
Review of Basic Probability

Erik G. Learned-Miller
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

September 16, 2009

Abstract

This document reviews basic discrete probability theory.
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1 Introduction

Artificial intelligence deals with making decisions in the real world, often in the pres-
ence of great uncertainty. To make the best decisions, it is important to address this
uncertainty head on, and to try to find ways to make decisions which are likely to be
beneficial, even when we are not sure.

While there are many ways to model uncertainty, one of the mostpopular and most
successful has grown out of probability theory. As such, an understanding of basic
probability theory is critical to the understanding of modern artificial intelligence and
related fields, such as computer vision and natural languageprocessing.

This guide is meant to be practical rather than rigorous. While we will attempt to
avoid inaccurate statements, the goal is usability rather than completeness or rigor.

2 The Sample Space

In applying probability theory to a particular problem, it is essential to have a solid
grasp on thesample space, i.e. , the set of all possible experimental results in a given
experiment. In some experiments, the choice of sample spaceis clear. In other cases,
there may be more than one possible choice, and making the proper choice can signifi-
cantly effect the ease with which subsequent calculations can be done.

Example 1. In rolling a single six-sided die, the space of outcomes would typically
be considered to be the set of six possible faces that might face up on any given roll.
We denote the sample spaceS = {1,2,3,4,5,6}. Letting X be a random variable
representing the outcome of a roll, we writeX = x, wherex ∈ S.

An event is any subset of a sample space. Examples of events in the space of single
die rolls include the single roll 3 (E = {3}), a roll less than 5 (E = {1,2,3,4}), a roll in
which the result is prime (E = {2,3,5}), the empty event (E = {}), and the universal
event (E = {1,2,3,4,5,6}. If the face on the die is an element ofE, then the event is
said to have occurred; otherwise it did not occur. It is worthnoting that the empty event
will never occur, and that any roll will represent the occurrence of the universal event.

Example 2. Suppose we roll two dice, one of which is red and one of which is
blue. LetR represent the outcome of the red die andB represent the outcome of the
blue die. If we are playing a game like backgammon, then we do not care about the
distinction between getting a 3 on the red die with a 4 on the blue die and getting a 4
on the red die with a 3 on the blue die. These are considered thesame outcome. On the
other hand, if we are using the dice to select one of 36 optionsfrom a six by six grid
of ice cream flavors, then we must treat the result(R = 3,B = 4) as being distinct from
(R = 4,B = 3).

In the latter case, the choice of sample space is clear: the set of events includes all
36 ordered pairs of die rollsS = {(1,1),(1,2,),(1,3), ...,(2,1),(2,2), ...,(6,5),(6,6)}.
In the case where we do not care about which die has a particular value, but only
on the two values that are obtained, there are two possible choices for the sample
space. One choice would be to define the sample space as the setof all 21 possible
unordered pairsS = {(1,1),(1,2),(1,3), ...,(2,2),(2,3), ...,(5,6),(6,6)}, in which we
include(x,y) only if x ≤ y. This may seem like the obvious choice.
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However, another choice would be to defined the sample space as the set of all
ordered pairs (as in the ice cream selection example), but todefine theevents of interest
as being of the formE = {(R = x,B = y),(R = y,B = x)}. For example, we could define
the event “a 3 and a 4” as the subset of events{(R = 3,B = 4),(R = 4,B = 3)}. One
advantage of the latter approach is that the primitive elements of the sample space all
have the same probability of occurrence (assuming the dice are fair), and this can make
probability calculations easier in many cases. The best choice of sample space is not
always obvious in the beginning. However, it is imperative that one makes a clear
choice about how the sample space is defined. Many errors in applying probability
come from an unclear idea of the exact definition of the samplespace.

One more note about defining sample spaces. The events in the sample space must
be mutually exclusive, i.e., two primitive events in the sample space cannot represent
the same event. Hence, defining a sample space as the set of events{(at least one die is
a 1),(at least one die is a 2), ...,(at least one die is a 6)}, represents an invalid sample
space, since these events are not mutually exclusive.

2.1 Calculating probabilities of events

While there are extensive philosophical debates about the meaning of the probability
of an event, I will avoid these discussions here. For the purposes of this review, you
can think of the probability of an event as the proportion of times you would expect the
event to occur in a very large number of trials. For example, you would expect about
half of the rolls of a fair die to be even in a very large number of die rolls, and so it
would be reasonable (for many, but not all, purposes) to adopt the probability of1

2 as
the probability of getting an even number in a die roll.

Let us assume that we have chosen a sample spaceS for an experiment and that
we are given the probability of each primitive event, i.e. anevent which represents
a single element of the sample space. We writeP(E) to denote the probability of an
eventE.

Example 3. Suppose we have anunfair die with the probability of each roll given
as follows:P(1) = 1

16,P(2) = 1
16,P(3) = 1

16,P(4) = 1
16,P(5) = 1

4,P(6) = 1
2.

To calculate the probability of a new eventE, we simply add the probabilities of
the primitive events that compose it. For example, considerthe eventE = {1,3}. The
probability of this event is simply the probability of getting a 1 plus the probability of
getting a 3, orP(E) = P(1)+P(3) = 1

16 + 1
16 = 1

8.
Example 4. Now, using the same unfair die as in the example above, consider a

new event defined asE = {”the event that the roll was even or greater than 3”}. First,
let us talk about thewrong way to compute this probability.

We mustnot compute this as the probability that the roll was even plus the prob-
ability that the roll was greater than 3. This would be tantamount to saying that
P(E) = P(“even”) + P(”> 3”) = P(2) + P(4) + P(6) + P(4) + P(5) + P(6). Notice
here that we have counted the probability of the primitive event {4} twice, and also
counted the probability of the primitive event{6} twice. We haveovercounted the
probability.

The proper way to calculate this probability is as follows. Consider the set of all
primitive events defined by the event of interest. In this case, the set of primitive events
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that are either even or greater than 3 is{2,4,5,6}. Once we have this set, which can be
obtained by taking theunion of the primitive elements of the individual events, then we
can merely add the probabilities of the primitive events in this union. In other words,
P(E) = P(2)+P(4)+P(5)+P(6) = 1

16 + 1
16 + 1

4 + 1
2 = 7

8.
This fundamental method, of considering a new event as the union of primitive

events in the sample space, makes calculating probabilities very simple and straight-
forward.

2.2 Joint Probabilities

Suppose thatA andB are events defined on a sample spaceS. When we writeP(A,B),
we mean the probability thatboth eventA occuredand eventB occurred in the same
trial of an experiment.

Example 5. Using the probabilities from the previous example, LetA be the event
that a die roll is even, andB be the event that a die roll is greater than 3. To calculate the
probability of both events occurring together,P(A,B), we use the same basic strategy
as in the previous example:

1. enumerate the primitive events which satisfy the given criterion,

2. add the probability of these primitive events.

Which primitive events satisfy the criterion that the die roll is even and that it is
greater than 3? Clearly, the set of such events is{4,6}. The sum of the probability of
these primitive events isP(A,B) = P(4)+P(6) = 1

16 + 1
2 = 9

16.
Note that the set of primitive events which satisfiesall criteria from a set of criteria

is theintersection of the primitive events of the individual criteria ({4,6} = {2,4,6}∩
{4,5,6}). On the other hand, the set of primitive events satisfyingany of a set of criteria
is theunion of the primitive events of the individual criteria ({2,4,5,6} = {2,4,6}∪
{4,5,6}).

We end this subsection with a simple question. IsP(A,B) = P(B,A) for all events
A andB? To answer this question, it is sufficient to have a clear understanding of the
definition ofP(A,B). In particular, we are consider the probability that both eventsA
andB have occurred in a particular trial. Thus, our question reduces to the query: ifA
andB have occurred, can we also say thatB andA have occurred? SinceA∩B = B∩A,
we can say thatP(A,B) andP(B,A) are referring to the same subset of primitive events,
and hence always have the same probability.1

2.3 Marginalization

Let X andY be two random variables, such as the outcomes of a blue die anda red
die which are tossed together. If we are given the probabilities of all eventsP(X =

1Unfortunately, shorthand notations in applied probability can lead to some confusions here. For exam-
ple, some authors may writeP(3,4) to meanP(X = 3,Y = 4) whereX andY are random variables. In this
caseP(3,4) 6= P(4,3) since the events(X = 3,Y = 4) and(X = 4,Y = 3) are different events. It is critical
to keep in mind the exact meaning of what is written, and whetherit should be interpreted as the values of
particular random variables, or the occurrence of events. Confusion can be avoided by explicitly naming the
random variable of interest. For example, we can still writeP(X = 3,Y = 4) = P(Y = 4,X = 3).
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x,Y = y) in the joint sample space, then we can compute the probability of events
involving only a single random variable, such asP(Y = 3), through a process known
asmarginalization. In particular, we can say that

P(Y = 3)

= P(X = 1,Y = 3)+P(X = 2,Y = 3)+P(X = 3,Y = 3)+P(X = 4,Y = 3)

+P(X = 5,Y = 3)+P(X = 6,Y = 3)

=
6

∑
x=1

P(X = x,Y = 3).

While in this example, we have used random variables representing primitive events,
this marginalization procedure works for arbitrary randomvariables.

The preceding analysis discusses marginalization in the context of random vari-
ables. It is also of interest to consider how to compute the marginal probability of an
eventA, i.e.,P(A), rather than a random variable. For a pair of eventsA andB, an ex-
periment can have four possible outcomes:(A,B),(Ã,B),(A, B̃),(Ã, B̃), whereÃ means
the eventA did not occur. We can then computeP(A) asP(A,B)+P(A, B̃). That is,
we have added the probability of the joint events in whichA occurred for all possible
outcomes of the eventB.

2.4 Conditional Probability

WhenA andB are events on an event spaceS, we readP(A|B) as the probability of
event A given that the event B has occurred on the same trial, or more succinctly,the
probability of A given B. This is also referred to as theconditional probability of A
given B.

To understand conditional probability, it is useful to consider the conditioning bar
(“ |”) as defining a new sample spaceS′ that is a subset of the original sample space
S. In particular, if we condition on an eventB (as inP(A|B)), we are defining a new
sample space of primitive events from the original spaceS containing only events that
are consistent with the eventB. If B is the event that a die roll is greater than 3, then
the sample space forP(A|B) is S′ = {4,5,6}.

2.4.1 Computing conditional probabilities

There are two simple ways of computing the values of conditional probabilities, given
an initial sample spaceS and the probabilities of each of the primitive events. We start
with the identity

P(A,B) = P(A|B)P(B).

Dividing both sides byP(B) yields

P(A|B) =
P(A,B)

P(B)
. (1)

Hence, to computeP(A|B) we can simply compute the two quantities on the right hand
side and take their ratio. Note thatP(B) can be obtained fromP(A,B) through the
marginalization process described earlier.
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A second procedure is to first compute the probabilities of each primitive event in
the new sample spaceS′. Let PS(E) be the probability of a primitive eventE in the
original sample spaceS andPS′(E) be the probability of the same event in the new
induced sample spaceS′ which results from conditioning on the eventB. Then

PS′(E) =
PS(E)

PS(B)
,

for any event which is consistent withB. For example, assume we roll a fair die and
are told that the result is even. Then, conditioned on the event B that the roll was even
(P(B) = 1

2), the probability of each of the rolls in the set{2,4,6} would be 1
3 since

1
6/1

2 = 1
3.

These two procedures are algebraically equivalent. One divides only the probability
of the single joint event of interest ((A,B)) by P(B). The other divides the probabilities
of the primitive events byP(B) before adding them together to form the joint event.

Example 6. Assume an unfair die with probabilities as in the example above:
P(1) = 1

16,P(2) = 1
16,P(3) = 1

16,P(4) = 1
16,P(5) = 1

4,P(6) = 1
2. Let A be the event

that a die roll is less than 5. LetB be the event that the die roll is prime. Compute
P(A|B).

Using Equation 1, we wish to computeP(A,B) andP(B). P(A,B) is the probability
of all primitive events (die rolls) which are both less than 5and prime. This is the set
of events{2,3}. The probability of these events isP(A,B) = P(2)+ P(3) = 1

8. The
probability of B is the set of events for which the die roll is prime, which is the set
{2,3,5}. P(B) = P(2) + P(3) + P(5) = 3

8. Finally, then,P(A|B) = P(A,B)/P(B) =
1
8/3

8 = 1
3.

2.5 Bayes Rule

Bayes rule is used ubiquitously in applied probability to “reverse the direction” of
conditioning. That is, it is frequently the case in practicethat one has available the
quantityP(A|B) and one wishes to find the quantityP(B|A). We will discuss the reasons
for this later.

To derive Bayes rule, we start with the observation that the identity for joint prob-
ability can be written in two forms:

P(A,B) = P(A|B)P(B) = (PB|A)P(A).

By simply dividing both sides of the latter equation byP(B), we have

P(A|B) =
P(B|A)P(A)

P(B)
,

or, alternatively, dividing byP(A), we have

P(B|A) =
P(A|B)P(B)

P(A)
.
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These are both statements of Bayes rule. One notes immediately that in order to derive
P(A|B) from P(B|A), one also needs the quantitiesP(A) andP(B), i.e., the marginal
probabilities.

Example 7. Consider two urns,A andB. UrnA contains 9 red balls and 1 black ball.
Urn B contains 5 red balls and 5 black balls. Now consider the following experiment.
A fair die is rolled. If the die shows a six, then urnA is selected. Otherwise urnB is
selected. Now a ball is drawn from the selected urn, and its color is noted.

We can write down the following quantities.P(red|A) = 0.9. P(red|B) = 0.5.
P(A) = 1

6. P(B) = 5
6. Suppose we are blind-folded and a friend runs the experiment

described above. The friend reports that a red ball was selected. Our job is to compute
the probability that the ball was drawn from urnA.

To solve this problem, we must first define the quantity of interest, which isP(A|red).
To compute this quantity, we use Bayes rule:

P(A|red) =
P(red|A)P(A)

P(red)
.

The two quantities in the numerator are immediately available, but the quantity in the
denominatorP(red) requires a bit of work to obtain. To obtainP(red), we first perform
a marginalization:

P(red) = ∑
urn∈{A,B}

P(red,urn).

However we also don’t have immediate access to the joint probabilities used in this
sum,P(red,A) andP(red,B). To obtain these, we expand the joint probabilities using
the conditional probability identiy:

∑
urn∈{A,B}

P(red,urn) = ∑
urn∈{A,B}

P(red|urn)P(urn).

Now all of the necessary quantities are immediately at hand,and we have merely to
perform the necessary arithmetic:

P(A|red) =
9
10

1
6

9
10

1
6 + 1

2
5
6

=
64
60

64
60 + 80

60

=
64
144

=
4
9
.
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