

April 12: Interfaces

CMPSCI 121, Spring 2012
Introduction to Problem Solving with Computers

Prof. Learned-Miller

1

Logistics
  No second midterm.
  Fiasco with Crypto problem.

2

Today...
 More on inheritance
  Interfaces

Overriding
 What happens when there are multiple

choices for a method?
  Why would this occur?

  toString() example.
  class Dog extends Animal...
  class Animal extends Object...

3

Overriding
 What happens when there are multiple

choices for a method?
  Why would this occur?

  toString() example.
  class Dog extends Animal...
  class Animal extends Object...

  Java always uses the MOST SPECIFIC
method possible....

4

Polymorphism
 Can we do something like this:

Dog d=new Dog();
Animal a;
a=d; // Is this allowed? (yes)
Dog d2=a; // How about this? (no)

5

6

Wrong Subtyping
  We can cast a superclass object to subclass, but need to be sure

type is right
  e.g., casting to-and-from Object is common for writing general code

  A Dog IS-A Animal, but not the other way around
•  class Dog extends Animal {...}

class Cat extends Animal {...}

Dog d = new Animal(); // Can’t do this. An Animal is not nec. a Dog.
Dog d = new Cat(); // Can’t do this. A Cat is not a Dog.

•  Animal a = new Dog(); // This is fine. A Dog is an Animal.
Dog d = (Dog) a; // Fine. This particular Animal is a Dog.
Cat c = (Cat) a; // Not OK. This particular Animal is NOT a Cat.

Polymorphism
•  class Animal {  

"String name() {  
" "return “dunno”; }  
"}  

 
class Dog extends Animal {  
 String name() {  

"return “Dog”;  
 }  
}  
 
class Cat extends Animal {  
 String name() { return “Cat”; }  
}  
 
class Farm {  
 static report(Animal a) {  
 System.out.println(“I am a ” + a.name());  
 }  
}  
Farm.report(new Dog()); // Prints “I am a Dog”  
Farm.report(new Cat()); // Prints “I am a Cat”"

7

8

Dynamic dispatch.
  More generally:

•  Animal a = new Dog();
a.meth(); // method called is that of Dog, if it exists

•  Dog d = new Dog();
((Animal)d).meth(); // Still calls Dog method (if it exists).

•  Animal a = new Dog();
...
Dog d = (Dog) a;
a.meth(); // Calls Dog method.
d.meth(); // Calls Dog method.

  Also called “dynamic dispatch”
•  we know what method to call only at run-time (“dynamically”) as it

depends on the actual type of the object (what’s “in the box”, not
the name on the box, as I said in lecture).

Polymorphism
Dog d=new Dog();"
((Animal) d).method();"

9

Polymorphism
Animal a=new Dog();"
a.method();"

10

11

Inheritance: UsedCar Class

12

When is inheritance used?
 The first type of inheritance:

  When you have one useful class...
•  Car

  and you want to add some stuff to (extend)
the class:

•  UsedCar

13

Other uses of inheritance
  Suppose we have a method to find the oldest

Infant in an Array of Infants.
 int oldest(Infant[] array) {...

  and a method to find the oldest car

 int oldest(Car[] array) {...

  and a method to find the oldest boat
 int oldest(Boat[] array) {...

14

Redoing the same work
 All these methods will look the same.
 To avoid this, write one function for
“Ageable” objects. Then they can all use
the method:

int oldest(Ageable[] array) {...

15

Interfaces
 Used when you want to add certain

generic capabilities or attributes to a class
 Can use one interface to add the SAME

capabilities to multiple classes

Inheritance vs. Interfaces
  If A inherits from B,

then “A is a B”.
  Example:

“Mammal” inherits properties from “Animal”,
so “Mammal” is an “Animal”.

  If A implements B,
then A has capabilities described by B.
  Example:

PlumberPerson implements CanPlumb
so PlumberPerson has plumbing capabilities.
or...
HandyMan implements CanPlumb
so HandyMan has plumbing capabilities.
 16

17

Interface Example:

- Kind of like a class, but can’t make one of these
- Doesn’t specify implementation of methods, just
what they should do.

18

19

One method for multiple
classes.

20

One method for multiple classes

