
Entropy and Mutual Information

Erik G. Learned-Miller
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

September 23, 2009

Abstract

This document is an introduction to entropy and mutual information for dis-
crete random variables. It gives their definitions in terms of probabilities,and a
few simple examples.
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1 Entropy

Theentropy of a random variable is a function which attempts to characterize the “un-
predictability” of a random variable. Consider a random variable X representing the
number that comes up on a roulette wheel and a random variableY representing the
number that comes up on a fair 6-sided die. The entropy ofX is greater than the en-
tropy ofY . In addition to the numbers 1 through 6, the values on the roulette wheel can
take on the values 7 through 36. In some sense, it is less predictable.

But entropy is not just about the number of possible outcomes. It is also about their
frequency. For example, letZ be the outcome of a weighted six-sided die that comes
up 90% of the time as a “2”.Z has lower entropy thanY representing a fair 6-sided die.
The weighted die is less unpredictable, in some sense.

But entropy is not a vague concept. It has a precise mathematical definition. In
particular, if a random variableX takes on values in a setX = {x1,x2, ...,xn}, and is
defined by a probability distributionP(X), then we will write the entropy of the random
variable as

H(X) = − ∑
x∈X

P(x) logP(x). (1)

We may also write this as

H(P(x)) ≡ H(P) ≡ H(X).

If the log in the above equation is taken to be to the base 2, then the entropy is
expressed inbits. If the log is taken to be the natural log, then the entropy is expressed
in nats. More commonly, entropy is expressed in bits, and unless otherwise noted, we
will assume a logarithm with base 2.

Example 1. To compute the entropy of a fair coin, we first define its distribution:

P(X = heads) =
1
2

P(X = tails) =
1
2
.

Using Equation (1), we have:

H(P) = − ∑
x∈{heads,tails}

P(x) logP(x) (2)

= −

[

1
2

log
1
2

+
1
2

log
1
2

]

(3)

= −

[

−
1
2

+−
1
2

]

(4)

= 1. (5)

Example 2. Let X be an unfair 6-sided die with probability distribution defined
by P(X = 1) = 1

2, P(X = 2) = 1
4, P(X = 3) = 0, P(X = 4) = 0, P(X = 5) = 1

8, and
P(X = 6) = 1

8. The entropy is

H(P) = − ∑
x∈{1,2,3,4,5,6}

P(x) logP(x) (6)
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= −

[

1
2

log
1
2

+
1
4

log
1
4

+0log0+0log0+
1
8

log
1
8

+
1
8

log
1
8

]

(7)

= −

[

−
1
2

+−
1
2

+0+0+−
3
8

+−
3
8

]

(8)

= 1.75. (9)

Notice that we have used 0log0= 0. The justification for this is that the limit ofx logx
asx becomes small is 0.

2 Joint Entropy

Joint entropy is the entropy of a joint probability distribution, or a multi-valued random
variable. For example, one might wish to the know the joint entropy of a distribution
of people defined by hair colorC and eye colorE, whereC can take on 4 different
values from a setC andE can take on 3 values from a setE . If P(E,C) defines the
joint probability distribution of hair color and eye color,then we write that their joint
entropy is:

H(E,C) ≡ H(P(E,C)) = − ∑
e∈E

∑
c∈C

P(E,C) logP(E,C). (10)

In other words, joint entropy is really no different than regular entropy. We merely
have to compute Equation (1) over all possible pairs of the two random variables.

Example 3. Let X represent whether it is sunny or rainy in a particular town ona
given day. LetY represent whether it is above 70 degrees or below seventy degrees.
Compute the entropy of the joint distributionP(X ,Y ) given by

P(sunny,hot) =
1
2

(11)

P(sunny,cool) =
1
4

(12)

P(rainy,hot) =
1
4

(13)

P(rainy,cool) = 0. (14)

Using Equation (10), or Equation (1), we obtain

H(X ,Y ) = −

[

1
2

log
1
2

+
1
4

log
1
4

+
1
4

log
1
4

+0log0

]

(15)

= −

[

−
1
2

+−
1
2

+−
1
2

+0

]

(16)

=
3
4
. (17)

3



3 Mutual Information

Mutual information is a quantity that measures a relationship between two random vari-
ables that are sampled simultaneously. In particular, it measures how much information
is communicated, on average, in one random variable about another. Intuitively, one
might ask, how much does one random variable tell me about another?

For example, supposeX represents the roll of a fair 6-sided die, andY represents
whether the roll is even (0 if even, 1 if odd). Clearly, the value ofY tells us something
about the value ofX and vice versa. That is, these variables sharemutual information.

On the other hand, ifX represents the roll of one fair die, andZ represents the roll
of another fair die, thenX andZ share no mutual information. The roll of one die does
not contain any information about the outcome of the other die. An important theorem
from information theory says that the mutual information between two variables is 0 if
and only if the two variables arestatistically independent.

The formal definition of the mutual information of two randomvariablesX andY ,
whose joint distribution is defined byP(X ,Y ) is given by

I(X ;Y ) = ∑
x∈X

∑
y∈Y

P(x,y) log
P(x,y)

P(x)P(y)
.

In this definition,P(X) andP(Y ) are themarginal distributions of X andY obtained
through the marginalization process described in the Probability Review document.
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