
Review for Exam 1

Erik G. Learned-Miller
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

March 26, 2014

Abstract

Here are some things you need to know for the in-class exam. If you
cover this material, the handouts posted on the web page, the first 3
problem sets, and the lecture slides, you should be in good shape for the
test.

1

1 Basic notation

You should understand the following types of notation.

• Summation (
∑

). Example:

N∑
i=1

Xi = X1 +X2 + ...+XN . (1)

• Product (
∏

). Example:

N∏
i=1

Xi = X1 ×X2 × ...×XN . (2)

• When we perform optimization of a function with respect to some change-
able parameter, we are usually interested in either the minimum or max-
imium value of the function itself, or, alternatively, we are interested in
the values of the parameter that achieved the maximum or minimum.

Suppose we are trying to find the maximum value of a function f(x, y)
when y is set to the value 3 and x can be any value from some set S. To
specify the maximum value of the function we write:

max
x∈S

f(x, y = 3). (3)

We frequently assign this maximum to some variable, as in:

F ∗ = max
x∈S

f(x, y = 3). (4)

• If we are interested in the value of x which gave us this optimum, we use
the arg max notation:

arg max
x∈S

f(x, y = 3). (5)

In this case, of course, the maximizing x might be called x∗:

x∗ = arg max
x∈S

f(x, y = 3). (6)

2 A bit of vector math

You will need to understand certain basic results about vectors. For the purposes
of this class, you can think of a vector as just a collection of numbers, like in
Matlab. For example, a vector of length 3, also known as a vector v in three
dimensions, or a 3-dimensional vector, might be something like

v =

12

−3

4

 .

2

2.1 Vector magnitudes

The magnitude of a vector is a simple concept. You can think about it as the
length of the vector, or equivalently, as the distance from the point specified by
the vector to the origin of the coordinate system, that is, the distance between
the vector and the zero vector. Using the example of v defined above, the
magnitude of v is written

||v|| =
√

122 + (−3)2 + 42 = 13.

2.2 Unit vectors

A unit vector is just a vector whose length is 1, like

w =

[
0.6

0.8

]
.

To convert a vector whose length is not 1 into a unit vector that is pointing in
the same direction (whose components have the same relative magnitude as the
original vector), just divide each original component by the magnitude of the
vector. For our example v from above:

u = v/13 =

12
13
−3
13
4
13

 .
You can verify for yourself that u has a magnitude of 1.

2.3 Dot products of vectors

The dot product of two vectors is just the sum of the product of the correp-
sonding components. Let

t =

2

1

3

 .
Then the dot product of t and v is

t · v = (2)(12) + (1)(−3) + (3)(4) = 33.

If the components of v are v1, v2, and v3, and the components of t are t1, t2,
and t3, then the dot product can be written

t · v =

3∑
i=1

(ti)(vi).

3

2.4 Angle between unit vectors

When the bases of two vectors are put together (for example, if they are both
at the origin), then an angle is formed between them. Let’s call it θ. For unit
vectors, the following formula gives the relationship between the angle θ and
the two vectors u and v:

cos(θ) = u · v. (7)

If the two vectors being compared are not unit vectors, then they have to be
converted to unit vectors before the formula works. Consider two vectors y and
z that are not unit vectors. To find the angle between them, normalize them
first:

cos(θ) =
y

||y||
· z

||z||
. (8)

Note: these formulas work for vectors with any number of components,
whether it is 2, 3, 5, or a hundred thousand components!

2.5 Vector that maximizes the dot product

Given a unit vector v, which other unit vector maximizes the dot product with
v? To answer this question very simply, first ask, “What angle θ maximizes
the cosine function (from equation 7)?” The answer is that the cosine function
is maximized when θ = 0 and cos(0) = 1. Thus, to maximize the dot product
between two unit vectors, the angle between them should be 0! This implies
that the unit vector which maximizes the dot product with a unit vector v is
the vector v itself! In other words:

v · v ≥ v ·w,

for any unit vector w.

2.6 Exercises

Here are simple questions to test your knowledge:

1. What’s the magnitude of a unit vector?

2. What’s the maximum possible value of the dot product between two unit
vectors? (Answer: it’s the same as the maximum value of the cosine
function.)

3. What’s the maximum possible value of the dot product between two vec-
tors if their magnitudes are 2 and 5 respectively. (Answer: multiply both
sides of equation 8 by the magnitudes of y and z and reason from there.)

4

2.7 Images as vectors

Consider a grayscale image that has 100 rows and 100 columns. There are 10,000
pixels in the image. You can think of this as a 10,000 component vector. Now
consider two images I and J . If you think of them as two 10,000 component
vectors, you can compute the dot product between them. If we normalize the
two vectors, and take their dot product, what is the maximum possible value?
(Answer: 1.0, the maximum of the cosine function.)

Suppose we have taken an image I, turned it into a vector, and normalized
it, by dividing each element of the vector by the magnitude of I. What other
normalized image vector would maximize the dot product with the normalized
I? The answer, drawing from section 2.5, is the same image.

3 Image Formation

• Understand the basics of the electromagnetic spectrum, that every point
on the spectrum represents light of a particular wavelength (and hence
frequency). You should know at least one type of light that has longer
wavelengths than visible light (e.g., infrared), and one type of light that
has shorter wavelengths (e.g., ultraviolet).

• Know about the visible spectrum. Why is it visible? (Answer: it stimu-
lates the photoreceptors in our eyes, whereas other wavelengths do not.)

• Know the approximate wavelengths of the visible spectrum: 380nm (vio-
let) to 760 nm (red).

• A laser of a single wavelength will appear as one of the basic “rainbow”
colors on the spectrum. For example, a 550nm laser will appear green.

• Most natural lights are composed of a broad distribution of wavelengths.
Example: white light from a lightbulb has a broad distribution of wave-
lengths.

• We perceive light through our rod and cone cells (3 types). The color we
perceive is only a function of the relative stimulation of our 3 types of
cone cells.

• The cone cells are sensitive to short wavelengths (“blue”), medium wave-
lengths (“green”) and long wavelengths (“red”).

• Colors such as yellow are perceived when multiple types of cones cells (in
this case red and green) are stimulated together.

• Understand the linearity of light (see slides from lecture 2 and problem
set 2).

5

• Understand the inverse square law of light propagation. If you are at a
distance d from a point light source, and you double your distance to 2d,
the amount of light falling on a unit area drops by a factor of 4. Why?
(Answer: because the percentage of the sphere of light that the surface is
“catching” drops of as the square of the distance from the center of the
sphere.)

• Understand how a pinhole camera works. Why doesn’t it need a lens?
Answer, because each point in the image is only exposed to light from a
single point in the world, so it is naturally in focus.

• Given the dimensions of a pinhole camera, be able to determine the size
of the image of an object given it’s size and distance from the camera. To
do this, you use similar triangles and solve for the height of the object, as
done in class.

• Know the thin lens law as described in the lecture slides.

• Know that to an ideal lens whose cross sectional area is 100 times larger
than a pinhole essentially lets in 100 times as much light as the pinhole,
so a photo taken with this lens could produce the same brightness image
in about 1

100 th of the time.

4 Basic probability

• Know all the material from the Review of Basic Probability handout.

• Particularly focus on marginalization and Bayes’ rule.

• Suppose we are trying to classify images into one of several classes c1, c2,
and c3, and to do it we are using feature values f1 and f2. Know what is
meant by the likelihoods of the classes, the priors of the classes, and the
posterior probabilty for each class.

• Marginalization: If you are given a probability distribution for each pair
of possible values of Prob(X,Y), then you should be able to compute
Prob(X) and Prob(Y) for each possible value of X and Y .

• Know the definition of statistical independence: For two random variables
X and Y , X and Y are statistically independent if and only if P (X|Y) =
P (X) for all X and Y . Or alternatively, P (X,Y) = P (X)P (Y). Be able
to derive one of these formulas from the other (multiply both sides by
P (Y).

• Conditional probability. Be able to compute P (X|Y) from P (X,Y) and
P (Y).

• Be able to given reasonable estimates of P (X), P (X|Y), and P (X,Y)
from raw data.

6

5 Classification

• Understand Bayes’ rule. Practice it many times so you are fluid with it.
Try making up some tables of p(x|c) where x is a feature value and c is a
class, and then try to compute p(c|x). You will also need, of course, p(c)
the prior probabilty of a class. If you don’t understand this, you better get
help before the test.

• If you estimate the posteriors for each class (p(c|x)) and you pick the
class with the highest posterior, this is known as maximum a posteriori
classification, or MAP classification. MAP classification is not ALWAYS
the best strategy when you have estimated the posteriors.

• However, if you have the exact, true posteriors for the classes, then choos-
ing the class with the highest posterior yields a Bayes Optimal Classifier,
which is a classifier with the minimum probability of error. This smallest
possible probability of error is also known as the Bayes error rate, or just
the Bayes error.

• Given the true likelihoods (not the ones estimated from data) for each
class, and the true priors (not the ones estimated from data), one can
calculate the exact posteriors (p(c|x)), and hence, build a Bayes optimal
classifier, using Bayes’ rule and MAP classification. (MAKE SURE YOU
UNDERSTAND THIS!)

6 Supervised learning

• Know the definition of supervised learning.

• Know how nearest neighbor classification works.

• Know how k-nearest neighbor classification works.

• What happens if my training data in supervised learning comes from one
probability distribution p(x, y) and my test data comes from a very dif-
ferent distribution q(x, y). Answer: The performance of my classifier may
be arbitrarily bad, since I trained on the “wrong data”. Example: My
training data consists of red apples (class A) and red pears (class B). My
test data consists of green apples and green pears. I cannot expect to get
the test examples correct (although I may get lucky and use shape as a
feature instead of color, but that would just be luck.)

• What is the fundamental problem with estimating a distribution over en-
tire images? Describe the trade-offs between using smaller parts of the
image to classify images (like a single pixel) and using larger parts, like
mutliple pixels or even the entire image. (difficulty of estimation versus
amount of information in the features).

7

7 Basic Matlab familiarity

• Know how to turn the values in a matlab matrix into a vector (use the
colon operator).

• Know how to transpose a matrix and what this means (you can use either
the quote operator (’) or use the transpose command. This can used to
turn a row vector into a column vector or vice versa.

• Understand the structure of a “grayscale” or “scalar-valued” image. It is
simply a 2-dimensional array of numbers.

• Understand the structure of a “color” image: it is a 3-dimensional array
of numbers in which the first “layer” represents red, the second layer
represents green, and the third represents blue.

• IMPORTANT: Understand that a grayscale or scalar-valued image can be
rendered in color using a look-up-table, which is essentially a scheme for
doing color-by-number. That is, for each value in the image, the computer
looks up the red-green-blue (RGB) color that should be used for that
particular number.

• Know the repmat command in matlab. Know that it can be used to avoid
doing for loops, and that for loops are slow in matlab.

8 Image comparison

• Understand the “sum of squared differences” between two scalar-valued
images I and J :

SSD(I, J) =

#ofpixels∑
i=1

(Ii − Ji)2.

This is the same thing as the “Euclidean distance” except that the Eu-
cildean distance has a square root:

DEuclid(I, J) =

√√√√#ofpixels∑
i=1

(Ii − Ji)2

=

(
#ofpixels∑

i=1

(Ii − Ji)2
) 1

2

.

8

• Understand the “sum of absolute differences”:

Dabs(I, J) =

#ofpixels∑
i=1

|Ii − Ji|

=

(
#ofpixels∑

i=1

|Ii − Ji|

) 1
1

.

Understand why one might want to use one instead of the other (sum of
squared differences weighs larger errors more heavily, on average).

9 Understanding the sizes of sets

• How many distinct 10x10 binary images are there? Answer: 2100.

• How many 1000x1000 color images are there if each color channel (red,
green, blue) can take on 256 colors? First, calculate the number of colors
per pixel:

c = 256 ∗ 256 ∗ 256 (9)

= 28 ∗ 28 ∗ 28 (10)

= 224 (11)

= 220 ∗ 24 (12)

≈ 1, 000, 000 ∗ 16 (13)

= 16 million. (14)

Given about 16 million colors per pixel, the number of 1000x1000 images
is

(16 million1000∗1000) = (16 million)million.

According to some estimates, there are about 280 particles in the known
universe.

• Given 100 x translations of an image, 100 y translations, 1000 rotations,
and 500 different scales, how many different images tranformations could
I produce? I’ll let you do this one yourself.

10 Filtering an image

Given an image I with N pixels and another image J of exactly the same size,
then the result k of filtering I with J is simply the dot product of the two
images:

k =

N∑
i=1

Ii × Ji,

9

where Ii and Ji are the pixel values in each image.
To filter an image I with a smaller image J , repeat the process described

above for each patch of I that is the same size as image J by “sliding” the filter
window across each possible position in I.

When you filter a larger image I with a smaller patch J , you will generally
end up with a smaller image as a result. For example if I is 7x7 and J is 3x3,
then the final image will be 5x5, because there are exactly 25 locations where
the entire filter kernel J will fit within the image I. If it is important to make
the final image the same size as the original image, one can allow the filter to
extend outside the image I. To do this, one has to invent values for the missing
pixels outside the image I. Usually, a value of 0 is used.

10.1 Some very common filter kernels

We have mentioned a variety of common filter kernels in class. Here is a review.

10.1.1 Averaging filter

The following filters compute the average brightness value of the patch that
they are filtered with:

f3x3 =

 1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

f5x5 =

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

The first one averages over a 3x3 neighborhood. The second over a 5x5 neigh-
borhood.

10.1.2 Weighted average filter

Instead of each pixel contributing equally to the average, we can have pixels
near the middle of the filter contribute more and pixels near the edge of the
filter contribute less, as in

fGauss =

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

While you don’t need to memorize the specific values of such a filter, things you
should notice include

10

• The values are all positive,

• The values in the middle are largest, decreasing away from the middle,

• The values sum to 1.0,

• They are symmetric about the center.

If you plotted the filter as a surface it would look approximately like a two-
dimensional Gaussian (or normal) distribution. This is the kind of filter that one
uses to produce the smoothed (or blurred) images used in a Gaussian pyramid
(such as the one used in the SIFT descriptor).

10.1.3 Edge filters

Some filters, which look like little “mini-edges” if you show them as an image,
are good for detecting edges. The following filters can be used to find horizontal
edges in images, vertical edges, and diagonal edges, respectively:

fvert =

 −1 0 1
−1 0 1
−1 0 1

 ,
fhor =

 −1 −1 −1
0 0 0
1 1 1

 ,
fdiag =

 0 0.5 1
−0.5 0 0.5
−1 −0.5 0

 .
10.1.4 Partial derivative filters

In class, we discussed ways of estimating the gradient of an image at each point.
This is the direction in which an image is changing the brightness the fastest,
and can be written as a vector of the partial derivatives:

∇I =

[∂I
∂x

∂I
∂y

]
.

To compute a “discrete” approximation to the partial derivatives you can
use the following filters:

f∂x =

 0 0 0
0 1 −1
0 0 0

 ,
and

f∂y =

 0 0 0
0 1 0
0 −1 0

 .
11

Alternatively, you could use the vertical edge filter (x-derivative) and horizontal
edge filter (y-derivative) defined above to compute approximations to the partial
derivatives.

10.1.5 The trivial “identity” filter

You should be able to figure out what the following filter does. If not, you don’t
understand filters yet:

fident =

 0 0 0
0 1 0
0 0 0

 .
11 Mutual Information

• Mutual information is a function of the joint distribution of two random
variables. You do NOT need to memorize the mathematical definition of
mutual information. However, if I give you a joint distribution (as a table)
and the definition of mutual information, you should be able to compute
it. This will include computing the marginal distributions from the joint
distribution.

• Mutual information is 0 if and only if the random variables of the joint
distribution are statistically independent. I want you to be able to show
that if two random variables are independent, then their mutual informa-
tion is 0. (You don’t have to be able to show that this is the only way
that the mutual information can be 0.)

• A good feature, whose value in an image is represented by the random
variable X should have high mutual information with the class label for
an image, represented by the random variable C. If it is not, then the
feature random variable doesn’t give you any information about the class,
which means it is a useless feature.

• Mutual information cannot be higher than the amount of information in
either random variable. What do I mean by this? Suppose I am doing a
classification problem with 4 classes. Then 2 bits of information is enough
to tell me which class I’m in. Thus, the mutual information between any
feature and the class label cannot be more than 2 bits.

12

