April 24 Interfaces, Sorting, Timing and
Abstract Classes

CMPSCI 121, Spring 2012

Introduction to Problem Solving with Computers
Prof. Learned-Miller

Logistics
m Final: May 8 (Tuesday), 1:30 PM in Totman Gym.
m Covers material from entire course, with emphasis on the

second half.
m Review: In Section next Monday.

m LAST ASSIGNMENTS.

m Chapter 12 Reading- Thursday
m Chapter 12 Exercises — Next Tuesday

m Last Day of class ATTENDANCE REQUIRED!!!

m 5 points on final for showing up. Bring your id.

Review: Interfaces

m Work almost like classes
m Declare attributes and methods

m Can't create native objects of that type
* can't use "new"

m Can create references of that type

m Can implement multiple interfaces in the
same class

Writing a generic sorting
algorithm

1. Need to be able to compare objects
Use Comparable interface
NOTE: Comparable is part of Java (you don’t have
to write it yourself.

2. Class to be sorted should implement Comparable

3. What class should sorting method be a part of ?
- not Infants, not Cars, not Integers...
- Make it own class.

4. How to write a sorting method?
Use “bubble sort”.

Studying for final

m |[f you can
m Define your own Comparable interface
(MyComp)
m Define a class that implements MyComp.

m Write a sorting method that uses MyComp to
compare objects.

m Create an array of objects that are MyComp,
and use your sorting method to sort them....

m then you will know 90% of what you need
to know on the final....

m DrJava

Abstract Classes

m A class you can derive from, but can't
make an instance of.

= \Why would you want to do this?

m Because you might want to make lots of
different kinds of classes that all are
guaranteed to have the same one capability.

public abstract class JobTimer ({
public abstract void doJob();

// keeps track of time and calls doJob
public void runJob() {
//call the garbage collector to make more memory available
System.gc();
long sl = System.currentTimeMillis();
doJob();
long s2 = System.currentTimeMillis();
long runTime = (82 - sl);
System.out.println(“running time in milliseconds: " + runTime);

