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Problem Set 3: Solutions

1. [Cover and Thomas 7.1]

(a) Define the following notation,

C = Ip∗(x)(X;Y )
= max

p(x)
Ip(x)(X;Y )

C̃ = Ip̃∗(x)(X; Ỹ )

= max
p(x)

Ip(x)(X; Ỹ )

We would like to show that C̃ = Ip̃∗(x)(X; Ỹ ) ≤ Ip∗(x)(X;Y ) = C.

Notice that X, Y , and Ỹ form a Markov chain such that X → Y → Ỹ . Using the data-processing
inequality (Theorem 2.8.1), we know that,

Ip̃∗(x)(X; Ỹ ) ≤ Ip̃∗(x)(X;Y ) (3.1)
≤ Ip∗(x)(X;Y ) (3.2)

(b) We would like to determine under what conditions the following equality holds. Given our result
in Equation 3.2, it is sufficient to show,

Ip̃∗(x)(X; Ỹ ) ≥ Ip∗(x)(X;Y )

We know that the following equality is true for Markov chains (see proof of Theorem 2.8.1),

Ip∗(x)(X; Ỹ ) = Ip∗(x)(X;Y )− Ip∗(x)(X;Y |Ỹ )

However, p̃∗(x) and p∗(x) may not be the same distribution, so

Ip̃∗(x)(X; Ỹ ) ≥ Ip∗(x)(X; Ỹ ) (3.3)

= Ip∗(x)(X;Y )− Ip∗(x)(X;Y |Ỹ ) (3.4)

We can show our objective inequality if Ip∗(x)(X;Y |Ỹ ) = 0. This occurs if Ỹ = g(Y ) is an
injective function.

2. [Cover and Thomas 7.2]

Consider the behavior of this channel as depicted in Figure 3.1.

When |a| 6= 1, this is a Noisy Channel with Nonoverlapping Outputs. We would like to compute the
capacity of the channel in this situation,

C = max
p(x)

I(X;Y )

= max
p(x)

H(X)−H(X|Y )
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Figure 3.1: Noisy channel model for question 7.2.

Because X can be determined by Y , H(X|Y ) = 0. Therefore,

C = max
p(x)

H(X)

= 1 bit

When |a| = 1, this is a Binary Erasure Channel. We will compute the capacity for a = 1. We begin
by defining the conditional entropy,

H(X|Y ) =
∑
y∈Y

P (Y = y)H(X|Y = y)

=
1
4
H(X|Y = 0) +

1
2
H(X|Y = 1) +

1
4
H(X|Y = 2)

=
1
2
H(X)

We can now compute the capacity,

C = max
p(x)

I(X;Y )

= max
p(x)

H(X)−H(X|Y )

= max
p(x)

H(X)− 1
2
H(X)

= max
p(x)

1
2
H(X)

=
1
2

max
p(x)

H(X)

=
1
2

bit

The computation for a = −1 is similar

3. [Cover and Thomas 7.3]

I( ~X; ~Y ) = H( ~X)−H( ~X|~Y )
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However, because this is a binary symmetric channel, the uncertainty about Xi and Zi is equivalent
given Yi. We can replace ~X with ~Z,

I( ~X; ~Y ) = H( ~X)−H(~Z|~Y ) (3.5)

Now we will derive a bound for H(~Z|~Y ) using properties of conditional entropy (Theorems 2.6.5 and
2.6.6).

H(~Z|~Y ) ≤ H(~Z)

≤
n∑

i=1

H(Zi)

= nH(p)

Replacing H(~Z|~Y ) with nH(p) in Equation 3.5 will reduce the right hand side. This gives us the
following inequality.

I( ~X; ~Y ) ≥ H( ~X)− nH(p) (3.6)

Define the following notation,

Hp̃∗(x)( ~X)− nH(p) = max
p(x)

Hp(x)( ~X)− nH(p)

This defines the maximum value of the right hand side of Equation 3.6. Assuming that H( ~X) =∑
H(Xi), the maximizing distribution, p̃∗(x), is uniform. This means that

Hp̃∗(x)( ~X)− nH(p) = n− nH(p)
= n(1−H(p))
= nC

We are interested in the capacity of the channel with memory.

max
p(~x)

Ip(~x)( ~X; ~Y ) ≥ nC

4. [Cover and Thomas 7.8]

We define our set of distributions as,

p(x) =
[
1− λ

λ

]
p(y|x) =

[
1 0
1
2

1
2

]
p(y) =

[
1− λ

λ

]T

×
[
1 0
1
2

1
2

]
=

[
1− λ

2
λ
2

]
First, we compute the entropy, H(Y ),

H(Y ) = −1×
[
1− λ

2
λ
2

]
× log

[
1− λ

2
λ
2

]
= −1×

((
1− λ

2

)
log

(
1− λ

2

)
+

(
λ

2

)
log

(
λ

2

))
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Next, we compute the conditional entropy, H(Y |X),

H(Y |X) = p(X = 0) H(Y |X = 0) + p(X = 1) H(Y |X = 1)
= (1− λ) H(

[
1 0

]
) + λ H(

[
1
2

1
2

]
)

= (1− λ) 0 + λ 1
= λ

We can use H(Y ) and H(Y |X) to compute the capacity of the channel,

C = max
p(x)

I(X;Y )

= max
p(x)

H(Y )−H(Y |X)

= max
p(x)

−1×
((

1− λ

2

)
log

(
1− λ

2

)
+

(
λ

2

)
log

(
λ

2

))
− λ

Notice that we are maximizing a function of λ,

f(λ) = −1×
((

1− λ

2

)
log

(
1− λ

2

)
+

(
λ

2

)
log

(
λ

2

))
− λ

To find the maximum of this function, we differentiate with respect to lambda,

df

dλ
= −

(
1− λ

2

)
× 1

1− λ
2

×
(
−1

2

)
−

(
−1

2

)
× log

(
1− λ

2

)
− λ

2
× 1

λ
2

× 1
2

− 1
2
× log

(
λ

2

)
− 1

=
1
2

log
(

1− λ

2

)
− 1

2
log

(
λ

2

)
− 1

Setting this to zero, we can derive the maximum,

1
2

log
(

1− λ

2

)
− 1

2
log

(
λ

2

)
− 1 = 0

λ =
2
5

f(λ) = log 5− 2 bits
≈ 0.3219 bits

5. [Cover and Thomas 7.13]
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(a) Given the following distributions,

p(x) =
[
1− λ

λ

]
p(y|x) =

[
1− α− ε ε α

ε 1− α− ε α

]
p(y) =

[
1− λ

λ

]T [
1− α− ε ε α

ε 1− α− ε α

]

=

1− α− ε + αλ + 2ελ− λ
ε− 2ελ + λ− αλ

α

T

We would like to compute the capacity of this channel,

C = max
λ

I(X;Y )

= max
λ

H(Y )−H(Y |X)

However, we can show that H(Y |X) does not depend on λ,

H(Y |X) = p(X = 0) H(Y |X = 0) + p(X = 1) H(Y |X = 1)
= (1− λ) H(

[
1− α− ε ε α

]
) + λ H(

[
ε 1− α− ε α

]
)

= H(
[
1− α− ε ε α

]
)

This means we only need to find the λ maximizing H(Y ). We could differentiate using our
calculation of p(y). Instead, we use the method from Section 7.1.5, defining E be the event that
{Y = e}. We can use this to derive H(Y ).

H(Y ) = H(Y, E)
= H(E) + H(Y |E)
= H(E) + (1− α)H(Y |E = 0)

where the last line follows from the fact that H(Y |E = 1) = 0. Because H(E) is not a function
of λ, we can leave it here. Therefore, we want to maximize H(Y |E = 0). So we need to compute
p(y|E = 0),

p(Y = 0|E = 0) =
P (E = 0|Y = 0)P (Y = 0)

P (E = 0)

=
1 + α− ε + αλ + 2ελ− λ

1− α

p(Y = 1|E = 0) =
P (E = 0|Y = 1)P (Y = 1)

P (E = 0)

=
ε− 2ελ + λ− αλ

1− α

= 1− P (Y = 0|E = 0)

Again, we could differentiate H(Y |E = 0) with respect to λ but that’s hairy. Instead, we’ll recall
that H(Y |E = 0) ≤ 1 with equality when p(Y = 0|E = 0) = p(Y = 1|E = 0).

p(Y = 0|E = 0) = p(Y = 1|E = 0)
1− α− ε + αλ∗ + 2ελ∗ − λ∗

1− α
=

ε− 2ελ∗ + λ∗ − αλ∗

1− α

λ∗ =
1
2
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The channel capacity is,

C = maxλ I(X;Y )
= H(E) + (1− α)Hλ∗(Y |E = 0) − H(Y |X)
= H

([
α 1− α

])
+ (1− α) − H(

[
1− α− ε ε α

]
)

(b) In the situation where α = 0,

C = H
([

0 1
])

+ 1 − H(
[
1− ε ε 0

]
)

= 1 − H(
[
1− ε ε

]
)

(c) In the situation where ε = 0,

C = H
([

α 1− α
])

+ (1− α) − H(
[
1− α 0 α

]
)

= 1− α

6. [Cover and Thomas 7.15]

Given the following distributions,

p(x) =
[

1
2
1
2

]
p(y) =

[
1
2

1
2

]
p(x, y) =

[
0.45 0.05
0.05 0.45

]
p(y|x) =

[
0.90 0.10
0.10 0.90

]
(a)

H(X) = 1 bit
H(Y ) = 1 bit

H(X, Y ) ≈ 1.469 bits
I(X;Y ) = H(X) + H(Y )−H(X, Y )

≈ 0.531 bits

(b) For Xn, ∣∣∣∣− 1
n

log p(xn)−H(X)
∣∣∣∣ < ε∣∣∣∣∣− 1

n
log

(
1
2

)2

−H(X)

∣∣∣∣∣ < ε

0 < ε

Therefore, all Xn are typical. The proof for Y n is similar.

(c)

H(X, Y, Z) = H(X, Y ) + H(Z|X, Y ) H(X, Y, Z) = H(X, Z) + H(Y |X, Z)
= H(X, Y ) = H(X, Z)
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H(X, Z) = H(X) + H(Z|X)
= H(X) + H(Z) since Z is independent of X

= H(X, Y ) (3.7)

We also know that zn is typical. Therefore,

ε >

∣∣∣∣− 1
n

log p(zn)−H(Z)
∣∣∣∣ zn is typical

=
∣∣∣∣− 1

n
log p(zn)−H(Z) +

(
− 1

n
log p(xn)−H(X)

)∣∣∣∣ shown in part b

=
∣∣∣∣− 1

n
(log p(zn) + log p(xn))− (H(Z) + H(X))

∣∣∣∣
=

∣∣∣∣− 1
n

(log p(zn)p(xn))−H(X, Y )
∣∣∣∣ Equation 3.7

=
∣∣∣∣− 1

n
(log p(xn, yn))−H(X, Y )

∣∣∣∣ Equation 7.161 in the text

Therefore, (xn, yn) is jointly typical.

(d) By inspecting p(x, y), above, we know that,

p(x) =
[
0.90 0.10

]
By the definition of typicality, we know that if zn is in the set, then

H(Z)− ε < − 1
n log p(zn) < H(Z) + ε

H(
[
0.90 0.10

]
)− 0.20 < − 1

n log p(zn) < H(
[
0.90 0.10

]
) + 0.20

0.269 < − 1
n log p(zn) < 0.669

This corresponds to k = 1, 2, 3, 4. Therefore |A25
0.10(Z)| = 15275.

(e)

Pr((xn(i), Y n) ∈ An
ε (X, Y )) = Pr(Y n − xn(i) ∈ An

ε (Z))
= Pr(xn(i) + Zn − xn(i) ∈ An

ε (Z))
= Pr(Zn ∈ An

ε (Z))

=
∑

zn∈An
ε (Z)

p(zn)

=
∑

zn∈An
ε (Z)

pk(1− p)n−k

=
4∑

k=1

(
n

k

)
pk(1− p)n−k

≈ 0.8302
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(f)

Pr((Xn, yn) ∈ An
ε (X, Y ) = Pr(yn −Xn ∈ An

ε (Z))

=
∑
xn

Pr(yn − xn ∈ An
ε (Z))

=
∑

zn∈An
ε (Z)

p(xn)

=
∑

zn∈An
ε (Z)

1
2n

=
|An

ε (Z)|
2n

(g)
(h)

7. [Cover and Thomas 7.20]

(a)

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)
= H(Y1) + H(Y2|Y1)−H(Y1|X)
−H(Y2|Y1, X)

= H(Y1) + H(Y2)− I(Y1, Y2)−H(Y1|X)
−H(Y2|Y1, X)

= H(Y1)−H(Y1|X) + H(Y2)−H(Y2|X)
+ H(Y2|X)−H(Y2|Y1, X)− I(Y1, Y2)

= I(Y1;X) + I(Y2;X) + I(Y2, Y1|X)− I(Y1, Y2)
= I(Y1;X) + I(Y2;X)− I(Y1, Y2) Y1 and Y2 conditionally independent given X

= 2I(Y1;X)− I(Y1, Y2) Y1 and Y2 identically distributed given X

(b)

CX→(Y1,Y2) = max
p(x)

I(X;Y1, Y2)

= max
p(x)

(2I(X;Y1)− I(Y1, Y2))

≤ max
p(x)

2I(X;Y1) since I(Y1;Y2) ≥ 0

= 2max
p(x)

I(X;Y1)

= 2CX→Y1

8. [Cover and Thomas 7.30]

(a)

C = max
p(x)

I(X;Y )

= max
p(x)

H(X)−H(X|Y )
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We cleverly select Z so that H(X|Y ) = 0. This occurs when Z results in a channel with nonover-
lapping outputs. One such set of values is Z = {4, 8, 12}.
We pick the uniform distribution over X to maximize H(X). The entropy for this distribution is
log |X | = 2 bits. This is also our maximum channel capacity.

(b)

H(X, Y, Z) = H(X, Y, Z)
H(X, Y |Z) + H(Z) = H(X, Z|Y ) + H(Y )

H(X|Z) + H(Y |X, Z) + H(Z) = H(X|Y ) + H(Z|X, Y ) + H(Y )
H(X|Z) + H(Z) = H(X|Y ) + H(Y )

H(X) + H(Z) = H(X|Y ) + H(Y )
H(X)−H(X|Y ) = H(Y )−H(Z)

I(X;Y ) = H(Y )−H(Z)
I(X;Y ) = H(Y )− log 3

Therefore min I(X;Y ) = min H(Y ). The minimum entropy for Y occurs when |Y| is small. This
occurs when Z is a set of 3 consecutive integers. In this case, Y is a set of six consecutive integers.
In the case of Z = {0, 1, 2}, we have

P (Y = 0) =
1
3
λ0

P (Y = 1) =
1
3
(λ0 + λ1)

P (Y = 2) =
1
3
(λ0 + λ1 + λ2)

P (Y = 3) =
1
3
(1− λ0)

P (Y = 4) =
1
3
(1− (λ0 + λ1))

P (Y = 5) =
1
3
(1− (λ0 + λ1 + λ2))

where p(i) = λi and λ3 = 1 −
∑2

i=0 λi. We need to find the values of λi which maximize H(Y ).
This occurs when Y is uniformly distributed or,λ0

λ1

λ2

 =

 1
2
0
0


In this case, H(Y ) = log 6 and C = log 6− log 3 = 1.


