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File I/O 
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Exceptions 
 Sometimes we try things in our programs 

and they don’t work: 
  double x= 3.0/0.0; 

•  can’t divide by 0. 
  openFile(“foo”); 

•  file foo may not exist 
  storeFile(myData,”foo”); 

•  hard disk may be full! 
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In the old days  
 Two choices:  

  Anticipate errors: 
•  if (i!=0) 

•  x= 3.0/i; 

  Rely on special codes returned from 
methods: 

•  if (openFile(“foo”)==NULL) { 
•  Print( “File foo does not exist.”); 
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Exceptions 
  The exception (error) handling mechanism in 

Java gives us some extra strategies for dealing 
with these situations. 
  checked exceptions 

•  must be handled by application, otherwise won’t compile 
•  example: reading a file (non-existent) 

  unchecked exceptions 
•  May or may not be handled 

•  example: divide by 0. 
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File names 
 C:\cs121\assignments\assign1.txt 
 MyDisk/cs121/assignments/assign1.txt 



6 

Reading from a file 
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Reading from a file 
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Writing a new file 



Back to exceptions 
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Try and catch 
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The stack 
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The Call Stack 
 main() 

  myFamily.printInfo(); 
•  myInfant.printInfo(); 

•  System.out.println(...); 



Actual “stack trace dump” 
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Throwing an exception 
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DrJava interlude 
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Who throws an exception 
  code that someone else wrote: 

  divide by zero 
  open a file 

  code that you wrote 
  getting input from the user (someone put in a 

negative age) 
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What happens when an 
exception is thrown? 
  2 basic possibilities: 

  The program stops (crashes). 
  The program doesn’t stop. 

•  For the program to keep going, the exception 
must be “caught”. 

•  It can be caught by: 
•  The same method in which it was thrown, or 
•  one of the calling methods, all the way back to main 
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The Call Stack 
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"Unwinding the stack" 



Defining new types of 
exceptions 
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Creating a new type of 
exception 
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What benefit does new type of 
exception have? 
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Lazy way to deal with checked 
exceptions 
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Lazy way to deal with checked 
exceptions 
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