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Abstract

This document reviews material you will need for Exam 1. I recom-
mend you do each problem here. If you can do them all without referring
to other material, you should be in good shape for the exam. I recommend

that you review your notes and the class documents before trying to do
the material so that you know where your deficits are. .
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1 Basic notation

You should understand the following types of notation.

• Summation (
∑

). Example:

N∑
i=1

Xi = X1 + X2 + ... + XN . (1)

• Product (
∏

). Example:

N∏
i=1

Xi = X1 ×X2 × ...×XN . (2)

• When we perform optimization of a function with respect to some change-
able parameter, we are usually interested in either the minimum or max-
imium value of the function itself, or, alternatively, we are interested in
the values of the parameter that achieved the maximum or minimum.

Suppose we are trying to find the maximum value of a function f(x, y)
when y is set to the value 3 and x can be any value from some set S. To
specify the maximum value of the function we write:

max
x∈S

f(x, y = 3). (3)

We frequently assign this maximum to some variable, as in:

F ∗ = max
x∈S

f(x, y = 3). (4)

• If we are interested in the value of x which gave us this optimum, we use
the arg max notation:

arg max
x∈S

f(x, y = 3). (5)

In this case, of course, the maximizing x might be called x∗:

x∗ = arg max
x∈S

f(x, y = 3). (6)

2 Basic probability

• Know all the material from the Review of Basic Probability handout.

• Particularly focus on marginalization and Bayes rule.

• Suppose we are trying to classify images into one of several classes c1, c2,
and c3, and to do it we are using feature values f1 and f2. Know what is
meant by the likelihoods of the classes, the priors of the classes, and the
posterior probabilty for each class.
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• Marginalization: If you are given a probability distribution for each pair
of possible values of Prob(X, Y ), then you should be able to computer
Prob(X) and Prob(Y ) for each possible value of X and Y .

• Know the definition of statistical independence: For two random variables
X and Y , X and Y are statistically independent if and only if P (X|Y ) =
P (X) for all X and Y . Or alternatively, P (X, Y ) = P (X)P (Y ). Be able
to derive one of these formulas from the other (multiply both sides by
P (Y ).

• Conditional probability. Be able to compute P (X|Y ) from P (X, Y ) and
P (Y ).

• Be able to given reasonable estimates of P (X), P (X|Y ), and P (X, Y )
from raw data.

3 Basic Matlab familiarity

• Know how to turn the values in a matlab matrix into a vector (use the
colon operator).

• Know how to transpose a matrix and what this means (you can use either
the quote operator (’) or use the transpose command. This can used to
turn a row vector into a column vector or vice versa.

• Understand the structure of a “grayscale” or “scalar-valued” image. It is
simply a 2-dimensional array of numbers.

• Understand the structure of a “color” image: it is a 3-dimensional array
of numbers in which the first “layer” represents red, the second layer
represents green, and the third represents blue.

• IMPORTANT: Understand that a grayscale or scalar-valued image can be
rendered in color using a look-up-table, which is essentially a scheme for
doing color-by-number. That is, for each value in the image, the computer
looks up the red-green-blue (RGB) color that should be used for that
particular number.

• Know the repmat command in matlab. Know that it can be used to avoid
doing for loops, and that for loops are slow in matlab.

4 Image comparison

• Understand the “sum of squared differences” between two scalar-valued
images I and J :

SSD(I, J) =
#ofpixels∑

i=1

(Ii − Ji)2.
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This is the same thing as the “Euclidean distance” except that the Eu-
cildean distance has a square root:

DEuclid(I, J) =

√√√√#ofpixels∑
i=1

(Ii − Ji)2

=

(
#ofpixels∑

i=1

(Ii − Ji)2
) 1

2

.

• Understand the “sum of absolute differences”:

Dabs(I, J) =
#ofpixels∑

i=1

|Ii − Ji|

=

(
#ofpixels∑

i=1

|Ii − Ji|

) 1
1

.

Understand why one might want to use one instead of the other (sum of
squared differences weighs larger errors more heavily, on average).

• Know the general formula for an Lp distance:

Lp(I, J) =

(
#ofpixels∑

i

(Ii − Ji)p

) 1
p

. (7)

Note that the Euclidean distance is the same as the L2 distance (p = 2)
and that the sum of absolute differences is the same as the L1 distance
(p = 1).

5 Transforms

You should understand the properties of the following sets of transformations.

• Shifting only. Also called Translations. Preserves orientation and all
the properties of rigid transformations.

• Rigid. (translation + rotation) Preserves areas (or volumes if in 3-D)
and all the properties of similarity transforms.

• Similarity (rigid + scale). Preserves angles, straightness of lines, par-
alllelness of lines.

• Linear transformations. This is the family of transformations that is
represented by ALL full rank 2x2 matrices. (Full rank just means the
matrix doesn’t squash the object to have no width or no height. For
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example, a matrix filled with zeroes would transform all coordinates to
(0,0), so the object would effectively be shrunken to have 0 size.) Linear
transformations preserve the parallelness of lines and the straightness of
lines. These transformations include, as special cases, rotations, scalings,
shearings, and flips. IMPORTANT: Note that linear transformations do
NOT include translations!

• Affine transformations (Linear + translations). These transforma-
tions are exactly like the linear transformations, except that they also
include the translations. This allows you to, say, both rotate and move an
object, instead of just rotating it. This is important since linear transfor-
mations always transform with respect to the origin (0,0). So if you want
to rotate something about its center, and the center is not at the origin,
then you will need affine transformations.

5.1 Transforming images pixel by pixel

You should understand the programs we wrote in class to rotate images. These
are called rotate1.m and rotate2.m on the class web page. In particular, you
should understand why rotate2.m was necessary to “fill the holes” created by
rotate1.m.

6 Classification

• Understand Bayes rule. Practice it many times so you are fluid with it.
Try making up some tables of p(x|c) where x is a feature value and c is a
class, and then try to compute p(c|x). You will also need, of course, p(c)
the prior probabilty of a class. If you don’t understand this, you better get
help before the test.

• Know what the Bayes Error rate is. Given the true likelihoods (not the
ones estimated from data) for each class, and the true priors (not the ones
estimated from data), the Bayes error rate is the lowest possible error rate
fthat any classifier can achieve.

• Given the true likelihoods and the true priors, using Bayes rule to compute
the posteriors, and picking the class with the highest posterior probability
gives a Bayes Optimal Classifier, which is a classifier that achieves the
Bayes error, i.e. the minimum possible error.

7 Understanding the sizes of sets

• How many distinct 10x10 binary images are there? Answer: 2100.

• How many 1000x1000 color images are there if each color channel (red,
green, blue) can take on 256 colors? First, calculate the number of colors
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per pixel:

c = 256 ∗ 256 ∗ 256 (8)
= 28 ∗ 28 ∗ 28 (9)
= 224 (10)
= 220 ∗ 24 (11)
≈ 1, 000, 000 ∗ 16 (12)
= 16 million. (13)

Given about 16 million colors per pixel, the number of 1000x1000 images
is

(16 million1000∗1000) = (16 million)million.

According to some estimates, there are about 280 particles in the known
universe.

• Given 100 x translations of an image, 100 y translations, 1000 rotations,
and 500 different scales, how many different images tranformations could
I produce? I’ll let you do this one yourself.
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