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Abstract

This document discusses Bayesian classification in the context of supervised
learning. Supervised learning is defined. An approach is described in which fea-
ture likelihooods are estimated from data, and then classification is done by com-
puting class posteriors given features using Bayes rule. Estimating of feature likeli-
hoods, independence of features, quantization of features, and information content
of features are discussed.
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1 Supervised learning

Supervised learning is simply a formalization of the idea oflearning from examples. In
supervised learning, the learner (typically, a computer program) is provided with two
sets of data, a training set and a test set. The idea is for the learner to “learn” from a set
of labeled examples in the training set so that it can identify unlabeled examples in the
test set with the highest possible accuracy. For example, a training set might consist of
images of different types of fruit (say, peaches and nectarines), where the identity of
the fruit in each image is given to the learner. The test set would then consist of more
unidentified pieces of fruit, but from the same classes. The goal is for the learner to
identify the elements in the test set. There are many different approaches which attempt
to build the best possible method of classifying examples ofthe test set by using the
data given in the training set. We will discuss a few of these in this document, after
defining supervised learning more formally.

In supervised learning, the training set consists of a set ofnordered pairs(x1,y1),(x2,y2), ...,(xn,yn),
where eachxi is some measurement or set of measurements of a single example data
point, andyi is the label for that data point. For example, anxi might be a vector of 5
measurements for a patient in a hospital including height, weight, temperature, blood
sugar level, and blood pressure. The correspondingyi might be a classification of the
patient as “healthy” or “not healthy”.

The test data in supervised learning is another set ofm measurementswithout la-
bels: (xn+1,xn+2, ...,xn+m). As described above, the goal is to make educated guesses
about the labels for the test set (such as “healthy” or “not healthy”) by drawing infer-
ences from the training set.

1.1 Common assumptions about training and test sets

To have any utility, the training data and test data for a given supervised learning prob-
lem should havesomerelationship to each other. Let us assume, for the moment, that
the test dataare drawn from a distributionp(x,y). If the training data are drawn from
some probability distributionq(x,y) that is very different from the distribution of the
test data, then we should have no expectation that inferences we make from the train-
ing data will help us classify elements of the test set. So, inmost cases, people only
apply supervised learning methods if they have some expectation that there is some
useful relationship between the distribution of the training data and the distribution of
the test data. We now discuss two common scenarios in which data sets are generated
for supervised learning. In both cases, we shall assume thatthetest datais drawn from
a distributionp(x,y).

Case 1. In this case, the training data is also drawn fromp(x,y). That is, the train-
ing and test data are drawn from the same distribution. Theoretically, with enough data,
we should be able to estimate from the training data any conditional or marginal dis-
tribution of the training distribution, and hence of the test distribution, that is derivable
from the distributionp(x,y). That is, we should be able to estimatep(y|x) directly for
anyy andx. If we estimate these values perfectly, we should be able to build a Bayes
optimal classifier with minimum expected error. Alternatively, we could estimate the
likelihoodsp(x|y) and the priorsp(y), and then use Bayes’ rule to obtain the posteriors.
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In the limit of infinite data, both of these methods work perfectly. With finite data, it is
not always clear which method is preferable.

Case 2. In this case, the training data is not drawn directly fromp(x,y). Rather, we
draw a separate sample of each class by drawing samples fromp(x|y). That is, we fix
y to be the first class and draw some samples ofx for the first class. Then we sample
some values ofx for the second class, and so on.

Why would we ever do this instead of drawing fromp(x,y)? Consider trying to
build a classifier for a rare disease. We would like to have a sample of patients with
the disease and a sample of healthy individuals so that we could build a classifier to
distinguish the two. At test time, we will be picking random samples from the general
population and trying to decide if they have the disease. Hence, the “test” datap(x,y)
is represented by the general population. Now suppose that patients with the disease
only occur in 1 out of 100,000 people in the general population. If we sample people
randomly fromp(x,y), we will have to sample a million people before we expect to
have even 10 examples of subjects with the rare disease. Hence, it is very impractical to
sample from the joint distribution. Instead, we would like to visit a specialist physician
who treats the disease and obtain a large sample of the disease population, measur-
ing their symptoms. Sampling this populationp(x|y = has rare disease) separately
from the healthy population is clearly far more efficient than sampling from the distri-
bution p(x,y).

Note that in Case 1, we may estimate the priorsp(y) directly from the samples, but
in Case 2, we must have a separate method for estimating the priors, since our data
does not reflectp(y) in any way. Often, people use another data source for the prior, or
simply make an educated guess.

2 Supervised learning and Bayes rule

Let the set ofk possible class labels be denotedY = {c1,c2, ...,ck}. Suppose that, for
each class in our classification problem, we are given the conditional probability of the
class given an observation. That is, we are givenp(y|x) for all possible values ofy
andx. Recall that in this scenario, theBayes optimal classifier, i.e. the classifier that
minimizes the expected error probability for an observation x is

argmax
y∈Y

p(y|x).

What exactly does it mean to minimize the probability of error? Assume that a classi-
fier is a deterministic functionf (x) which returns a class label for any data vectorx.
Then given ajoint distributionof data vectors and labels,p(x,y), we can write the the
probablity of error as

Prob(Error) = ∑
x∈X

∑
y∈Y

p(x,y) I(y 6= f (x)), (1)

whereI(exp) evaluates to 1 if expressionexp is true and to 0 otherwise. No function
f (x) has lower probability of error than the Bayes optimal classifier.
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2.1 Estimating p(y|x)

Now if we are not given the values of the so-calledposterior probabilities p(y|x), we
may estimate these values from the training data. There are many ways to do this, and
there is continuing debate among statisticians and machinelearning practitioners about
what methods are best under various circumstances for estimating posteriors. For the
moment, we will avoid the discussion of which method is best,and simply present
some commonly used methods of posterior estimation.

One method for estimating the posteriors is to first estimatetheclass likelihoods

p(x|y)

and thepriors
p(y)

from the training data, and then to use Bayes’ rule to computean estimated value of
the posterior. If ˆp(x|y) is our estimate of the class likelihoods and ˆp(y) is our estimate
of the prior, then

p̂(y|x) =
p̂(x|y)p̂(y)

∑z∈Y p̂(x|z)p̂(z)
.

As mentioned above, when our training data is drawn from conditional distributions of
the formp(x|y) (Case 2) rather than from the same distributionp(x,y) as the test data
(Case 1), we cannot estimate the priors from the training data, but need to obtain a prior
from somewhere else. (One commonly used method is to assume the prior probabilities
p(y) are all equal, and hence equal to1

k , wherek is the number of classes.)

2.2 Estimating likelihoods from training data

Just as there are many ways of estimating posteriors, there are many ways of estimating
likelihoods from training data. For a full discussion, see any statistical textbook on the
topic of estimation. We shall start with one of the simplest estimators of the likelihood,
which is just the frequency ofx in the training set given a particular value ofy. That is,

p̂(x|y = c) =
N(x,y = c)
N(y = c)

,

whereN(x,y = c) is the number of training points with labelc and observation equal
to x andN(y = c) is simply the number of training points whose label isy.

Example 1. Suppose we wish to have a procedure to decide whether a patient has
cancer based upon the outcome of a certain procedure which tests for the presence of a
particular antibody in the blood stream. For training data,suppose we perform the test
on 100 cancer patients and 200 healthy subjects. Assume that90 of the cancer patients
tested positive for the antibody and 40 of the healthy subjects tested positive. Then we
could estimate the following likelihoods.

1. p̂(test= positive|cancer) = 90
100 = 0.9.

2. p̂(test= negative|cancer) = 10
100 = 0.1.
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3. p̂(test= positive|no cancer) = 40
100 = 0.4.

4. p̂(test= negative|no cancer) = 60
100 = 0.6.

Should we assume that the subjects were drawn from the general population and that
the prior probability of having cancer is100

300 = 1
3? Probably not. More likely, it makes

sense to establish the prior from another study in which the rate of cancer in the general
population is estimated. Let’s say this rate is estimated atp̂(cancer) = 0.001, i.e., about
1 in a thousand people have cancer.

Then Bayes’ rule allows us to combine the likelihoods and thepriors to obtain

p̂(cancer|test= positive) =
0.9×0.001

0.9×0.001+0.4×0.999
=

0.0009
0.4005

≈ 0.002. (2)

Notice the result, which some people find quite surprising. Even testing positive,
while the chance of having cancer has approximately doubled, the chance of having
cancer is still small (0.002). This, of course, is because of the extremely low prior prob-
ability of having cancer, and the fact that the test is not very discriminative. Strangely,
enough, this means we wouldneverclassify a patient as having cancer using Bayes’
rule and this particular test, if our goal was to minimize error. Finally, it is important to
note that in medical diagnosis, the goal may not be to strictly minimize the number of
errors, since one type of error (declaring a sick patient healthy) may be far more costly
than another type of error (declaring a healthy patient sick). Since errors do not have
the same cost, the doctor may want to skew the decision to reduce the number of costly
errors even if the total error rate goes up. This is the subject of decision theory, and we
will defer our discussion of it for the moment.

2.3 Two, three, and more features

In the previous section, we estimated the probability that apatient had cancer based
upon a single feature, the result of one test. Of course, in many classification problems,
we will have more than one piece of information. We shall usemeasurement, feature,
or data componentas synonyms for a piece of information in the following discussions.

Example 2. Suppose one is a botanist trying to develop a field test for theiden-
tification of a particular plant speciesA to distinguish it from another similar looking
speciesB. You’ve noticed that the height of the plant and whether it has brown spots
on the leaves are helpful in making the identification, although they do not allow the
identification with certainty. (To be certain, you have to send a small sample of a leaf
back to the lab for chemical testing.)

After doing a large survey of plants randomly sampled from the relevant region,
you have gathered the following data for plant speciesA:

SpeciesA 0-1 ft. 1-2ft. 2-3ft. 3-4ft.
Brown spots 100 204 300 392
No brown spots 40 79 130 150

and for speciesB:
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SpeciesB 0-1 ft. 1-2ft. 2-3ft. 3-4ft.
Brown spots 105 310 300 85
No brown spots 9 32 28 11

Given this data, we can proceed as when we had one feature, by simply treating ev-
ery likelihood as a separate probability, and estimating eight likelihoods for each class.
However, note that as we have more features with more total likelihoods to estimate,
we generally need more data to estimate each one accurately.This problem becomes
particularly severe when doing classification of images with thousands of measure-
ments per image. There are two potential ways to mitigate theproblem of having too
many likelihoods to estimate. One is to reduce the number of values associated with a
feature. Another is to use the independence, or near-independence of features.

2.4 Binning features

In the above example, we have measured the height of a plant and placed it into one
of four bins based upon that height. If we chose, we could reduce the number of
options further by, say, categorizing a plant as having a height from 0-2 feet, or from
2-4 feet. Doing this reduces the information we have about a specific plant. However,
it may allow us to estimate probabilities more accurately. Choosing the right number
of categories for a continuous or discrete feature is not always easy, and is an area of
active research. There is a trade-off between estimation accuracy and discriminability
which can be difficult to get right.

2.5 Feature independence

Suppose we are told by a professional botanist that for plantspeciesA in the above
example, the chance of encountering a plant with brown spotsis in no way related to the
size of the plant. That is, these features of plant speciesA arestatistically independent.
This can be written formally in the following way:

p(spots,height|A) = p(spots|A)× p(height|A).

Furthermore, the botanist tells us this is also true of plantspeciesB. Given this new
information, we can now estimate the height likelihoodsp(height|A) andp(height|B)
separately from the the spots likelihoods. The reason this is beneficial is because we
now have more examples to estimate each likelihood, and hence, we can expect them
to be more accurate. To see the effect of estimating independent quantities separately,
consider the following example.

Example 3. Imagine rolling two fair dice, one of which is blue and one of which
is red. By definition of the dice being fair, the outcome of each distinct roll should be
1
36. Suppose that we did not know the dice were fair, and we were trying to estimate
the probability of each outcome by experimentation.

Rolling both dice 100 times, we obtain the following frequencies for each roll:
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red
1 2 3 4 5 6

1 0.02 0.02 0.02 0.04 0.01 0.02
2 0.02 0.02 0.04 0.04 0.03 0.02

blue 3 0.04 0.00 0.01 0.06 0.03 0.06
4 0.00 0.04 0.01 0.01 0.06 0.04
5 0.06 0.07 0.03 0.01 0.05 0.01
6 0.02 0.02 0.01 0.00 0.02 0.04

Note that the ideal value for each estimate is1
36 ≈ 0.278. However, the deviations

from this value are quite large, and include some bins with 0 probability.
Even if we don’t know whether the dice are fair, it seems reasonable in most sce-

narios to assume they are independing of each other. Estimating the probabilities of
each die separately, from the same data, and computing estimated joint probabilities by
multiplying the marginals yields:

red
1 2 3 4 5 6

0.0208 0.0221 0.0156 0.0208 0.0260 0.0247
0.0272 0.0289 0.0204 0.0272 0.0340 0.0323

blue 0.0320 0.0340 0.0240 0.0320 0.0400 0.0380
0.0256 0.0272 0.0192 0.0256 0.0320 0.0304
0.0368 0.0391 0.0276 0.0368 0.0460 0.0437
0.0176 0.0187 0.0132 0.0176 0.0220 0.0209

A quick examination of the table reveals that the estimated probabilities are far
more accurate. This gain is to be expected if the random variables in question are truly
indepedent. However, when they are somewhat dependent, then there is a trade-off
between the inaccuracy of assuming they are independent when they are not, and the
gain in estimation accuracy from estimating each variable separately. A classifier that
assumes variables are independent is called aNaive Bayesclassifier, and the impressive
performance of these classifiers shows that the loss from assuming independence may
be outweighed by the gain that comes from estimating probabilties separately in many
cases.
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