April 12: Interfaces
CMPSCI 121, Spring 2012

Introduction to Problem Solving with Computers
Prof. Learned-Miller

Logistics
m No second midterm.
m Fiasco with Crypto problem.

Today...

m More on Inheritance
m Interfaces

Overriding

m \What happens when there are multiple
choices for a method?

= Why would this occur?

m toString() example.
m class Dog extends Animal...
m class Animal extends Object...

Overriding

m \What happens when there are multiple
choices for a method?

= Why would this occur?

m toString() example.
m class Dog extends Animal...
m class Animal extends Obiject...

m Java always uses the MOST SPECIFIC
method possible....

Polymorphism

m Can we do something like this:

Dog d=new Dog();

Animal a;

a=d; //'|s this allowed? (yes)
Dog d2=a; // How about this? (no)

Wrong Subtyping

m \We can cast a superclass object to subclass, but need to be sure
type is right
m e.g., casting to-and-from Object is common for writing general code
m A Dog IS-A Animal, but not the other way around

 class Dog extends Animal {...}
class Cat extends Animal {...}

Dog d = new Animal(); // Can’t do this. An Animal is not nec. a Dog.
Dog d = new Cat(); /l Can’t do this. A Cat is not a Dog.

* Animal a = new Dog(); // This is fine. A Dog is an Animal.
Dog d = (Dog) a; /l Fine. This particular Animal is a Dog.
Cat ¢ = (Cat) a; /I Not OK. This particular Animal is NOT a Cat.

Polymorphism

e class Animal {
String name() S
return “dunno’; }
}

class Dog extends Animal {
String name ()
return Dog ;

}
t
class Cat extends Animal - ,
String name() { return Cat ; }
t

class Farm {
static report(Animal a) { ,
System.out.println('I am a + a.name());

}
}
Farm.report (new Dog()) // Prints “I am a Dog”
Farm.report(new Cat()); // Prints “I am a Cat”

Dynamic dispatch.

m More generally:
 Animal a = new Dog();

a.meth(); // method called is that of Dog, if it exists
* Dog d = new Dog();
((Animal)d).meth(); /I Still calls Dog method (if it exists).

« Animal a = new Dog();

if).og d = (Dog) a;
a.meth(); // Calls Dog method.
d.meth(); // Calls Dog method.

m Also called “dynamic dispatch”
« we know what method to call only at run-time (“dynamically”) as it

H 11

depends on the actual type of the object (what’s “in the box”, not
the name on the box, as | said in lecture).

Polymorphism

Dog d=new Dog();
((Animal) d).method();

Polymorphism

Animal a=new Dog();
a.method();

10

Inheritance: UsedCar Class

public class UsedCar extends Car{

publiec UsedCar(String whatMake,
super (whatMake,cap,amt);
year = yr:

1

2

3

4

5

6

7
B}
9
10 public int getYear({){
11 return year:

12

}
13 }

private int vyear: // year of manufacture

double cap,

double amt,

int yr){

11

When is inheritance used?

m The first type of inheritance:

= WWhen you have one useful class...
« Car

m and you want to add some stuff to (extend)
the class:

 UsedCar

12

Other uses of inheritance

m Suppose we have a method to find the oldest
Infant in an Array of Infants.
int oldest(Infant[] array) {...

m and a method to find the oldest car
int oldest(Car[] array) {...

m and a method to find the oldest boat
int oldest(Boat[] array) {...

13

Redoing the same work

m All these methods will look the same.

m [0 avoid this, write one function for
“Ageable” objects. Then they can all use
the method:

int oldest(Ageable[] array) {...

14

Interfaces

m Used when you want to add certain
generic capabillities or attributes to a class

m Can use one interface to add the SAME
capabilities to multiple classes

15

Inheritance vs. Interfaces

m If A inherits from B,
then “Ais a B”.

m Example:
“Mammal” inherits properties from “Animal’,

so “Mammal’ is an “Animal’.

m If A implements B,
then A has capabilities described by B.

m Example:
PlumberPerson implements CanPlumb
so PlumberPerson has plumbing capabilities.
or...
HandyMan implements CanPlumb
so HandyMan has plumbing capabilities.

16

Interface Example:

public interface Scoring{
public double getScore():

public void setScore(double newScore);

}

-Kind of like a class, but can’t make one of these
-Doesn’ t specify implementation of methods, just
what they should do.

17

publiec class CookieSeller implements Scoring

{

private String name;
private double boxesSold;

publie CookieSeller(String n, double sold)
{

name = n:
boxesSold = =sold:
}

publie String getName()
{

return name;

b
publiec double getBoxesSold()

{

return boxesSold;

}

public woid setHame({String newHame)

{

name = newbame;

}
public wvoid setBoxesSold{double sold)

{
boxesSold = =sold;
1

public double getScore() // Implements interface method

{

return boxesSold;

}

publiec woid setScore({double so0ld)/ s implements interface method

{
boxeaSold = sold;

}

One method for multiple
classes.

public static int scoreMax(Scoring[] theArray){
/S returns position of entry in array thelArray with highest score
/S array theArray is an array of objects from class that implements
/S Scoring interface
int highPos = 0;
for{int j = 1; j < theArray.length; j++){
if (thehArray[]j].getScore() > theArray[highPos].getScore())
highPos = j;:}
return highPos;

19

One method for multiple classes

public class Scorefns {
S/ contains methods that exploit the Scoring interface

public static int scoreMax({Scoring[] theArray){
/4 returns position of entry in array theArray with highest score
S/ array theArray is an array of objects from class that implements
/4 8Bcoring interface
int highPos = 0;
for{int j = 1; j = theArray.length; j++){
if (theArrav[j].getScore() > theArray[highPos].getScore())
highPos = j;}
return highPos;

20

