Computer Science 591B, Graphics

http://www.cs.umass.edu£lm/graphics/

Assignment 3: Primitive 3-D Rendering

You will be using the SDL environment again for this assignmm&ou will define the geometry and coloring of a
3-D object and render it using orthographic projection iD.3¥ou will then be asked to make the object “tumble” by
continuously rotating it in a semi-random fashion.

Following the steps laid out here is designed to make th@mssnt easier. | recommend that you try to do the
assignment in the order presented here, confirming alongalgghat each step works as expected before going to the
next part.

1. Define a structure calleckct or 3 which will hold the points that define your object. It shoulavk 3 compo-
nents each of which is @oubl e. You may find it easier later on if you define the components fased size
array of size 3. For the purposes of this assignment, | widlrro the first coordinate of this triple as the “x”
coordinates, the second as the “y” coordinate, and the #sirithe “z” coordinate. Define a default constructor
for vect or 3 which does nothing, and another constructor that takes Bldsas initial values. Write a member
functionmag() which returns the Euclidean magnitude (length) of the wvedtgrite two more functions THAT
ARE NOT MEMBER FUNCTIONS OFRect or 3. The first function should subtract two vectors and be defined
as

vector3 mnus(vector3 vl, vector3 v2);
The second function should evaluate the cross product o8t®ovectors and should be defined as

vector3 cross(vector3 vl,vector3 v2);

2. The next task is to define the fundamental rendering gueithe triangle. Each of the vertices of the triangle
should be a point in 3 dimensions. Define a C++ structure @ali€angl e. It should consist of ¥ect or 3
objects and an unsigned integer caltad or which will represent the surface color of the triangle. Defan
default constructor which does nothing, and another cootgr which takes 8ect or 3 objects and an unsigned
int for the color to define the triangle in 3-D. Define a memharction

doubl e triangl e::signedAreaXY();

This function should NOT compute the signed area of the 3ddgle. What it SHOULD compute is the signed
area of the triangle defined by tlkeandy coordinates of each point. In other words, it should complge
signed area of the triangle which results from projectirig thangle onto thex—y plane. This can be found
simply by using the formula for computing the signed area tifeangle in two dimensions that we discussed in
class. Just ignore the z-coordinate and you should getghénésult. Furthermore, note that a signed area can
be negative.

Test your area function with some different 3-D triangléshé x-coordinate of all 3 vertices of the triangle are
the same, the area should be 0. The same is true for toerdinates. Note that if you reverse the ordering
of the vertices of a defined triangle, your signed area shbeldegated. Make sure all of these properties are
correct before you move on, as they will be very hard to dehtey.|



3. You will now use the area of the two-dimensional projeatid a triangle to find the two-dimensional barycen-
tric coordinates of the projected triangle. Define a membection

triangle::baryXY(vector3 v, doubl e &al pha, doubl e &beta, doubl e &gamm);

which computes the two-dimensional barycentric coordisatf a point in the given triangle and returns them
in the variablesl pha, bet a, andgamua. Just as you ignored thecoordinate of the triangle vertices in com-
puting the signed area of the triangle, you should ignoreztbagordinate of the argumentin computing the
barycentric coordinates. Thus, you are actually computiggbarycentric coordinates tfe projection of v

in the projection of the original 3-D triangle. To make sunéstroutine works, try out various points within
a triangle and make sure the barycentric coordinates areatorAgain, it will pay off if you make sure this
routine works before continuing. It will be very hard to dglater. Try putting in points on the edge of the
triangle for the argument. What should the barycentric coordinates be? What about & aibénvertex of the
triangle? What about a point in the middle of an equilateiahtyle? Finally, what about a point outside the
triangle? If you don’'t remember the answer to these questi@ad about barycentric coordinates in the book
or look at your notes from classihat notes?)

4. The next member function you will write will be

triangle::rasterize();

As its name suggests, this will take in a 3-D triangle, andoighg thez-coordinate, will paint each pixel of the
triangle according to the color of the triangle. You showsterize the triangle as we discussed in class. Rather
than cycling over the ENTIRE frame buffer for each triangiey should find the bounding box for the triangle
(determined by the min and max of tkendy coordinates) and loop over the bounding box. For each screen
coordinate in the bounding box, see whether the barycettigcdinates are non-negative, and if so, paint the
point into the frame buffer. Try rasterizing a few simpletrgles before moving on, including triangles of O
width or O size.

5. Next, you should add a z-buffer to your triangle rastéiararoutine. Probably the easiest way to do this is
to use a global variable for the z-buffer. Each time you anagdo plot a point in the frame buffer (when
its barycentric coordinates are all non-negative), yowkhstore thez coordinate of the current point in the
z-buffer if it is closer to the viewer than the last point. éthatively, if the point in the z-buffer is already closer
to the viewer than the point you are rendering, you shoulderder the point. You will need to compute the
coordinate of the current point by interpolating it from theoordinates of the vertices of the current triangle.
This can be done using interpolation using the barycentricdinates, as we showed with color interpolation.
Plot some triangles using the z-buffer code and make sutéttéacome out in the proper visual order. | don't
care whether the viewer is looking in tagositive orz negative direction.



6. Define a structure callatht 3h which is a homogeneous transformation matrix for 3-D camatés. It should
consist of a 4 by 4 array of doubles. Define a default congirughich does nothing. Define a member func-
tion voi d mat 3d: : zero() which sets all elements of the array to 0. Define another meffuinetion voi d
i dentity() that sets the elements of the matrix so that it is an identérim

Write functions (NOT MEMBER FUNCTIONS) that multiply two nizt’s:
mat 3h mat 3hMul t (mat 3h a, mat 3h b);
and that multiply a matrixnft 3h) times a vector\ect or 3):

vector3 mat Ml t (mat 3h a, vector3 v);

Define additional functions which generate rotation masifor each directions of rotation:

mat 3h rot 3hX(doubl e theta);
mat 3h rot 3hY(doubl e theta);
mat 3h rot 3hZ(doubl e theta);

given the angle of rotation theta about the particular akigjood check for your rotation matrices and matrix
vector multiplication is that each rotation matrix showddve one coordinate of a vector unchanged.

7. Now it's time to define a 3-D object. | suggest a cube, siheggeometry is very simple, but you may use other
objects if you like. The first step is to define the 3-D vertiokthe shape. After that, you should define triangles
that use these vertices to define your 3-D shape. The ordeeaftrtices in each triangle definition should not
matter, and you shouldn’t need to worry about it.

8. Finally, put it all together. Define three variabla@spt , yrot, andzrot for storing the current “rotation” of
your shape. At each rendering step, you should apply rotatiatrices created (by usimgot , yr ot , andzr ot
as the angles) to your shape to change its orientation in\®D may need to translate your object to the origin
before rotating it, and translate it back after rotatinghitter rotating your object, render it by rasterizing all of
the triangles within it using the z-buffer rasterizatiomadly, change the rotation variables a little bit afterteac
rendering. This will cause your object to “tumble” duringthAnimation.

Turn in your code as usual to Alex.



