and Figure 2.3, we defined δ as the angle between the surface normal
and the vector bisecting the illumination direction (θ′i, φ

′
i) and view direction (θ′r, φ′r).

As long as α is small, exp(− tan2 δ/α2) is significantly nonzero only when δ is small.

This angle δ is small only when θ′i ≈ θ′r, so we conclude that
√

cos θ′i
cos θ′r

≈ 1 except where
f̃ is close to 0 or θ′r is close to π/2.

If (θ′r, φ′r) = (γ, π), then δ is small only when (θ′i, φ
′
i) is close to (γ, 0). In that

case, the angle δ between (0, 0) and the bisector of (θ′i, φ
′
i) and (γ, π) is approximately

half of the angle between (θ′i, φ
′
i) and (γ, 0). Therefore δ is approximately half the

angle between Ry(−γ)(θ′i, φ
′
i) and (0, 0). Combining this observation with the above

observation that
√

cos θ′i
cos θ′r

≈ 1 when δ is small, we can conclude that

f̃
(

θ′i, φ
′
i; γ, π

)

≈ f̃
(

Ry(−γ)(θ′i, φ
′
i); 0, 0

)

.
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To rewrite Equation (A.1) as a convolution, note that

(θ′i, φ
′
i) = R−1

γ,β(θi, φi)
= Ry(−γ)Rz(−β)(θi, φi)

and therefore

Ry(−γ)(θ′i, φ
′
i) = Ry(−γ)Ry(−γ)Rz(−β)(θi, φi)

= Ry(−2γ)Rz(−β)(θi, φi)
= R−1

2γ,β(θi, φi).

Equation (A.1) therefore becomes

I(γ, β) ≈
∫

S
L(θi, φi)f̃

(

R−1
2γ,β(θi, φi); 0, 0

)

dω. (A.2)

While defined on a sphere, the convolution of Equation (A.2) differs from that of
Equation (3.6) in that it depends on the rotation operator R−1

2γ,β rather than R−1
γ,β .

One could rewrite it using a standard spherical convolution operator by defining a new
illumination, L̃(θi, φi) = L(2θi, φi). This modified illumination depends on the view
direction.

The approximation of Equation (A.2) breaks down when the Ward model roughness
parameter α becomes large or when the surface becomes nearly perpendicular to the
viewer, with γ approaching π

2 . However, these cases are of limited interest in practice.
Ward intended his model for use with small α values; the model is properly normalized
only when α is small. Portions of the surface that are nearly perpendicular to the viewer
will be highly compressed in the image, and therefore are of limited value in reflectance
estimation.

The complete Ward model includes a Lambertian component as well as a specular
term. The image observed by a distant viewer, parameterized by the surface normal,
can therefore be expressed as the sum of two spherical convolutions, one over the il-
lumination L(θi, φi) and the other over a modified illumination L̃(θi, φi) = L(2θi, φi).
This formulation allows analysis of the ambiguities involved in recovering Ward model
reflectance parameters from a single image under unknown illumination. First, one
cannot distinguish an overall amplitude scaling factor in the illumination from an over-
all amplitude scaling factor in the reflectance. Second, blurring the illumination has
the same effect as blurring the specularity (increasing α); as discussed in Section 3.2.1,
Ramamoorthi and Hanrahan [86] demonstrated that this ambiguity exists even when
the entire light field is available. A third ambiguity stems from the fact that the spec-
ular reflection of low-frequency illumination may produce an image identical to that
of the diffuse reflection under a different illumination. For example, one could match
the image of a Lambertian surface under point source illumination by a specular sur-
face of any desired roughness α, given the right low-frequency illumination pattern.
This ambiguity generally disappears when images of the surface are available from all
directions.
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Appendix B

Rendering Under
Photographically-Acquired

Illumination

We used Ward’s freely available1 rendering package, Radiance, to render surfaces under
photographically-acquired illumination maps. Unlike traditional ray tracing packages,
Radiance takes into account illumination incident from all directions. Rendering a
surface accurately under such global illumination is computationally expensive, because
evaluation of each pixel in the rendered image requires a weighted integral over all
possible illumination directions (Equation (3.1)). Radiance performs this integration
efficiently using stochastic sampling and irradiance caching techniques, as described by
Ward and Shakespeare [118]. These techniques introduce noise to the rendering process.
For the benefit of a reader who intends to render surfaces under photographically-
acquired illumination maps in Radiance, we describe the methods we used to minimize
the effects of this noise. Debevec provides a more general discussion of rendering under
image-based lighting [23].

When rendering a surface, we mapped the illumination to the inside of a spherical
surface of infinite distance, a “source” in Radiance. We used the “glow” material type for
this source such that Radiance would rely exclusively on indirect lighting calculations.
When rendering in Radiance, we used surfaces with reflectance properties described by
the Ward model (Section 2.1.2). Radiance employs separate algorithms to evaluate the
contribution of the specular and diffuse reflectance components at each point on the
surface. For a particular surface geometry and a particular illumination map, we first
rendered a purely diffuse surface and purely specular surfaces with each desired value of
the specular blur parameter α, and then combined the resulting images into renderings

1Source code and binaries for Radiance are available at http://radsite.lbl.gov/radiance/.
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of the surface with each desired reflectance.2

As discussed in Chapter 3, the light field reflected by a surface can be expressed
as a convolution of the illumination map and the BRDF. If the BRDF lacks power at
high spatial frequencies, one can filter the illumination map to remove high frequency
components without affecting the resulting light field. Filtering the illumination maps
prior to rendering reduces noise introduced by stochastic sampling of the illumination
map. To render the diffuse component, we prefiltered the illumination map by pre-
serving only spherical harmonics through second order [84]. To render the specular
component, we blurred the illumination map using a filter whose bandwidth depends
on the specular blur parameter α. For a chrome surface with α = 0, the illumination
map was not blurred at all.

To further reduce image noise, we rendered images that were larger than the desired
image size, and then downsampled these images. For specular components with nonzero
values of α, we oversampled by a factor of eight in each direction.

Finally, the default compilation of Radiance evaluates the indirect specular reflec-
tion component using a sampling method based on a low-discrepancy (quasirandom)
sequence of ray directions. We found that this technique introduced anisotropic, struc-
tured artifacts that remained evident even when we employed the previously described
prefiltering and oversampling techniques. We recompiled Radiance with the -DMC flag,
which forces it to use strict Monte Carlo sampling in evaluating the specular reflection.

2For convex surfaces, rendering the diffuse and specular components separately and then summing the
resulting images is equivalent to rendering a single image with both specular and diffuse reflectance
components. For non-convex surfaces, these two methods lead to slightly different images. If one sums
separately rendered specular and diffuse components, the resulting image will fail to capture certain
interreflections, such as a specular reflection of light reflected diffusely from another part of the surface.
For the image sets presented in this thesis, we performed renderings using both methods to verify that
the difference in the results was minor.



Appendix C

Effect of Geometry on Image
Statistics

This appendix complements Sections 6.2.2 and 7.2.2 by extending the analysis of the
relationship between surface geometry and observed image statistics. Section C.1 con-
siders the transformation from a neighborhood of the Gaussian sphere to a neighbor-
hood of the observed image in the three-dimensional world. Section C.2 discusses the
assumption that the statistics of the Gaussian sphere itself are stationary.

! C.1 Distortion Due to Geometry: Analysis in Three Dimensions

In Section 6.2.2, we considered a neighborhood of a one-dimensional image in a two-
dimensional world as a warped neighborhood of a Gaussian sphere. We showed that one
could approximate this warping locally as a compression or dilation that depends only
on local surface orientation and curvature. In this section, we perform corresponding
analysis for a two-dimensional image of a surface in a three-dimensional world. Savarese
and Perona [93,94] have also recently analyzed the relationship between the geometry of
a reflective surface and its image, although they assume a mirrored surface and known
illumination.

We introduce a coordinate system (x, y, z), where the z-axis is in the direction of
a distant viewer and the x and y axes are orthogonal to the view direction and to
one another. One can parameterize the observed image by x and y. If the surface is
differentiable at a point, one can model the surface in a neighborhood of that point as
a quadratic function,

z =
1
2
ax2 + bxy +

1
2
cy2 + dx + ey + f, (C.1)

where we assume the neighborhood of interest surrounds the point at (x, y) = (0, 0).
The first and second derivatives at (x, y) = (0, 0) are
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We define the vector-valued function n by

n(x, y) ≡





− ∂z
∂x

−∂z
∂y

1



 . (C.3)

Note that n(x, y) is normal to the surface at (x, y). At (x, y) = (0, 0), Equation (C.3)
reduces to n(0, 0) =

(−d
−e
1

)

. Taking derivatives of n with respect to x and y gives
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. (C.4)

Evaluating Equation (C.4) at (x, y) = (0, 0) gives

∂n
∂x
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−b
−c
0



 . (C.5)

The local tangent projection of the Gaussian sphere at any point can be parameter-
ized by two variables. For convenience, we parameterize that projection locally using
the following two unit vectors,1 which are orthogonal to each other and to the local
unit normal n0 = 1√

1+d2+e2

(−d
−e
1

)

:

v1 ≡ 1
√

(d2 + e2)(1 + d2 + e2)





d
e

d2 + e2





v2 ≡ 1√
d2 + e2





−e
d
0



 .

We can expand ∂n
∂x and ∂n

∂x from Equation (C.5) in terms of n0, v1, and v2 as

∂n
∂x

=
be + da√

e2 + d2 + 1
n0 +

−be− da
√

(e2 + d2)(e2 + d2 + 1)
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∂n
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e2 + d2 + 1
n0 +
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√

(e2 + d2)(e2 + d2 + 1)
v1 +

be− dc√
e2 + d2

v2. (C.6)

1If d = e = 0, let v1 =
(

1
0
0

)

and v2 =
(

0
1
0

)

.
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Let ñ be the unit vector in the direction of n, defined by ñ(x, y) ≡ n(x,y)
‖n(x,y)‖ . Then

dñ
dx is the projection of dn

dx onto the plane perpendicular to n, normalized by ‖n‖. When
(x, y) = (0, 0), Equation (C.6) implies that

∂ñ
∂x
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1

√
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. (C.7)

Additional algebra yields the more elegant form
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. (C.8)

Equations (C.7) and (C.8) specify the change in surface normal direction as one
moves horizontally or vertically across the image. In other words, they specify the
local linear approximation of the warping from the neighborhood of n0 on the Gaussian
sphere to the neighborhood of (x, y) = (0, 0) on the image.

The relationship between
(

v1 v1
)

and
(

∂ñ
∂x

∂ñ
∂y

)

specified by Equation (C.8) can
be summarized by a single two-by-two matrix and therefore represents a four-parameter
family of possible linear transformations.2 The transformation depends only on the first
and second derivatives of the surface at the point, or, equivalently, on the local surface
orientation and curvature.

If a quadratic surface of the form in Equation (C.1) has b = c = e = 0, then it varies
in the x-direction, but not in the y-direction. In this case, one would expect that the
surface orientation will not change as one moves in the y-direction, and that the rate of
change as one moves in the x-direction will reduce to the one-dimensional case. Indeed,
when b = c = e = 0, Equation (C.7) implies that

∥

∥
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∥

= 0
∥

∥

∥

∥
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∥

∥
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∥

=
|a|

1 + d2

in agreement with Equation (6.11), which gives the rate of change of orientation with
image position in the one-dimensional case.

Section 7.2.3 points out that because a real-world illumination map can be viewed as
a type of “texture” with regular statistical properties, the problem of recovering shape

2If the statistics of the Gaussian sphere are isotropic, then one can ignore rotation in the plane
spanned by v1 and v2, so that one can effectively specify the warping transformation with three pa-
rameters. If illumination statistics depend on orientation, rotation in this plane may affect the image
statistics.
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from a reflective surface under unknown illumination parallels the traditional shape-
from-texture problem. The analysis of the present section highlights one important
difference. In traditional shape-from-texture, the statistics of the texture are assumed
stationary on the surface. The local linear warping from the surface to the observed
image depends only on the local orientation of the surface. For a reflective surface
under regular illumination, on the other hand, the statistics of the Gaussian sphere are
assumed stationary. The local linear warping from the Gaussian sphere to the observed
image depends not only on local surface orientation, but also on local surface curvature.

! C.1.1 Special Case of a Sphere

In order to better understand the distortion that results from orthogonal projection of
the Gaussian sphere onto a plane, we evaluate Equation (C.8) for the special case where
the surface under observation is a sphere of unit radius described by x2 + y2 + z2 = 1.
The derivatives at (x0, y0, z0) are given by

( ∂z
∂x
∂z
∂y

)

=
(

−x0
z0

−y0
z0

)







∂2z
∂x2

∂2z
∂x∂y

∂2z
∂x∂y

∂2z
∂y2






=









−x2
0+z2

0
z3
0

−x0y0

z3
0

−x0y0

z3
0

−y2
0+z2

0
z3
0









.

In other words, a local quadratic fit of the form of Equation (C.1) has

a = −x0

z0
, b = −y0

z0
, c = −x2

0 + z2
0

z3
0

, d = −x0y0

z3
0

, e = −y2
0 + z2

0

z3
0

. (C.10)

We reparameterize the observed image in terms of local coordinates p and q, where
p is in the gradient (radial) direction and q is perpendicular to it. That is,

(

p
q

)

=
1√

e2 + d2

(

d e
−e d

)(

x
y

) (

x
y

)

=
1√

e2 + d2

(

d −e
e d

)(

p
q

)

.

Therefore
(

∂ñ
∂p

∂ñ
∂q

)

=
(

∂ñ
∂x

∂ñ
∂y

)

(

d −e
e d

)

. (C.12)

Combining Equation (C.12) with Equation (C.8) gives

(

∂ñ
∂p

∂ñ
∂q

)

= −
(

v1
e2+d2+1

v2√
e2+d2+1

)

(

d√
d2+e2

e√
d2+e2

− e√
d2+e2

d√
d2+e2

)

(

a b
b c

) (

d −e
e d

)

.

Substituting in the values of a, b, c, d, and e from Equation (C.10) above and sim-
plifying gives

(

∂ñ
∂p

∂ñ
∂q

)

=
(

v1 v2
)

( 1
z0

0
0 1

)

,
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or, equivalently,
∂ñ
∂p

=
v1

z0
,

∂ñ
∂q

= v2.

In other words, a neighborhood in the image represents a neighborhood of the Gaus-
sian sphere that has been compressed only in the radial direction p. The compression
increases as one moves from the center of the image, where z = 1, to the image bound-
ary, where z = 0. The sharp increase in the compression factor 1

z near z = 0 leads us to
omit a region of the original image near that boundary when unwrapping the annulus
described in Section 6.1.2.

The warping associated with each neighborhood of the observed image is anisotropic,
with compression only in the radial direction. This anisotropic compression affects the
orientation of edge-like structures in the observed image, such that most edges tend to
be oriented perpendicular to the radial direction, particularly near the boundary of the
image where the compression factor is highest (for example, see the chrome spheres in
Figure 6.5). The only edges whose orientations are not affected by this compression are
those originally oriented in the radial direction and perpendicular to it. If we “unwrap”
the image about its center as described in Section 6.1.2, these two directions map to
the horizontal and vertical directions at every point in the image. This is a desirable
property because we analyze the image using horizontally- and vertically-oriented filters.
In Section 6.1.2, we discard the central region of the image, because it is distorted most
severely in the unwrapping procedure.

! C.2 Assumption of Stationarity on Gaussian Sphere

When discussing the effects of geometry on observed image statistics, we have assumed
that the statistics of the Gaussian sphere are stationary. In particular, we have assumed
that the expected value of a statistic computed on a neighborhood of the Gaussian
sphere is invariant to the location of that neighborhood on the sphere. This assumption
is approximately but not exactly correct. For completeness, we point out two potential
sources of non-stationarity on the Gaussian sphere.

First, illumination itself is not stationary. As noted in Section 4.4.2, for example,
the expected intensity of illumination depends on elevation angle. One could potentially
take such nonstationarities into account if observing a surface with known orientation
in global coordinates, but our reflectance recognition algorithms do not do so.

Second, the Gaussian sphere may have non-stationary statistics even when the illu-
mination statistics are stationary. As an example, imagine a world in which illumination
always consists of a point source of fixed intensity in a random direction, with all il-
lumination directions equally likely. Consider a surface whose reflectance is described
by the Ward model with non-zero specular and diffuse components. Figure C.1 shows
two images of such a surface, with the light source in different locations. When the
light source is directly behind the viewer (Figure C.1(a)), the diffuse and specular com-
ponents peak in the same place. When the light source direction is different from the
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(a) (b)

Figure C.1. (a) A sphere illuminated from directly behind the viewer. (b) The same sphere, illumi-
nated from above. In each case, one hemisphere is illuminated. The intensity of the diffuse component
peaks where the surface normal is in the same direction as the light source, while the specular com-
ponent peaks where the surface normal bisects the light direction and the view direction. In (a), the
specularity is in the center of the illuminated hemisphere, while in (b), it is not.

view direction (Figure C.1(b)), the diffuse and specular components peak in different
places. The fact that the relative location of these two image components depends
on light source position leads to nonstationarity in the Gaussian sphere. For example,
the maximum intensity of a surface patch whose normal points toward the viewer is
larger than the maximum intensity of patches with other surface orientations. More
generally, the fact that the light field B(γ, β; θ′r, φ′r) can be written as a convolution
over illumination (Section 3.1.2) implies that a cross-section of B with constant values
of θ′r and φ′r has stationary statistics. An observed image of a sphere, however, does
not correspond to a planar cross-section of the light field B (see Section 3.1.3). The
statistics of the Gaussian sphere are therefore not necessarily stationary. In practice,
the effect of this nonstationarity on the statistics we use for reflectance classification is
minor or negligible relative to the effect of the distortions discussed in Section C.1.
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