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Abstract

This document reviews basic discrete probability theory.



1 Introduction

Artificial intelligence deals with making decisions in tresat world, often in the pres-
ence of great uncertainty. To make the best decisions, ®itant to address this
uncertainty head on, and to try to find ways to make decisidmisiware likely to be
beneficial, even when we are not sure.

While there are many ways to model uncertainty, one of the pmstilar and most
successful has grown out of probability theory. As such, adeustanding of basic
probability theory is critical to the understanding of modartificial intelligence and
related fields, such as computer vision and natural langpagssing.

This guide is meant to be practical rather than rigorous. #Mhi¢ will attempt to
avoid inaccurate statements, the goal is usability ratiear tompleteness or rigor.

2 The Sample Space

In applying probability theory to a particular problem, st éssential to have a solid
grasp on thesample space, i.e. , the set of all possible experimental results in amive
experiment. In some experiments, the choice of sample spadear. In other cases,
there may be more than one possible choice, and making thempchoice can signifi-
cantly effect the ease with which subsequent calculatianse done.

Example 1. In rolling a single six-sided die, the space of outcomes doypically
be considered to be the set of six possible faces that mightip on any given roll.
We denote the sample spaBe= {1,2,3,4,5,6}. Letting X be arandom variable
representing the outcome of a roll, we wrKe= x, wherex € S.

An event is any subset of a sample space. Examples of events in the spsingle
die rolls include the single roll H = {3}), a roll less than 5& = {1,2,3,4}), arollin
which the result is primeE = {2,3,5}), the empty eventf = {}), and the universal
event € = {1,2,3,4,5,6}. If the face on the die is an elementBf then the event is
said to have occurred; otherwise it did not occur. It is waoitking that the empty event
will never occur, and that any roll will represent the ocemce of the universal event.

Example 2. Suppose we roll two dice, one of which is red and one of which is
blue. LetR represent the outcome of the red die &epresent the outcome of the
blue die. If we are playing a game like backgammon, then weal@are about the
distinction between getting a 3 on the red die with a 4 on the lie and getting a 4
on the red die with a 3 on the blue die. These are considereshthe outcome. On the
other hand, if we are using the dice to select one of 36 opfimms a six by six grid
of ice cream flavors, then we must treat the refRHi= 3,B = 4) as being distinct from
(R=4,B=3).

In the latter case, the choice of sample space is clear: thaf seents includes all
36 ordered pairs of die rolS= {(1,1),(1,2,),(1,3),...,(2,1),(2,2),...,(6,5),(6,6)}.

In the case where we do not care about which die has a particalae, but only
on the two values that are obtained, there are two possildeah for the sample
space. One choice would be to define the sample space as thieadle®1 possible
unordered pairsS={(1,1),(1,2),(1,3),...,(2,2),(2,3), ...,(5,6), (6,6) }, in which we

include(x,y) only if x <y. This may seem like the obvious choice.



However, another choice would be to defined the sample smateecaset of all
ordered pairs (as in the ice cream selection example), lalgftoe theevents of interest
as being of the fornk = {(R=x,B=Y), (R=y,B=Xx)}. For example, we could define
the event “a 3 and a 4” as the subset of eveii8= 3,B =4),(R=4,B = 3)}. One
advantage of the latter approach is that the primitive etémef the sample space all
have the same probability of occurrence (assuming the décfai), and this can make
probability calculations easier in many cases. The bestehaf sample space is not
always obvious in the beginning. However, it is imperatiattone makes a clear
choice about how the sample space is defined. Many errorspilyiag probability
come from an unclear idea of the exact definition of the sampéee.

One more note about defining sample spaces. The events iarttdesspace must
be mutually exclusive, i.e., two primitive events in the sample space cannot smme
the same event. Hence, defining a sample space as the sentsf{gat least one die is
al),(atleast one die is a)2.., (at least one die is @)§, represents an invalid sample
space, since these events are not mutually exclusive.

2.1 Calculating probabilities of events

While there are extensive philosophical debates about tlamimg of the probability
of an event, | will avoid these discussions here. For the gaep of this review, you
can think of the probability of an event as the proportiorimts you would expect the
event to occur in a very large number of trials. For exampbe, would expect about
half of the rolls of a fair die to be even in a very large numbkdie rolls, and so it
would be reasonable (for many, but not all, purposes) to taith@pprobability of% as
the probability of getting an even number in a die roll.

Let us assume that we have chosen a sample spéarean experiment and that
we are given the probability of each primitive event, i.e. exent which represents
a single element of the sample space. We WritE) to denote the probability of an
eventE.

Example 3. Suppose we have amfair die with the probability of each roll given
as follows:P(1) = 16,P(Z) 16,P(3) = 16,P(4) = 16,P(5) P(6) 2

To calculate the probability of a new eveit we simply add the probabilities of
the primitive events that compose it. For example, condlieevent = {1,3}. The
probability of this event is simply the probab|I|ty of gettj a 1 plus the probability of
getting a 3, oP(E) = P(1) + P(3) = ix + 15 = -

Example 4. Now, using the same unfair die as in the example above, cenaid
new event defined & = {"the event that the roll was even or greater thah. First,
let us talk about thewrong way to compute this probability.

We mustnot compute this as the probability that the roll was even plespiob-
ability that the roll was greater than 3. This would be tardgant to saying that
P(E) = P(“even”) + P("> 3") = P(2) + P(4) + P(6) + P(4) + P(5) + P(6). Notice
here that we have counted the probability of the primitivergf4} twice, and also
counted the probability of the primitive evefi6} twice. We haveovercounted the
probability.

The proper way to calculate this probability is as followson8ider the set of all
primitive events defined by the event of interest. In thiec#se set of primitive events



that are either even or greater than 32s4,5,6}. Once we have this set, which can be
obtained by taking thanion of the primitive elements of the individual events, then we
can merely add the probabilities of the primitive eventshiis tinion. In other words,
P(E)=P(2)+P(4) +P(5)+P(6) = &+ L+ +1=_L.

This fundamental method, of considering a new event as ti@nusf primitive
events in the sample space, makes calculating probabilitey simple and straight-
forward.

2.2 Joint Probabilities

Suppose thah andB are events defined on a sample sp&c@/hen we writeP(A, B),
we mean the probability thdgoth eventA occuredand eventB occurred in the same
trial of an experiment.

Example 5. Using the probabilities from the previous example, Adte the event
that a die roll is even, arl8 be the event that a die roll is greater than 3. To calculate the
probability of both events occurring togethB(A, B), we use the same basic strategy
as in the previous example:

1. enumerate the primitive events which satisfy the givéegon,
2. add the probability of these primitive events.

Which primitive events satisfy the criterion that the diel isleven and that it is
greater than 3? Clearly, the set of such even{gli§}. The sum of the probability of
these primitive events B(A,B) = P(4) +P(6) = &+ 3 = 2.

Note that the set of primitive events which satisfi<riteria from a set of criteria
is theintersection of the primitive events of the individual criterid4, 6} = {2,4,6} N
{4,5,6}). On the other hand, the set of primitive events satisfamgof a set of criteria
is theunion of the primitive events of the individual criteridZ,4,5,6} = {2,4,6} U
{4,5,6}).

We end this subsection with a simple questionP(8, B) = P(B, A) for all events
A andB? To answer this question, it is sufficient to have a clear tstdeding of the
definition of P(A,B). In particular, we are consider the probability that botergsA
andB have occurred in a particular trial. Thus, our question ceduo the query: iA
andB have occurred, can we also say tBatndA have occurred? SindgNB =BNA,
we can say tha®(A, B) andP(B, A) are referring to the same subset of primitive events,
and hence always have the same probaldility.

2.3 Marginalization

Let X andY be two random variables, such as the outcomes of a blue die aad
die which are tossed together. If we are given the probasliof all eventd(X =

LUnfortunately, shorthand notations in applied probapin lead to some confusions here. For exam-
ple, some authors may wrif(3,4) to meanP(X = 3,Y = 4) whereX andY are random variables. In this
caseP(3,4) # P(4,3) since the event&X = 3)Y = 4) and(X = 4,Y = 3) are different events. It is critical
to keep in mind the exact meaning of what is written, and whettgrould be interpreted as the values of
particular random variables, or the occurrence of evertsf@ion can be avoided by explicitly naming the
random variable of interest. For example, we can still Weitd = 3)Y =4) =P(Y =4,X = 3).



x,Y =) in the joint sample space, then we can compute the prohabfiievents
involving only a single random variable, suchR& = 3), through a process known
asmarginalization. In particular, we can say that

P(Y =3)
= PX=1LY=3)+P(X=2Y=3)4+P(X=3Y=3)+P(X=4,Y=3)
+P(X=5Y=3)+P(X=6Y =3)
6
= Z P(X=xY =3).
x=1
While in this example, we have used random variables reptiegeprimitive events,
this marginalization procedure works for arbitrary randeariables.

The preceding analysis discusses marginalization in timegb of random vari-
ables. It is also of interest to consider how to compute thegmal probability of an
eventA, i.e.,P(A), rather than a random variable. For a pair of evénésdB, an ex-
periment can have four possible outcom@sB), (A, B), (A, B), (A, B), whereAmeans
the eventA did not occur. We can then compu®A) asP(A,B)+P(A,B). That is,
we have added the probability of the joint events in whicbccurred for all possible
outcomes of the eveil.

2.4 Conditional Probability

WhenA andB are events on an event spagewe readP(A|B) asthe probability of
event A given that the event B has occurred on the same trial, or more succinctlythe
probability of A given B. This is also referred to as thleenditional probability of A
given B.

To understand conditional probability, it is useful to cioles the conditioning bar
(“|") as defining a new sample spaBethat is a subset of the original sample space
S. In particular, if we condition on an eveBt(as inP(A|B)), we are defining a new
sample space of primitive events from the original spacentaining only events that
are consistent with the eveBt If B is the event that a die roll is greater than 3, then
the sample space f&(A|B) is S = {4,5,6}.

2.4.1 Computing conditional probabilities

There are two simple ways of computing the values of contiiprobabilities, given
an initial sample spac®and the probabilities of each of the primitive events. Wetsta
with the identity

P(A,B) =P(AB)P(B).
Dividing both sides byP(B) yields

P(AB) = (1)
Hence, to computB(A|B) we can simply compute the two quantities on the right hand
side and take their ratio. Note thB{B) can be obtained frorP(A,B) through the
marginalization process described earlier.



A second procedure is to first compute the probabilities ohgaimitive event in
the new sample spac®. Let Ps(E) be the probability of a primitive everi in the
original sample spac® and Py (E) be the probability of the same event in the new
induced sample spa& which results from conditioning on the eveBit Then

_ Ps(E)
Ps(B)’

Ps(E)

for any event which is consistent with For example, assume we roll a fair die and
are told that the result is even. Then, conditioned on thatd¢hat the roll was even
(P(B) = %), the probability of each of the rolls in the sg2,4,6} would be% since
1/1_1
° 2The?’se two procedures are algebraically equivalent. Onéefionly the probability
of the single joint event of interestA, B)) by P(B). The other divides the probabilities
of the primitive events by?(B) before adding them together to form the joint event.
Example 6. Assume an unfair die with probabilities as in the examplevabo
P(1) = &,P(2) = &,P(3) = &.P(4) = &,P(5) = 1,P(6) = 3. LetA be the event
that a die roll is less than 5. L& be the event that the die roll is prime. Compute
P(A|B).
Using Equation 1, we wish to compu®¢A, B) andP(B). P(A, B) is the probability
of all primitive events (die rolls) which are both less thaarkl prime. This is the set
of events{2,3}. The probability of these events A B) = P(2) +P(3) = 3. The
probability of B is the set of events for which the die roll is prime, which is tet
{2,3,5}. P(B) = P(2)+P(3)+P(5) = 2. Finally, then,P(A|B) = P(A,B)/P(B) =

1,3_1
3/s=13

2.5 BayesRule

Bayes rule is used ubiquitously in applied probability teverse the direction” of
conditioning. That is, it is frequently the case in practibat one has available the
quantityP(A|B) and one wishes to find the quantRyB|A). We will discuss the reasons
for this later.

To derive Bayes rule, we start with the observation that dieatity for joint prob-
ability can be written in two forms:

P(A,B) = P(A|B)P(B) = (PB|A)P(A).
By simply dividing both sides of the latter equation B§B), we have

P(BIA)P(A)

P(AB) =~

or, alternatively, dividing byP(A), we have

P(AB)P(B)

P(BIA) = 5



These are both statements of Bayes rule. One notes immgdfsein order to derive
P(AIB) from P(BJA), one also needs the quantitieéA) andP(B), i.e., the marginal
probabilities.

Example7. Consider two urnsh andB. Urn A contains 9 red balls and 1 black ball.
Urn B contains 5 red balls and 5 black balls. Now consider theviolig experiment.
A fair die is rolled. If the die shows a six, then ufnis selected. Otherwise uBis
selected. Now a ball is drawn from the selected urn, and Its é®noted.

We can write down the following quantitiesP(redA) = 0.9. P(redB) = 0.5.
P(A) = %. P(B) = 2. Suppose we are blind-folded and a friend runs the expetimen
described above. The friend reports that a red ball wasteele®©ur job is to compute
the probability that the ball was drawn from un

To solve this problem, we must first define the quantity ofriesé, which iP(A|red).
To compute this quantity, we use Bayes rule:

P(red|A)P(A)

P(Ajred) = P(red)

The two quantities in the numerator are immediately aviglatut the quantity in the
denominatoP(red) requires a bit of work to obtain. To obtai{red), we first perform
a marginalization:

P(red) = z P(red,urn).

urne{A B}

However we also don’t have immediate access to the jointghitibes used in this
sum,P(red,A) andP(red, B). To obtain these, we expand the joint probabilities using
the conditional probability identiy:

P(red,urn) = Z P(red|urn)P(urn).
urne{A B} urne{A B}

Now all of the necessary quantities are immediately at hand,we have merely to
perform the necessary arithmetic:

91 64

105 g __ 64 _4
91 15 = 64 80 -9
06+323 ete 144 9

P(Ared) =



