
Computer Science 591B, Graphics

http://www.cs.umass.edu/∼elm/graphics/

Assignment 3: Primitive 3-D Rendering

You will be using the SDL environment again for this assignment. You will define the geometry and coloring of a
3-D object and render it using orthographic projection in 3-D. You will then be asked to make the object “tumble” by
continuously rotating it in a semi-random fashion.

Following the steps laid out here is designed to make the assignment easier. I recommend that you try to do the
assignment in the order presented here, confirming along theway that each step works as expected before going to the
next part.

1. Define a structure calledvector3 which will hold the points that define your object. It should have 3 compo-
nents each of which is adouble. You may find it easier later on if you define the components as afixed size
array of size 3. For the purposes of this assignment, I will refer to the first coordinate of this triple as the “x”
coordinates, the second as the “y” coordinate, and the thirdas the “z” coordinate. Define a default constructor
for vector3 which does nothing, and another constructor that takes 3 doubles as initial values. Write a member
functionmag() which returns the Euclidean magnitude (length) of the vector. Write two more functions THAT
ARE NOT MEMBER FUNCTIONS OFvector3. The first function should subtract two vectors and be defined
as

vector3 minus(vector3 v1, vector3 v2);

The second function should evaluate the cross product of two3-D vectors and should be defined as

vector3 cross(vector3 v1,vector3 v2);

2. The next task is to define the fundamental rendering primitive, the triangle. Each of the vertices of the triangle
should be a point in 3 dimensions. Define a C++ structure called triangle. It should consist of 3vector3
objects and an unsigned integer calledcolor which will represent the surface color of the triangle. Define a
default constructor which does nothing, and another constructor which takes 3vector3 objects and an unsigned
int for the color to define the triangle in 3-D. Define a member function

double triangle::signedAreaXY();

This function should NOT compute the signed area of the 3-D triangle. What it SHOULD compute is the signed
area of the triangle defined by thex andy coordinates of each point. In other words, it should computethe
signed area of the triangle which results from projecting this triangle onto thex− y plane. This can be found
simply by using the formula for computing the signed area of atriangle in two dimensions that we discussed in
class. Just ignore the z-coordinate and you should get the right result. Furthermore, note that a signed area can
be negative.

Test your area function with some different 3-D triangles. If the x-coordinate of all 3 vertices of the triangle are
the same, the area should be 0. The same is true for they coordinates. Note that if you reverse the ordering
of the vertices of a defined triangle, your signed area shouldbe negated. Make sure all of these properties are
correct before you move on, as they will be very hard to debug later.

1



3. You will now use the area of the two-dimensional projection of a triangle to find the two-dimensional barycen-
tric coordinates of the projected triangle. Define a member function

triangle::baryXY(vector3 v,double &alpha,double &beta,double &gamma);

which computes the two-dimensional barycentric coordinates of a point in the given triangle and returns them
in the variablesalpha, beta, andgamma. Just as you ignored thez-coordinate of the triangle vertices in com-
puting the signed area of the triangle, you should ignore thez-coordinate of the argumentv in computing the
barycentric coordinates. Thus, you are actually computingthe barycentric coordinates ofthe projection of v
in the projection of the original 3-D triangle. To make sure this routine works, try out various points within
a triangle and make sure the barycentric coordinates are correct. Again, it will pay off if you make sure this
routine works before continuing. It will be very hard to debug later. Try putting in points on the edge of the
triangle for the argumentv. What should the barycentric coordinates be? What about a point at a vertex of the
triangle? What about a point in the middle of an equilateral triangle? Finally, what about a point outside the
triangle? If you don’t remember the answer to these questions, read about barycentric coordinates in the book
or look at your notes from class. (What notes?)

4. The next member function you will write will be

triangle::rasterize();

As its name suggests, this will take in a 3-D triangle, and, ignoring thez-coordinate, will paint each pixel of the
triangle according to the color of the triangle. You should rasterize the triangle as we discussed in class. Rather
than cycling over the ENTIRE frame buffer for each triangle,you should find the bounding box for the triangle
(determined by the min and max of thex andy coordinates) and loop over the bounding box. For each screen
coordinate in the bounding box, see whether the barycentriccoordinates are non-negative, and if so, paint the
point into the frame buffer. Try rasterizing a few simple triangles before moving on, including triangles of 0
width or 0 size.

5. Next, you should add a z-buffer to your triangle rasterization routine. Probably the easiest way to do this is
to use a global variable for the z-buffer. Each time you are going to plot a point in the frame buffer (when
its barycentric coordinates are all non-negative), you should store thez coordinate of the current point in the
z-buffer if it is closer to the viewer than the last point. Alternatively, if the point in the z-buffer is already closer
to the viewer than the point you are rendering, you should notrender the point. You will need to compute thez
coordinate of the current point by interpolating it from thez coordinates of the vertices of the current triangle.
This can be done using interpolation using the barycentric coordinates, as we showed with color interpolation.
Plot some triangles using the z-buffer code and make sure that they come out in the proper visual order. I don’t
care whether the viewer is looking in thez positive orz negative direction.

2



6. Define a structure calledmat3h which is a homogeneous transformation matrix for 3-D coordinates. It should
consist of a 4 by 4 array of doubles. Define a default constructor which does nothing. Define a member func-
tion void mat3d::zero() which sets all elements of the array to 0. Define another member function void
identity() that sets the elements of the matrix so that it is an identity matrix.

Write functions (NOT MEMBER FUNCTIONS) that multiply two mat3h’s:

mat3h mat3hMult(mat3h a,mat3h b);

and that multiply a matrix (mat3h) times a vector (vector3):

vector3 matMult(mat3h a,vector3 v);

Define additional functions which generate rotation matrices for each directions of rotation:

mat3h rot3hX(double theta);
mat3h rot3hY(double theta);
mat3h rot3hZ(double theta);

given the angle of rotation theta about the particular axis.A good check for your rotation matrices and matrix
vector multiplication is that each rotation matrix should leave one coordinate of a vector unchanged.

7. Now it’s time to define a 3-D object. I suggest a cube, since the geometry is very simple, but you may use other
objects if you like. The first step is to define the 3-D verticesof the shape. After that, you should define triangles
that use these vertices to define your 3-D shape. The order of the vertices in each triangle definition should not
matter, and you shouldn’t need to worry about it.

8. Finally, put it all together. Define three variables,xrot, yrot, andzrot for storing the current “rotation” of
your shape. At each rendering step, you should apply rotation matrices created (by usingxrot, yrot, andzrot
as the angles) to your shape to change its orientation in 3-D.You may need to translate your object to the origin
before rotating it, and translate it back after rotating it.After rotating your object, render it by rasterizing all of
the triangles within it using the z-buffer rasterization. Finally, change the rotation variables a little bit after each
rendering. This will cause your object to “tumble” during the animation.

Turn in your code as usual to Alex.

3


