
Assignment: Backgrounding and Optical Flow.

April 6, 2010

1 Backgrounding

In this part of the assignment, you will develop a simple background subtraction pro-
gram.

1. In this assignment, you are given two “videos”. Each videois stored as a 4-
dimensional matlab array. The first three dimensions represent rows, columns,
and the red-green-blue layers of an image. The fourth dimension represents time.
The videos are named traindata.mat and testdata.mat, and you can download
them from the course web page. You may want to make reduced resolution
versions of these videos by clipping them, sub-sampling them, or reducing the
number of frames so that you can get your code working more easily. You
can “play” the videos using the following sequence of matlabcommands. Load
these 4-dimensional arrays into matlab by just typing ’loadtrain data’ and ’load
testdata’. You should enter all the commands as a single line:
for i=1:100 imagesc(train data(:,:,:,i)); drawnow; end

2. Next, your job is to make a background model. The background model will have
two parts. The first part is the average value of a pixel in a particular location
over time. This should be the mean image of the training movie. The size of this
mean image should be (241, 361, 3). I’ll let you figure out how to create it, but I
will tell you that you can do it in a single command!

3. The second part of the background model is the average distance that each pixel
is from the mean value at that location. This is essentially ameasure of the
pixel variance. To compute this, for each pixel in a given position in each frame,
compute the squared Euclidean distance to the mean pixel at that location (from
the previous step). Then take the average value of this distance at each location
in the image. Take the square root of each value in the averagedistance image.
You can refer to this as youstandard deviation image. Plot the standard deviation
image.

4. Now, using your model derived from the training data, try to find moving objects
in the test sequence. In particular, for some value alpha, find all of the pixels
in each frame of the test sequence that are within alpha standard deviations of
the mean value. For a single image, you can visualize your results by making a

1

black and white image in which the pixels which are “moving” are white, and
the pixels which are not moving are black. You can visual yourresults for the
whole test sequence by adding together all of the individualbinary images for
each frame.

5. Experiment with different values of alpha, and produce a summary image for
each value of alpha. Turn in these summary images, along withyour mean image
and standard deviation image.

2

2 Optical Flow

In this part of the assignment, you will implement a version of the Lucas-Kanade opti-
cal flow algorithm.

In this assignment, you are given the first two frames of the “Flower Garden” video.
You can see the whole video as an mpeg movie on the course web site under the “links”
section. The frames provided on the course web site have beenstored in as gray-scale
images in a 3-dimensional array, where, as usual, the first two dimensions are rows and
columns, and the third dimension indexes time (in this case just t=1 t=2). Load this
.mat file into matlab.

Next, you will be implementing the Lukas-Kanade optical flowalgorithm. The goal
will be to estimate the optical flow at a certain set of points.Remember that for Lukas-
Kanade, for each flow vector that you estimate, you will be choosing a region over
which to analyze the two images. If we had more time, I would have you experiment
with different sized regions, but since we are short on time,I’ll tell you how large to
make these regions. For this assignment, I want you to use regions that are 15 pixels
by 15 pixels, andnon-overlapping. That is, since the input images are 360 by 240, you
should have an array of 24 by 16 optical flow vectors at the end of your procedure.

The Lukas-Kanade algorithm works by trying to find an opticalflow vector with
the componentsu andv for each region that minimizes the error of the following series
of equations:

E1
x u+E1

y v = −E1
t (1)

E2
x u+E2

y v = −E2
t (2)

E3
x u+E3

y v = −E3
t (3)

. . . (4)

E225
x u+E225

y v = −E225
t . (5)

Recall thatE1
x is the estimate of the image derivative in the horizontal direction at

the first pixel in the image patch(hence the superscript “1”). For the purposes of this
assignment you can just take that to be the difference between that first pixel and the
one immediately to its right. (NOTE: You will have to do something special for the
image regions that are on the rightmost edge of the image, since those regions will not
have a pixel immediately to the right of the rightmost pixel.Do whatever you like to
deal with this. It won’t have a major impact on the results.) The last index is 225 since
there 225 pixels in the image region being analyzed.

This equation can be rewritten in matrix form as

A

[

u
v

]

= b, (6)

where

A =

E1
x E1

y
E2

x E2
y

E3
x E3

y
.

E225
x E225

y

3

and

b =

−E1
t

−E2
t

−E3
t

. . .

−E225
t

.

Since you are trying to solve for two unknowns with 225 equations, there are in
general no values ofu andv that will satisfy these equations. To find the “best fit”,

i.e. the values ofu andv that will generate âb = A

[

u
v

]

, such that̂b−b has smallest

magnitude, the idea is to use the so-called “pseudo-inverse” of A.
The derivation of the pseudo-inverse goes like this. Letf represent the flow vector

with componentsu andv. Then we have:

Af ≈ b (7)

ATAf ≈ ATb (8)

(ATA)−1ATAf ≈ (ATA)−1ATb (9)

f ≈ (ATA)−1ATb. (10)

The expression
(ATA)−1AT

is called thepseudo-inverseof A, and you will be happy to know there is a function in
matlab to compute the pseudo-inverse. The function ispinv().

Your job is to for each region in the image:

1. Compute the matrixA and the vectorf.

2. Compute the pseudo-inverse ofA.

3. Provide an estimate ofu andv for each image region by calculating the vectorf.

Final part of assignment.When you have estimate foru andv of each patch, now
it is time to display them. There is a command in matlab calledquiver() which plots
a set of two-dimensional vectors as arrows on the screen. Tryto figure out how to use
this to plot your optical flow results.

IMPORTANT: quiver is difficult to use, because it works with x,y coordinates
rather than row,column coordinates. Also, a small value of yis at the bottom of the
screen, whereas for a row coordinate, a small value is plotted at the top of the screen.
This makes it quite confusing to use. I suggest using the version of quiver with 4 ar-
guments, and providing explicit x and y coordinates for eachflow vector that you are
plotting. You can create the x and y coordinate matrices using a double loop.

Turn in your final plot of your optical flow vectors. Here is what mine looked like:

4

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

Figure 1:Lucas-Kanade flow between first two images of garden sequence.

5

