

April 24: Interfaces, Sorting, Timing and

Abstract Classes
CMPSCI 121, Spring 2012

Introduction to Problem Solving with Computers
Prof. Learned-Miller

The image cannot be displayed. Your
computer may not have enough memory to
open the image, or the image may have been
corrupted. Restart your computer, and then
open the file again. If the red x still appears,
you may have to delete the image and then
insert it again.

1

Logistics
  Final: May 8 (Tuesday), 1:30 PM in Totman Gym.

  Covers material from entire course, with emphasis on the
second half.

  Review: In Section next Monday.
  LAST ASSIGNMENTS.

  Chapter 12 Reading- Thursday
  Chapter 12 Exercises – Next Tuesday

  Last Day of class ATTENDANCE REQUIRED!!!
  5 points on final for showing up. Bring your id.

2

Review: Interfaces

  Work almost like classes
  Declare attributes and methods
  Can't create native objects of that type

•  can't use "new"
  Can create references of that type
  Can implement multiple interfaces in the

same class

Writing a generic sorting
algorithm
1.  Need to be able to compare objects

 Use Comparable interface
 NOTE: Comparable is part of Java (you don’t have
 to write it yourself.

2.  Class to be sorted should implement Comparable
3.  What class should sorting method be a part of ?

 - not Infants, not Cars, not Integers...
 - Make it own class.

4.  How to write a sorting method?
 Use “bubble sort”.

3

Studying for final
  If you can

  Define your own Comparable interface
(MyComp)

  Define a class that implements MyComp.
  Write a sorting method that uses MyComp to

compare objects.
  Create an array of objects that are MyComp,

and use your sorting method to sort them....

4

  then you will know 90% of what you need
to know on the final....

5

 DrJava

6

Abstract Classes
 A class you can derive from, but can’t

make an instance of.
 Why would you want to do this?

  Because you might want to make lots of
different kinds of classes that all are
guaranteed to have the same one capability.

7

8

