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Abstract

This document discusses Bayesian classification in the context ofvisgur
learning. Supervised learning is defined. An approach is describetiahvea-
ture likelihooods are estimated from data, and then classification is doranby c
puting class posteriors given features using Bayes rule. Estimatingtafédikeli-
hoods, independence of features, quantization of features, amohatfon content
of features are discussed.



1 Supervised learning

Supervised learning is simply a formalization of the idekeafning from examples. In
supervised learning, the learner (typically, a computegpm) is provided with two
sets of data, a training set and a test set. The idea is foe#inedr to “learn” from a set
of labeled examples in the training set so that it can idgntiflabeled examples in the
test set with the highest possible accuracy. For examptajrartg set might consist of
images of different types of fruit (say, peaches and newaj}i where the identity of
the fruit in each image is given to the learner. The test setdvidhen consist of more
unidentified pieces of fruit, but from the same classes. Toa i for the learner to
identify the elements in the test set. There are many diftexpproaches which attempt
to build the best possible method of classifying exampletheftest set by using the
data given in the training set. We will discuss a few of thesthis document, after
defining supervised learning more formally.

In supervised learning, the training set consists of a sebadered pair$x1,y1), (X2,¥2), -+, Xn, Yn),
where eacly; is some measurement or set of measurements of a single exdatpl
point, andy; is the label for that data point. For example,xamight be a vector of 5
measurements for a patient in a hospital including heigbtgiat, temperature, blood
sugar level, and blood pressure. The correspongimgight be a classification of the
patient as “healthy” or “not healthy”.

The test data in supervised learning is another set ofeasurementwithout la-
bels: (Xnt1,Xn+2, ..., Xn+m). As described above, the goal is to make educated guesses
about the labels for the test set (such as “healthy” or “naithg”) by drawing infer-
ences from the training set.

1.1 Common assumptionsabout training and test sets

To have any utility, the training data and test data for amysepervised learning prob-
lem should havsomerelationship to each other. Let us assume, for the momeatt, th
thetest dataare drawn from a distributiop(x,y). If the training data are drawn from
some probability distribution(x,y) that is very different from the distribution of the
test data, then we should have no expectation that infesameanake from the train-
ing data will help us classify elements of the test set. Sanast cases, people only
apply supervised learning methods if they have some exjettthat there is some
useful relationship between the distribution of the tnagndata and the distribution of
the test data. We now discuss two common scenarios in whiehsa#s are generated
for supervised learning. In both cases, we shall assuméhtbtest datais drawn from

a distributionp(Xx, y).

Case 1. In this case, the training data is also drawn frp(r,y). That is, the train-
ing and test data are drawn from the same distribution. HEieaitly, with enough data,
we should be able to estimate from the training data any tiondi or marginal dis-
tribution of the training distribution, and hence of thettdistribution, that is derivable
from the distributionp(x,y). That is, we should be able to estimautg/|x) directly for
anyy andx. If we estimate these values perfectly, we should be ableitd b Bayes
optimal classifier with minimum expected error. Alternatiy we could estimate the
likelihoodsp(x|y) and the priorg(y), and then use Bayes’ rule to obtain the posteriors.



In the limit of infinite data, both of these methods work petfig With finite data, it is
not always clear which method is preferable.

Case 2. In this case, the training data is not drawn directly frp(r,y). Rather, we
draw a separate sample of each class by drawing samplesfedy). That is, we fix
y to be the first class and draw some samples fair the first class. Then we sample
some values of for the second class, and so on.

Why would we ever do this instead of drawing framix,y)? Consider trying to
build a classifier for a rare disease. We would like to havenapda of patients with
the disease and a sample of healthy individuals so that wiel doiid a classifier to
distinguish the two. At test time, we will be picking randoansples from the general
population and trying to decide if they have the disease.cElethe “test” datg(Xx, y)
is represented by the general population. Now suppose dtignps with the disease
only occur in 1 out of 100,000 people in the general poputatibwe sample people
randomly fromp(x,y), we will have to sample a million people before we expect to
have even 10 examples of subjects with the rare disease eHeisovery impractical to
sample from the joint distribution. Instead, we would likesisit a specialist physician
who treats the disease and obtain a large sample of the dipeasilation, measur-
ing their symptoms. Sampling this populatip(k|y = has rare disease) separately
from the healthy population is clearly far more efficientrttmpling from the distri-
bution p(x,y).

Note that in Case 1, we may estimate the prig( directly from the samples, but
in Case 2, we must have a separate method for estimating ithrs, since our data
does not reflecp(y) in any way. Often, people use another data source for the prio
simply make an educated guess.

2 Supervised learning and Bayesrule

Let the set ok possible class labels be denot¥d= {c1,cy, ...,ck}. Suppose that, for
each class in our classification problem, we are given thditional probability of the
class given an observation. That is, we are gipéyix) for all possible values of
andx. Recall that in this scenario, thigayes optimal classifier.e. the classifier that
minimizes the expected error probability for an observatiis

argmax p(y|x).
yey

What exactly does it mean to minimize the probability of ePréissume that a classi-
fier is a deterministic functior (x) which returns a class label for any data veoctor
Then given goint distribution of data vectors and labelp(x,y), we can write the the
probablity of error as

ProbError) = ¥ Y p(x.y) 1(y# f(x)), (1)
XEXYEY

wherel (exp evaluates to 1 if expressi@xpis true and to 0 otherwise. No function
f(x) has lower probability of error than the Bayes optimal cliéssi



2.1 Estimating p(y|x)

Now if we are not given the values of the so-calfgmkterior probabilities gy|x), we
may estimate these values from the training data. There any mays to do this, and
there is continuing debate among statisticians and maddsmeing practitioners about
what methods are best under various circumstances forasigrposteriors. For the
moment, we will avoid the discussion of which method is bast] simply present
some commonly used methods of posterior estimation.

One method for estimating the posteriors is to first estirttegelass likelihoods

p(x|y)

and thepriors
p(Y)

from the training data, and then to use Bayes' rule to compntestimated value of
the posterior. Ifp(x|y) is our estimate of the class likelihoods ap@)’is our estimate
of the prior, then

. P(x|y)B(y)

PYIX) = c— =

Yz P(X|2)P(2)

As mentioned above, when our training data is drawn from itimmal distributions of
the formp(x|y) (Case 2) rather than from the same distributdr, y) as the test data
(Case 1), we cannot estimate the priors from the training, dhait need to obtain a prior
from somewhere else. (One commonly used method is to assgrpeior probabilities
p(y) are all equal, and hence equallktpwherek is the number of classes.)

2.2 Estimating likelihoods from training data

Just as there are many ways of estimating posteriors, thereany ways of estimating
likelihoods from training data. For a full discussion, seg atatistical textbook on the
topic of estimation. We shall start with one of the simplesireators of the likelihood,
which is just the frequency ofin the training set given a particular valueyofThat is,

N(x,y=c)
N(y=c) ’

whereN(x,y = c) is the number of training points with labeland observation equal
tox andN(y = c) is simply the number of training points whose labey.is

Example 1. Suppose we wish to have a procedure to decide whether a fpladien
cancer based upon the outcome of a certain procedure wisitshfoe the presence of a
particular antibody in the blood stream. For training datmpose we perform the test
on 100 cancer patients and 200 healthy subjects. Assum@Qtudtthe cancer patients
tested positive for the antibody and 40 of the healthy subjested positive. Then we
could estimate the following likelihoods.

p(xly=c) =

1. p(test= positivécance) = 19 = 0.9.

2. p(test= negativécance) = 1% = 0.1.
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3. P(test= positivéno cancej = 7 = 0.4.
4. p(test= negativéno cancej = % =0.6.

Should we assume that the subjects were drawn from the demgralation and that
the prior probability of having cancer % = 12 Probably not. More likely, it makes
sense to establish the prior from another study in whichdabeaf cancer in the general
population is estimated. Let's say this rate is estimatgd@ncer = 0.001, i.e., about
1in a thousand people have cancer.

Then Bayes’ rule allows us to combine the likelihoods andpttiers to obtain

0.9x0.001 ~0.0009

P(canceftest= positive = 4= 001+ 0.4 x 0.999 — 0.4005

~0002 (2

Notice the result, which some people find quite surprisingerEtesting positive,
while the chance of having cancer has approximately doubkedchance of having
cancer is still small (@02). This, of course, is because of the extremely low priobp
ability of having cancer, and the fact that the test is noy é@scriminative. Strangely,
enough, this means we woulgkverclassify a patient as having cancer using Bayes
rule and this particular test, if our goal was to minimizeoerfFinally, it is important to
note that in medical diagnosis, the goal may not be to strinthimize the number of
errors, since one type of error (declaring a sick patienklygamay be far more costly
than another type of error (declaring a healthy patient)si8ince errors do not have
the same cost, the doctor may want to skew the decision taegtie number of costly
errors even if the total error rate goes up. This is the stibjedecision theoryand we
will defer our discussion of it for the moment.

2.3 Two, three, and more features

In the previous section, we estimated the probability thpateent had cancer based
upon a single feature, the result of one test. Of course, myrakassification problems,
we will have more than one piece of information. We shall eemsuremenfeature
or data componerds synonyms for a piece of information in the following dissions.

Example 2. Suppose one is a botanist trying to develop a field test foidée-
tification of a particular plant specigsto distinguish it from another similar looking
speciesB. You've noticed that the height of the plant and whether & heown spots
on the leaves are helpful in making the identification, algitothey do not allow the
identification with certainty. (To be certain, you have tad@ small sample of a leaf
back to the lab for chemical testing.)

After doing a large survey of plants randomly sampled fromm blevant region,
you have gathered the following data for plant speéies

SpecieA 0-1ft. 1-2ft. 2-3ft. 3-4ft.
Brown spots 100 204 300 392
No brown spots 40 79 130 150

and for specieB:



SpecieB 0-1ft. 1-2ft. 2-3ft. 3-4ft.
Brown spots 105 310 300 85
No brown spots 9 32 28 11

Given this data, we can proceed as when we had one featureply $reating ev-
ery likelihood as a separate probability, and estimatigbtikelihoods for each class.
However, note that as we have more features with more téeliloods to estimate,
we generally need more data to estimate each one accur&tes/problem becomes
particularly severe when doing classification of imagedwitousands of measure-
ments per image. There are two potential ways to mitigat@tbblem of having too
many likelihoods to estimate. One is to reduce the humbealoies associated with a
feature. Another is to use the independence, or near-imdigmee of features.

2.4 Binning features

In the above example, we have measured the height of a pldrplaced it into one
of four bins based upon that height. If we chose, we could cedhe number of
options further by, say, categorizing a plant as having ghtdrom 0-2 feet, or from
2-4 feet. Doing this reduces the information we have abopegific plant. However,
it may allow us to estimate probabilities more accuratelo@sing the right number
of categories for a continuous or discrete feature is noagbreasy, and is an area of
active research. There is a trade-off between estimationracy and discriminability
which can be difficult to get right.

2.5 Featureindependence

Suppose we are told by a professional botanist that for [@petiesA in the above
example, the chance of encountering a plant with brown spaiso way related to the
size of the plant. That is, these features of plant spece®statistically independent
This can be written formally in the following way:

p(spotsheightA) = p(spots$A) x p(heightA).

Furthermore, the botanist tells us this is also true of pdgetied. Given this new
information, we can now estimate the height likelihogkeigh§A) and p(heightB)
separately from the the spots likelihoods. The reason shieneficial is because we
now have more examples to estimate each likelihood, andeheve can expect them
to be more accurate. To see the effect of estimating indepgrpliantities separately,
consider the following example.

Example 3. Imagine rolling two fair dice, one of which is blue and one difieh
is red. By definition of the dice being fair, the outcome offedtstinct roll should be
3%. Suppose that we did not know the dice were fair, and we wgnegiito estimate
the probability of each outcome by experimentation.

Rolling both dice 100 times, we obtain the following frequies for each roll:



1

2

red

3 4

5

6

0.02
0.02
0.04
0.00
0.06
0.02

blue
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0.02
0.02
0.00
0.04
0.07
0.02

0.02 0.04 o0.01
0.04 0.04 0.03
0.01 0.06 0.03
0.01 0.01 0.06
0.03 0.01 0.05
0.01 0.00 0.02

0.02
0.02
0.06
0.04
0.01
0.04

Note that the ideal value for each estimat@l—f)iSs 0.278. However, the deviations
from this value are quite large, and include some bins withobability.

Even if we don’t know whether the dice are fair, it seems raabte in most sce-
narios to assume they are independing of each other. Esignitie probabilities of
each die separately, from the same data, and computingagstijoint probabilities by
multiplying the marginals yields:

1

2

red
3

4

5 6

0.0208
0.0272
blue 0.0320
0.0256
0.0368
0.0176

0.0221
0.0289
0.0340
0.0272
0.0391
0.0187

0.0156
0.0204
0.0240
0.0192
0.0276
0.0132

0.0208
0.0272
0.0320
0.0256
0.0368
0.0176

0.0260
0.0340
0.0400
0.0320
0.0460
0.0220

0.0247
0.0323
0.0380
0.0304
0.0437
0.0209

A quick examination of the table reveals that the estimatedbailities are far
more accurate. This gain is to be expected if the randomhlagan question are truly
indepedent. However, when they are somewhat dependentttkee is a trade-off
between the inaccuracy of assuming they are independemt thkg are not, and the
gain in estimation accuracy from estimating each variabfmgately. A classifier that
assumes variables are independent is callddiae Bayeslassifier, and the impressive
performance of these classifiers shows that the loss fromrasg independence may
be outweighed by the gain that comes from estimating prdtegseparately in many

cases.



