Computer Science 591B, Graphics

http://www.cs.umass.edu/~elm/graphics/

Test 1: Review Sheet

You should know the following material:

- 1. Basic structure of the frame buffer and the representation of a pixel as a concatenation of four bytes, where the last three bytes represent the strength of the red, green, and blue components of the pixel.
- 2. Basic line-drawing algorithms, as in Assignment 1.
- 3. Properties of the following transformations: rigid, similarity, linear, affine, and perspective. Know what properties of the image each of these types of transformations preserves, such as angle, straightness, parallelness, etc.
- 4. Know how to implement linear tranformations in two dimensions with two by two matrices, including shearing, scaling (separate scaling in each direction), rotation, and reflection.
- 5. Know how to implement translation (shifting) in two dimensions by adding a simple offset vector to the coordinates of a point.
- 6. Know how to implement affine transformations in two dimensions with three by three homogeneous matrices applied to a "homogenized" vector, i.e. a vector where a "1" has been added to the end of the vector. In addition to the linear transformation, you should be able to implement translation with these matrices.
- 7. Understand why we use "forward" transformations when transforming geometric objects like squares and triangles, but we use "backward" transformations when transforming bitmaps.
- 8. Know how to find the inverse of the product of matrices.
- 9. Know how to find the inverse of each kind of basic transformation matrix, including all of the basic affine transformations: shearing, scaling, rotation, translation, and reflection.
- 10. Know the strategy of moving a point within an object to the origin (using a translation matrix) before applying another sort of transformation, so that the transformation does not "move" the object.
- 11. Make sure you have read chapter 21 in the book.
- 12. In two-dimensions, know how to find the area of a triangle given its three vertices.
- 13. In three dimensions, know how to compute the cross product between two vectors. This results in a vector perpendicular to the original two whose magnitude is equal to the sine of the angle between the vectors times the product of the magnitude of the two vectors.
- 14. Know how to find the magnitude of a vector in two or three dimensions.
- 15. Know how to derive the barycentric coordinates for a point in a triangle.
- 16. Have a basic idea of what a pinhole camera is and how it works. Know that a pinhole camera obeys the image formation model of "perspective projection".
- 17. Suppose we have a canonical coordinate system defined by an origin \mathbf{o} and perpendicular, unit vector axes \mathbf{x} and \mathbf{y} . Now you are given, in these x-y coordinates, the origin \mathbf{e} and the \mathbf{u} and \mathbf{v} axes of another perpendicular coordinate system. Be able to find the coordinates of a point p in u-v coordinates given its coordinates in x-y. Similarly, be able to find the coordinates of a point p in x-y coordinates given its coordinates in the u-v system.