CMPSCI 691GG Applied Information Theory Fall 2006

Problem Set 3: Solutions

1. [Cover and Thomas 7.1]

(a)

Define the following notation,

max I,,) (X;Y)
p(z)

(@)
I

= maXx Ip(m) (X; }N/)
p(x)

We would like to show that C' = 5 (2) (X5 }7) <L) (X3Y) =C.

Notice that X, Y, and Y form a Markov chain such that X — Y — Y. Using the data-processing
inequality (Theorem 2.8.1), we know that,

Iy (2)(X;Y) Iy (2) (X3 Y) (3.1)

<
S Ip*(z) (X, Y)

We would like to determine under what conditions the following equality holds. Given our result
in Equation 3.2, it is sufficient to show,

We know that the following equality is true for Markov chains (see proof of Theorem 2.8.1),
However, p*(z) and p*(x) may not be the same distribution, so
L) (X;Y) 2 Lo (X;Y) (3.3)
= L) (X5Y) = L (X5 YY) (3.4)

We can show our objective inequality if Ip*(m)(X;YDN/) = 0. This occurs if ¥ = g(Y) is an
injective function.

2. [Cover and Thomas 7.2]

Consider the behavior of this channel as depicted in Figure 3.1.

When |a| # 1, this is a Noisy Channel with Nonoverlapping Outputs. We would like to compute the
capacity of the channel in this situation,

C = maxI(X;Y)
p(x)
= m(ag<H(X)—H(X|Y)
ydea
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Figure 3.1: Noisy channel model for question 7.2.
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Because X can be determined by Y, H(X|Y) = 0. Therefore,

C

max H(X)
p(z)

1 bit

Problem Set 3: Solutions

When |a| = 1, this is a Binary Erasure Channel. We will compute the capacity for a = 1. We begin
by defining the conditional entropy,

Y P(Y =y H(X|Y =y)

H(X|Y)

yeY

We can now compute the capacity,

C =
The computation for a = —1 is similar
3. [Cover and Thomas 7.3]
I(X;Y)

max [ (X;Y)

p(z)

max H(X) — H(X|Y)

p(z)

max H(X) — —H(X)

p(z)

p(z) 2

—max H(X)

2 p(x
— bit

)

1 1
JHXY =0+ HX|Y = 1) + (H(X|Y =2)
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However, because this is a binary symmetric channel, the uncertainty about X; and Z; is equivalent
given Y;. We can replace X with Z,

I(X;Y) = H(X)-H(Z|Y) (3.5)
Z

Now we will derive a bound for H(Z|Y') using properties of conditional entropy (Theorems 2.6.5 and
2.6.6).

H(ZIY) < H(Z)

< Y H(Z)
= nH(p)

Replacing H (Z \17') with nH(p) in Equation 3.5 will reduce the right hand side. This gives us the
following inequality.

I(X;Y) > H(X)-nH(p) (3.6)
Define the following notation,
Hp(@)(X) =nH(p) = max Hy)(X) —nH(p)

This defines the maximum value of the right hand side of Equation 3.6. Assuming that H ()? ) =
> H(X;), the maximizing distribution, p*(z), is uniform. This means that

—

Hp(z)(X) —nH(p) = n—nH(p)
= n(l—-H(p))
nC

We are interested in the capacity of the channel with memory.

m(a%(Ip(f)()_(‘;Y)) > nC
(%

4. [Cover and Thomas 7.8]

We define our set of distributions as,

pz) = 1;)‘
plylz) = P Y
L2 2

p(y) = [“Arx? 0]
A 12 3]

= [1-3 3]
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Next, we compute the conditional entropy, H(Y|X),

HY|X) = p(X=0) HY|X=0) + p(X=1) HY|X=1)
= (=X H([L o) + A H([3 3])
= (1-)) 0 + A 1
_ A

We can use H(Y) and H(Y|X) to compute the capacity of the channel,

C=maxI(X;Y)

p(x)

= m(aicH(Y) — H(Y|X)
p(x

() 2) (e (2)

Notice that we are maximizing a function of A,

or--ve (- 2) - (2 oe(2)

To find the maximum of this function, we differentiate with respect to lambda,

df A 1 1
a2y ()

.—
|

Do |

()
AT
2 % 2
L log (A)
2 2
-1

1 A\ 1 A
Slog(1-2) —Zlog(Z)—1=
oe(13) 3w (3) 1o

f(A) =logh — 2 bits
=~ 0.3219 bits

5. [Cover and Thomas 7.13]
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(a) Given the following distributions,

(11— X
l—a—c¢ € o
p(ylz) = . e o

()__1—)\T1—04—e € «
py—- A € l—-a—€ «

[1—a—et+ar+2A—A]"

= €—2eA+ A — a)
i «

We would like to compute the capacity of this channel,
C= max I(X;Y)
= m}&\xxH(Y) — H(Y|X)

However, we can show that H(Y|X) does not depend on A,
HY|X) = p(X=0) H(Y|X =0) + p(X =1 H(Y|X =1)
= (1-X H([l-a-€¢ € a]) + A H([e 1—a—e€ a])
= H([l-a—¢€ ¢ al)
This means we only need to find the A maximizing H(Y). We could differentiate using our

calculation of p(y). Instead, we use the method from Section 7.1.5, defining E be the event that
{Y = e}. We can use this to derive H(Y).

H(Y)=H(Y,E)
= H(E)+ H(Y|E)
= H(E)+ (1 - a)H(Y|E =0)

where the last line follows from the fact that H(Y|E = 1) = 0. Because H(FE) is not a function
of A\, we can leave it here. Therefore, we want to maximize H(Y|E = 0). So we need to compute

p(ylE =0),
P(E=0]Y =0)P(Y =0)
Y =0FE=0)=
p(Y =0[E =0) PE—0)
I+ a—etar+2ed— A
n 11—«
P(E=0Y =1)P(Y =1)
Y=1|F=0)=
_6—26)\+)\—a)\
1l -«

=1-P(Y =0|E =0)
Again, we could differentiate H(Y |E = 0) with respect to A but that’s hairy. Instead, we’ll recall
that H(Y|E = 0) < 1 with equality when p(Y =0|E =0) =p(Y = 1|E =0).
p(Y =0|E=0)=p(Y =1|E=0)
l—a—e+aX* +2eA" — A% €—2eA" + X" —a)*

l—« - l—«
1
A==
2
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The channel capacity is,

C = max)I(X;Y)
- H(E) + (1-a)Hw(Y|E=0) — H(Y|X)
= H([a 1-qa]) + (1-a) - H([l-a—-€ € a])

(b) In the situation where a = 0,

C = H(0 1]) + 1 — H(l—e ¢ 0])

1 — H([1—-¢ €]
(¢) In the situation where € = 0,
C = H(la 1-0a]) + (1-a) — H([l-a 0 a)
1l—«a
6. [Cover and Thomas 7.15]
Given the following distributions,
rL
o) =[5
L2
) =3 3]
(o) — 045 005
PV = 10,05 0.45
(ylz) = [0.90 0.10
PRI = 10.10  0.90
(a)
H(X) =1 bit
H(Y) =1 bit
H(X,Y) = 1.469 bits
I(X;Y)=H(X)+ H(Y)— H(X,Y)
~ 0.531 bits
(b) For X"

O<e

Therefore, all X™ are typical. The proof for Y™ is similar.

()

H(X,Y,Z)=H(X,Y)+ H(Z|X,Y) H(X,Y,Z)=H(X,Z)+ H(Y|X, Z)
H(X,Y)
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(d)

(e)

H(X,Z)=H(X)+ H(Z|X)
(X)+H(Z
(X,Y)

since Z is independent of X

~—

H
H

We also know that z™ is typical. Therefore,

€> f% logp(=") — H(Z)‘ 2™ is typical
— |- Ltowple) - 12 + (L towpta) - HCO)) shown in part b
= |- o)+ 10gpta) - ((2) + 1Y)

:—JG%MMMﬂ»—mxyﬂ Equation 3.7
n

1
= |—— (logp(z",y")) — H(X, Y)‘ Equation 7.161 in the text

n
Therefore, (z™,y™) is jointly typical.
By inspecting p(z,y), above, we know that,

p(a) = [0.90 0.10]
By the definition of typicality, we know that if 2™ is in the set, then
H(Z)—e< —Llogp(z") <H(Z)+e

H([0.90 0.10]) —0.20 < —Zlogp(z") < H([0.90 0.10])+0.20

0.269 < —Llogp(z") < 0.669

This corresponds to k = 1,2, 3,4. Therefore |A%%,(Z)| = 15275.

Pr((z"(z),Y") € A(X,Y))

Pr(Y" —a"(i) € AX(Z))
Pr(z"(i)+ Z" —z" (i) € AZ(2))
Pr(Z" e AY(2))

= > ="

neA(2)
= > pa-pt
ZzneAn(Z)
4 n
k n—k
_ 1 _
> (3)ra-»
k=1
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(f)
Pr((X™y") e AX(X,Y)=Pry" — X" e A% (2))
— " Pr(y" — " € AY(2)
= > pa")
2 €AR(Z)
1
= Z o
ZneAN(Z)
_4r(2)
2TL
(&)
(h)
7. [Cover and Thomas 7.20]
(a)
I(X;Y1,Y2) = H(Y1,Ys) — H(Y1,Y2|X)
=HMY1) + H(Y2[Y1) — H(Y1]X)
— H(Y2|Y3, X)
=HY1) + H(Yz) — I(Y1,Y2) — H(Y1[X)
— H(Y2[Y1, X)

= HY1) — HY|X) + H(Y:) — H(Y2|X)

+ H(Y|X) — H(Y2|Y1, X) — I(Y1,Y3)
= I(Y1; X) + 1(Yo; X) + I(Y2, Y1|X) — (Y1, Ya)
=I(Y1; X) 4+ 1(Yy; X) — I(Y1,Y2)
=21(Y; X) — I(Y1,Ya)

Cx—(vive) = m(afI(X; Y1,Ys)
p(x

= max(2[(X; Y1) — I(Y1,Y2))

p(z)

< max2I(X;Y7)
p(z)

=2maxI(X;Y7)

p(x)

=2Cx_v,

8. [Cover and Thomas 7.30]

(a)
C=maxI(X;Y)
p(x)

=max H(X) - H(X|Y)

p(z)

Y1 and Y5 conditionally independent given X

Y1 and Y5 identically distributed given X

since 1(Y1;Y3) >0
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3-9

We cleverly select Z so that H(X|Y) = 0. This occurs when Z results in a channel with nonover-

lapping outputs. One such set of values is Z = {4, 8,12}.

We pick the uniform distribution over X’ to maximize H(X). The entropy for this distribution is

log |X| = 2 bits. This is also our maximum channel capacity.

H(Y)
Z|IX,Y) + H(Y)

(
H(Y)
(Y)
)
)

H(X,Y,Z)=H(X,Y,Z)
H(X,Y|Z)+ H(Z)=H(X,Z|Y) +
HX|Z)+HY|X,Z)+H(Z)=H(X|Y)+ H

H(X|2)+ H(Z) = H(X|Y) +

HX)+H(Z)=HX|Y)+H
HX)-H(X|Y)=H(Y)-H(Z

I(X,Y) H(Y)-H((Z
I(X;Y)=H(Y)—1log3

Therefore min I(X;Y) = min H(Y). The minimum entropy for Y occurs when || is small. This
occurs when Z is a set of 3 consecutive integers. In this case, ) is a set of six consecutive integers.

In the case of Z = {0, 1,2}, we have

P(Y =0) = 2

PY =1) %(Ao+/\1)

P(Y =2) %(/\0+>\1+)\2)
P(Y = 3) %(1—&))

P(Y =4) = %(1 = (Ao + A1)
P(Y =5)= 1(1- (o + M1 + o))

where p(i) = \; and A3 =1 — Z?:o Ai- We need to find the values of A\; which maximize H(Y).

This occurs when Y is uniformly distributed or,

Ao i
Al =10
A2 0
In this case, H(Y) =log6 and C =log6 —log3 = 1.



