

File I/O and Exceptions

April 5, 2012
CMPSCI 121, Spring 2012

Introduction to Problem Solving with Computers
Prof. Learned-Miller

File I/O

1

Exceptions
 Sometimes we try things in our programs

and they don’t work:
  double x= 3.0/0.0;

•  can’t divide by 0.
  openFile(“foo”);

•  file foo may not exist
  storeFile(myData,”foo”);

•  hard disk may be full!

2

In the old days
 Two choices:

  Anticipate errors:
•  if (i!=0)

•  x= 3.0/i;

  Rely on special codes returned from
methods:

•  if (openFile(“foo”)==NULL) {
•  Print(“File foo does not exist.”);

3

Exceptions
  The exception (error) handling mechanism in

Java gives us some extra strategies for dealing
with these situations.
  checked exceptions

•  must be handled by application, otherwise won’t compile
•  example: reading a file (non-existent)

  unchecked exceptions
•  May or may not be handled

•  example: divide by 0.

4

5

File names
 C:\cs121\assignments\assign1.txt
 MyDisk/cs121/assignments/assign1.txt

6

Reading from a file

7

Reading from a file

8

Writing a new file

Back to exceptions

9

Try and catch

10

The stack

11

12

The Call Stack
 main()

  myFamily.printInfo();
•  myInfant.printInfo();

•  System.out.println(...);

Actual “stack trace dump”

13

Throwing an exception

14

DrJava interlude

15

Who throws an exception
  code that someone else wrote:

  divide by zero
  open a file

  code that you wrote
  getting input from the user (someone put in a

negative age)

16

What happens when an
exception is thrown?
  2 basic possibilities:

  The program stops (crashes).
  The program doesn’t stop.

•  For the program to keep going, the exception
must be “caught”.

•  It can be caught by:
•  The same method in which it was thrown, or
•  one of the calling methods, all the way back to main

17

18

The Call Stack

19

"Unwinding the stack"

Defining new types of
exceptions

20

Creating a new type of
exception

21

What benefit does new type of
exception have?

22

Lazy way to deal with checked
exceptions

23

Lazy way to deal with checked
exceptions

24

25

26

27

28

