1 Introduction

In the early days of computer vision and pattern recognition, writing a prodgo recognize an object meant
carefully specifying the form of that object with a geometric model, a diffitettious, and error-prone task.
A program would then search the visual world for items that matched thatefeic form, to within some
tolerance. For example, a handwritten “8” would be described as twogimbe directly above and tangent
to the other. A quick look at a few handwritten documents will convince amybat many “8”s in the real
world do not conform to this overly simple description. These prograniersaf from a lack of generality
and adaptability, poor robustness to noise, and typically an inability to incagoontextual information.

Inthe last 20 years, computer vision has seen tremendous progressdvdnt of “learning” algorithms,
or algorithms that adjusted their processing to optimize some function of thedafataddressed many of
these problems. No longer did the exact form of an object need to béisgecExamples of objects
could now be provided to describe in a natural fashion the form of arcoaiel its variability. Of course,
there were still decisions to be made, such as which features to use tdhhestterize an object, but the
painstaking process object descriptionvas no longer required. We had learned hovetch the computer

As the excitement grew about learning methods, a new tedious task arasgldoerthe old tedium
of careful object specification. This time, it wdata set collection For example, to provide “training
data” for handwritten digit recognition problems, thousands of examplesdi character were collected
from hundreds of different subjects [16]. This was followed by dasals of faces, then cars, motorcycles,
airplanes, and many other objects. Unfortunately, we currently needgustany examples to teach the
computer about motorcycles, irrespective of whether it has learnad ars. Collecting these data sets is
difficult, time consuming and expensive. And in many cases, data collectiarb@ustrospective, drawing
from a finite set of already existing images. For example, it would be hardtteegadditional pictures of
Abraham Lincoln in order to better train a classifier. Thus relying on lagje sets, one for each object or
problem of interest is not a very scalable strategy if the goal is to proalwegon system with the breadth
of a human system.

Thus the current state of computer vision might be summarized as followsaWteach computers to do
one thing at a time quite well, using sophisticated statistical methods and largetarobwaining data. This
includes not only object recognition, but other skills such as trackirggneatation, and outlier detection.
What we have not yet done successfully is designed computers soeliatah learn by themselves, or at
least with minimal human supervision.

A quick look at human beings will clarify this idea. Humans certainly benddinfteachers, but they
are not nearly so needy as current computers in learning new tagkexdraple, humans can

learn to recognize a face from a single photograph,
learn a new character from a single example,

learn the meaning of a word from hearing it in context,
learn to recognize a font they've never seen before, and
learn to play a video game without being taught.

Each of these examples requires at most a single training example fronthetéar labeller. In each case,
the human is leveraging other knowledge sources such as the strudtacesfthe structure of handwriting;
the meaning of some words, even if the person doesn't know all wordsstthcture of English; and the
knowledge of how to explore.

The goal of this research is to endow computers with the abilitiéetefit from their own experience
and, to a great extent, teach themselve3 his does not mean that we want to completely remove the human



teacher, but that we want to reduce the need for the human teachewitdephoige numbers of examples,
and to have to do this for each new task, even when the task may be similarsthaslomputer has already
learned. In other words, we want to make computers leadffizéentlyas humans.

This proposal discusses five examples of research in this direction:

¢ building a classifier of handwritten digits from a single example of each digitigusiowledge pre-
viously acquired (by the computer) about general handwriting;

e learning a notion of color constancy for most objects under most lightingitimms, with only a
single object provided as training data;

e learning to recognize any particular car or face from a single examplen gither pairs of cars or
faces that match and mismatch;

e learning to recognize typewritten text in a font never seen before, withNittraining examples of
that font; and

e developing software for robots to continously explore the visual worttithe interactions between
the visual and other senses.

The common thread in all of these tasks is that tiedigve the burden on the teacher of the computer
The goal of my research is ultimately to develop computers that can be taongity and rapidly, and that
explore on their own. Perhaps if we achieve this goal, then computers walbleeto learn enough skills
to be generally useful, and to have the long sought after common senied (wik not come from being
programmed with thousands of rules).

To become widely useful, and to exhibit general intelligence, designirgadjsgstems for each problem
by providing large amounts of training data is probably not practical feerséreasons.

e To collect training data for each different domain is too work intensive.

e Even if we were willing to collect such training data, it is often not available.

o If we want systems to be truly robust and adaptive, they must be ableithyraplapt to situations
they have never encountered before. In other words, they musiddie self-taught.

Below, in Sections 2, 3, and 4, | describe five projects aimed at making derspither easier to teach
or making them fully autonomous learners. We start with two completed proje@sdtion 2, discuss
ongoing work in Section 3, and two future projects in Section 4. In Sectidpi®sent an integrated plan
for outreach and education that is symbiotic with this research.

2 Recent Work

In this section, | describe two completed projects that typify the thrust of mpqsed career focus. In
the first, | show how it is possible to dramatically improve the accuradyaofiwritten digitclassifiers by
getting the computer to leverage previously learned knowledge dtamatwritten letters The classifier
developed uses onlysingle training examplef each digit, dramatically reducing the load on the “teacher”.

In the second, | show how the classical problem of “color constanay’lie solved using statistical
methods and no labelled information of any kind. This gives the computer@adzgsbility which humans
take for granted in their visual system, with almost no training burden.

Learning from One Example. This project was motivated by the ability of humans to learn a useful
model of a class from a small number of examples, often just a single exaB@leGonsider the symbol
for the new European currency, the “euro,” shown in Figure 1. Tymsl®| was only recently conceived,



Figure 1: A handwritten version of the symbol for the new Europeareaay, the euro.

and many people saw their first example of it during the last few yeardurkadely, after seeing a single
example of this character, humans can recognize it in a wide variety ofxtenstyles, and positions. It
would certainly be inconvenient if people needed 1000 examples of suslv aharacter in order to develop
a good model of its appearance.

Since human beings are bound by the laws of probability and estimation, it wppéhr that we achieve
this sparse-data learning by using ptitnowledge. Some of the most fundamental questions in machine
learning and artificial intelligence concern prior knowledge, namely:

e What is its form and how is it obtained?
o How is it applied in new learning scenarios to improve the efficiency of legfin
e Can prior knowledge be used to build a good model of a class from a sixeyepte?

In the following work [26, 21], we provide one set of answers to thasestions. In particular, we show
how a system that has access to a large training dedradwritten lettersan use the general knowledge of
variability derived from these letters to learn abbandwritten digits

The first step in this process is to model the variability of certain handwrittaracters. This is done
through a technigue | developed for the joint alignment of a set of imagdsyhich | refer to asongealing
An example of the congealing process is given in Figure 2. On the left diginee is a set of 36 handwritten
zeroes from the NIST database of handwritten characters. Thesevdégéswritten by different people in
different styles and exhibit some of the typical variations one sees inratah characters. On the right of
the figure are the same zeroes after they have been “congealed”. Mhati¢cbe algorithm has transformed
each digit to be as similar as possible to some notion of central tendencythighithout any prespecified
notion of what zeroes should look like. Rather, it simply makes each dieataok as much like the others
as possible using a simple set of (affine) transformations. It does thisitarative fashion until no more
change is detected, at which point it outputs the resulting images.

The variability of the resulting images is much easier to model than the original and&yé there is
another, perhaps more important benefit. In addition to producing a akgoéd characters, the congealing
algorithm also produces set of transformationgescribing the typical variability in the set of characters.
That is, by collecting information about the transformation that each cleanacderwent in the congealing
process, we have a simple way to model the natural variability of the char&tigrobabilistic terms, we
can develop grobability distribution over transformationsn the original characters [29], enabling us to
answer guestions like, “How common is a rotation of 30 degrees relative twthon of central tendency?”

If we run the congealing algorithm on many sets of characters, say ASC$8s.., Zs, and develop a
distribution over the transformations in each case, we encounter a reéyieaf&et: The distributions over
transfor mations are approximately the same for different types of characters. That is, the amount of
rotation, shear, and size-change experienced by characters inrneating process appears to be about

1By prior knowledge we mean knowledge obtained prior to a particular task.
2Efficiencycan be thought of, informally, as the number of training examples redjtirachieve a certain test performance in a
particular task.
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Figure 2:Left: Samples of handwritten zeroes from the NIST databRgght: The zeroes after congealing.

the same across the different letter classes (e.g. As, Bs, Cs’ ¢ftthle computer sees a character from a
completely new class, like a handwritten euro symbol, it is reasonable to asgimerethis evidence, that
the distribution over transformations will be the same for the new clddsnce, one can trivially form a
model for the (affine) variability of this new class.

A One Example Classifiefsing this idea, | built a classifier for handwritten digits using just one
example of each digit. After developing a transformation distribution using lsets ohandwritten letters
these distributions were combined with the single example of each digit to pradnodel of variability for
each digit class. This process is illustrated in Figure 3. Using models cifeate@dne example, a classifier
is built using a simple and standard maximum likelihood type of classifier [26].

Results. The best handwritten digit classifiers currently get over 99% accutdowever, these clas-
sifiers are trained othousandsof examples of each class. The goal of this work has been to improve
performance on a very different problem, when one is given just desex@mple of a class. Many tradi-
tional classifiers, like neural networks, cannot reasonably trainatl asing just a single example. Many
others get accuracy rates below 20%, and none are better than 40%gwhe only a single training ex-
ample. Using the process described above, we were able to increasacgaaf classification given only a
single training example from only 29.7% (using our default classifier) to%89f&r exceeding the accuracy
of any other classifier on this problem. This is a tremendous leap forwaturacy for a problem that is
much more realistic than being provided with thousands of examples of eash cla

The key point is that once a computer has been given a large numberopkes of a few classes, it can
learn about new classes much more rapidly. This satisfies the gendral tiisresearch, which is to lighten
the training data requirement. In the next project is another example ofthastise of appearance changes
in one object can help us learn about how other objects change appeata this case, the variability is
not spatial distortion as with the digits, but change in the illumination of real thw scenes.

Learned Color Constancy. Color constancy refers to the ability of people to perceive fixed “colfmns”
objects even under lighting conditions that may make the true light coming offjeotquite different. For
example, an apple seen under a slightly yellowish light may actually be broverisimder a slightly blue
light it might be purple, and yet in each case people to see it as “red”sflise perception of color under
various lighting conditions helps people use perceived color as a stalleddor object recognition.

3The hypothesis that transformation distributions are approximately @guivacross classes is tested using statistical methods
in my Ph.D. work [28].
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Figure 3: Diagram of our method for sharing models of affine variability. upport set (shown as a set
of “A’s) is given to the learner. From this support set, a general motialffine variability is derived.
Combining the model of affine variability with a single example of a handwritten digitpdel is made for
the digit that incorporates the spatial variability.

Many approaches to the problem of imparting color constancy to machivestsated by trying to esti-
mate the lightimpinging upon a scene. This is frequently done by placing act @bk known properties in
the scene. For example, if a truly white and opaque sheet of paper ispuidm, and it appears pink, | can
deduce that the lighting in the room is a particular shade of red. | can tleetiiggnformation to discover
the appropriate perceived color of other objects in the room. With retpduoe goals of this grant, we ask
the question, “For each new situation a computer encounters, must it tidggavith a known reference
object in order to estimate the lighting before it can understand the true oblthrs objects present?” That
is, must a teacher be present to give the computer an appropriatenceferach time? Some algorithms
for color constancy [23, 7] try to circumvent this requirement by assurtfiagthe brightest object in a
scene would be white under neutral lighting or that the average cololj@ftshwould be gray under neutral
lighting. However, these assumptions are wrong so frequently that tineyptthe relied upon.

Our approach to the color constancy problem is based upon the followéag iigure 4 shows two
pairs of pictures, each taken under different simulated lighting conditlbisseasy for a person to confirm
that these pictures represent the same scenes, partly because thethbologh different in each image,
have changed in a way that matches our experience regarding how chemmge under different lighting
conditions. Thus, rather than necessarily identifying the “true color’agheobject, we simply recognize
that the objects have changed colors in a plausible fashion.

In previous work [27, 34], we completely avoid the issue of estimating the liglatirthe surface prop-
erties. To avoid estimating lighting, we build a statistical modéi@# objects change color under common
lighting changes Then two images can be inferred to represent the same object if thereaisstically
common mapping between the colors of the two images.

Notice that this addresses a slightly different problem than traditional colwstancy approaches. It



Figure 4. Lighting change, color change, and color flows. Each image(ipathe first two columns)

represents the same object but under different simulated lighting condiGoiar flow fields (far right) are

representations of the color changes across images. Each vector atahtowv field shows how one color
moved to a different color as the lighting was changed.

implies that the important thing is not whether we can identify lighting, or the prexisperties of objects,
but rather that we can recognize that a certain distribution of colors isathe ss another distribution of
colors, up to some common lighting change. If we can do this, then we camlasdarecognize objects,
which is the primary goal of color constancy algorithms in the first place.

Joint Color Change.The model we develop in this work is @int color change It has nothing to do
with how the colors of objects are distributed in the world, but only how thersabobjects change. To
be effective, we must model how colors chargiatly, not one at a time. That is, the knowledge that the
color of certain pixels were red in one image and brown in another is nogérto say whether the pictures
represent the same object. But if we can say that a certain group of eadoe changed to another group of
colors, then with high confidence we can guess whether the objects aantee

Color Flows. Consider again Figure 4. The color changes induced by the simulated lightmge in
each pair of pictures can be represented by what we refer teca®iaflow field as shown on the right of
the figure. This is a set of vectors in three-dimensional color space whak how each color in one image
mapped to the corresponding color in the second image. For example, avantlein a color flow might
show that the color red in one image (the tail of a vector) became the colaethe tip of the vector) in a
different lighting condition. It is important to note that the color flow field fack pair of image#s exactly
the samesince it represents the same lighting change, and hence the same mappiluyofThe form of
the vector field has nothing to do with the composition of the images, but only heligtiting changed.

The main idea of this work is that if we observe joint color changes in enoiiigieht lighting condi-
tions for one object, we can understand how those color changes will #fie appearance of other objects,
thus achieving a sort of color constansithout ever having to calculate the illumination itselfo work



best, the object we observe should have as many colors as possibl, we ttan see how each color in the
color cube is mapped under various lighting changes.

To record common lighting changes, we created a poster on a color plottetheithll printable spec-
trum of colors (upper left of Figure 5). We mounted this poster on the Walliooffice and started recording
video of the poster. The video continued over a 24 hour period, repothanges in the ambient lighting
conditions due to the sunrise and sunset, clouds passing by, lights bailegl om and off in the office,
computer monitors, and shadowing effects. These lighting changes wespeatially designed, but were
simply common light changes due to normal office activity and light coming frenoffice window. Figure
5 shows the poster under two different lighting conditions, one in middayaadn early morning.

Any two frames taken from this (extremely boring) video allow us to computegesiolor flow, i.e.

a map from the colors in one image to the colors in the other image. The collectalhpafssible pairs
of images from the video give us a large collection of color flows. We cam &is& questions like, “What
single color flows represent the best linear approximation of all of theunea@solor flows?” These are the
principal components of the color flow fields.

Having measured a large number of flows from the poster video and heemguted the principal
components of these color flows, we can now apply them to other images tehs¢esorts of changes
they induce in other images. The upper right of Figure 5 shows a singlegicfumny face. Using the
information derived from the color flows measured on the poster, we éanvithat my face would look like
under various changes in lighting that occur in an office setting like our &ame of these synthetically
generated lighting conditions, generated by applying the measured celsifftum the poster to the picture
of my face, are shown in the bottom right of the figure.

Finally, in our published work, we describe how given two images, we esgrahine whether one image
can be mapped to the other image using the statistically common flows (alsoaigbaflows This allows
us to use color in recognizing object identity without any explicit lighting moadel without any of the
classic brittle assumptions about scene decomposition.

By leveraging the statistics of everyday lighting changes and how thest affstationary multi-colored
object, we were able to construct a model which is very widely applicablghé&unore, if a robot found
itself in a situation where the statistics of the lighting changes were differewtlid roduce a new model
of the local joint color changes by repeating this procedure with any mutir@d scene or object.

Summary of recent work. These two completed applications, learning from one example and learned
color constancy demonstrate my philosphy of reducing the load on the carapetcher. In the next
section, | describe a current project that also fits in the domain of olgecognition.

3 Current Work

In this section | describe an exciting ongoing project that addressesdbiem of learning from a single
example in a wide range of new application areas. While the first projedgdnetognition addressed the
problem ofclassificationor class recognitionthis work addresses the problem of identifying an instance of
a specific object. This task has been referred to in the computer vision lieesnbject identification For
example, the goal of this work would be to recognize Alice’s car, ratheralaar in general, or to recognize
Bob’s face, rather than any face.

While object identification has received a great deal of attention recemblst of the successful work
has focussed on objects that do not change appearance dramatmallgtotograph to photograph [22].
In contrast, we attack the problem of object identification in very challendarmgains such as face identi-
fication and car identification. Faces are difficult to identify due to the fatttttey can change both shape
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Figure 5: Diagram of method for sharing models of joint color variability. Bgresenting typical joint
color changes of a test object (upper left of figure), a general hudgigint color change is developed. This
model, combined with a single example of a new object (a face in this case)qe®d model of the new
object under common lighting changes (lower right).

(due to expressions) and color (due to temperature, illness, beardsyp)aénd cars are difficult to identify
since many of them are highly similar to each other, and yet any given cachasge appearance dramati-
cally when viewed in different lighting or from a different angle becaofsigs highly reflective surface. In
other words, for these groups of objects (cars and faces) and nitang athewithin instancevariation can
be very large, while the between instance variation can be small. An examitie object identification
problem is illustrated in Figure 6.

Of course, one way to address the problem of object identification is tactali@ny examples of each
object one wishes to identify. But this is exactly what we are trying to avaidesthis puts too heavy a
burden on the trainer. We wish to be able to identify an object when we ldyes®een it once before. And
because we are trying to do this in the domain of highly variable objects, it isreeee challenging. We
will allow ourselves the luxury, however, of seeing pairs of objects ftbensameslassthat either match or
do not match. It is from these pairs that we hope to learn, for objects weerta yet seen more than once,
a strategy for identification. We will first describe the system as it curresttigds and has been reported
on [12, 11]. Then we will discuss two extensions we hope to accomplishunefwork to make the system
both more general and more autonomous.

Learning with Hyper-Features. There is a single fundamental idea behind this work, that to recognize
specific objects which are highly variable we must find parts of those olijeatsare both unique (with
respect to other objects) and stable in appearance (i.e. that donjechader different viewing conditions).

What makes this problem interesting is that for each new object, the parmtodbiect which is most



stable and most unique, salient may be in a different location than on other objects of the same class. For
example, one car may be identifiable by its unusual pinstripes, while an@tharay have door handles in

an unusual location. One face may have a large nose, while anotheusiasdyebrows. The key question
for this research is, “If we only get to see a single example of an objettza@amot study its variability over
different appearances, how can we predict the stability of a featuhtabbbject?”

We answer this question by seeking out parts of the image of an object wighncproperties. Let the
object we have seen be Object A, and the object we are comparing it tbjbet®. The first property we
want is that if the patch from Object A matches closely the patch from Objeitte® this should indicate
the objects are likely to be the same object. Note that not all patches havedpertyr For example,
if the patch from Object A is just a white constant patch, then the knowledgetits happens to match
the corresponding patch in Objecti8not a good indicatiorthat the two objects are the same, since, for
example, the probability of one car having a constant white patch in the s#etieeréocation as another
car is quite high.

Similarly, a patch is more informative if when the patch of Object A doesmatch the patch from
Object B itis a strong indication that the objectsrdui match. Said another way, we are looking for patches
which we suspect, when compared with another object, will give us a lofahmation about whether the
two objects are the same or not.

Consider the case of identifying cars. Because at test time, we will hdyea@ingle image of a car
to compare to, we must derive our notion of the utility of patches ahead of thora, dther pairs of cars
that match or mismatch. Since there is such an enormous number of patchidepage cannot learn
about every patch, but must learn a function of features of patcheddatermines whether that patch will
be useful or not. It is these features which tell us about the likely utility aftatpfor matching that we call
hyper-features

The method for learning patch saliency from a training set of matched and tolsdapairs is quite
complex and uses modern statistical techniques (generalized linear mo#lelsy{2ual information esti-
mation [9], and recent feature selection techniques [10]) to learn didunitom the hyper-features of a
particular patch to an estimate of the future informativeness of that pate@ry patch in the image, from
a grid of patches at different scales, is evaluated and assigned aicalnmdormativeness value measuring
the expected information content of the patch.

The left of Figure 7 shows a sample face from the face experiments, alithghe salient patches
selected by the algorithm. It is important to note that the algorithm selects thieseglaefore seeing a
potential match Thus, it selects these patches based only on their appearance #ioth ffoa single image

Figure 6: The Identification Problem: Which of these cars are the sambk& two cars on the left, pho-
tographed from camera 1, also drive past camera 2. Which of the fogesran the right, taken by camera
2, match the cars on the left? (Our system gets both correct.)



Figure 7: The patches outlined in the left picture were predicted to beldsefecognition by our saliency
estimation method. Note that these patches were selected by lamkingt the image on the ledind yet the
algorithm successfully determined that these patches were both relatiiglyeuto this individual and also
relatively stable. Notice for example, that there is no patch on the noseh whamges significantly with
perspective. When the image on the right was presented, the quality of theemdor the salient patches
indicated that this was the same person.

(the image on the left in this case). When the patch on the right is presenést taine, the relatively good
match between the selected patches and the corresponding patches irethenatfe causes the system
to vote for a “match” rather than a “mismatch”, which happens to be corrgtisrcase. Our system has
outperformed all other algorithms on this very difficult class of problems aalditional details can be found
in our publications [12, 11].

Planned Improvements. While this system has effectively learned a function that enables it to un-
derstand the salient and stable features of an object from just a single,ithatill has several significant
drawbacks that we plan to address in ongoing work. Currently, fdr eaw object category (cars or faces,
for example) the system must be provided with a large training set of mataldediamatched pairs so that
it can learn the function to predict saliency from hyper-features. Eurtbre, for both training and testing,
these pairs of images must bkgnedor registeredso that the correspondence between patches in the two
images is clear. We hope to overcome both of these issues. First wesattdrgsoblem of facilitating the
collection of training data.

At present, to provide pictures of matching cars for training our hypatdire system, we have two
cameras taking pictures (automatically) from two locations on the same streeviéelts taken from each
camera provide a training pair. However, not all cars that go by camsaskeen in camera 2. Thus a human
observer must manually assemble pairs of cars from the two cameras thaamd{grovide them as training
data. We propose to obviate the human oversightégking the same vehicle as it changes positidtn
respect to a single camera system. Then the first view and last view of thedrabject would be different
enough to provide a training pair such as those used in the experiments aitbwno human supervision
While this could in principle be done with a single immobile wide field-of-view cameeabelieve we can
collect better data by using a mobile tracking camera that pans a camerahtlaradige angle to follow a
vehicle through a wide range of motion. We are currently adding dynamkitigacapability [33] to robots
in our lab, so the software effort to achieve this is already well undenivagddition, we have requested
funding for a two degree-of-freedom pan-tilt camera and video atignisystem that can be dedicated
to this purpose and other goals in this grant. Finally, our video-enabled mohilpuhation system (see
Figure 9) can be used for such acquisitions. Using these systems, weclawehicles, people, or other



Figure 8: When images cannot be aligned, there may not be enough makelyimgints (center of red
region) to establish an object match. However, by using the local cotedigatem established by the affine
keypoint (red parallelogram), additional patches can be defined thapmaide enough information to
confirm a match (green regions).

moving objects through wide angles and large changes in relative positiaioljreg us to gather an arbitrary
amount of “matching” pairs in a mostly unsupervised manner.

One way to generate data which gives different perspectives ontslfgt arenot moving on their own
is to have a robot manipulate the objects to get different perspectivegm tthe UMass robotics group
has a strong record in grasping and manipulation [32, 17], and asiltkzsdén the next section, we plan
to use this expertise, along with the robotics equipment obtained underra N8E CRI equipment grant
(see below), to enable the automatic “study” of objects by robots. This widhieeof the basic capabilities
that | plan to impart to our mobile manipulation platform to increase its autonomylemdiato be more
self-taught. More details on these capabilities are given in the next section.

The second goal in improving the hyper-feature work is to eliminate the weeedistration of the image
pairs before they can be compared. Not only will this eliminate a potentialifiable part of the current
system, but it will also allow us to learn to identify objects even when there isasonable registration of
the two images of the object. For example, there is no reasonable registfatinpictures of a face when
one is taken from the side and the other is taken from the front. Howeeee shill may be features that are
visible in both photos and which are enough to establish a match.

To achieve this second goal, we propose using recent “invarianbkaypechniques [22, 25] to estab-
lish a small number of correspondences between two pictures. Therc@aebponding pair allows us to
establish correspondirigcal coordinate systenj20] on the pictures. These local coordinate systems allow
comparisons of corresponding patches in the two imagg®ut putting the full images in correspondence.
At the same time, even regions that do not qualify as “keypoints” and treuglifiicult to put in corre-
spondence directly can be compared by using the locally establishedratesd This idea is illustrated in
Figure 8.

While our hyper-feature system already demonstrates significant anyampunderstanding important
properties of an object from one example, we believe our proposedséates will dramatically increase
this autonomy in learning about the world, and have a major impact on géaenaing.

4 New Projectsand Future Directions

In this section, | discuss new initiatives in two very different areas, iob@and optical character recogni-
tion. Despite their differences, these projects share the theme of thisalesehat they focus on allowing



machines to learn on their own, and to develop new capabilities with minimal hurparnvgion.

Self-Taught Robots. A vision system that cannot move or manipulate objects in the world can only
learn about those objects or scenes that are put in front of it. To beadraly explorative learner, it must
be able to move and experiment with its environment. A modern mobile robot, egligth a sophisticated
manipulator such as a Barrett Whole Arm Manipulator (see Figure 9) aisibasystem, is a powerful tool
for exploration and autonomous learning about the real world [6]. Stilgver, most robotics applications
are painstakingly programmed using only the most rudimentary learning dond eegpabilities.

Recently, as a co-Pl on a NASA funded project for mobile manipulatiorvé bagun intensive collab-
orations with the Laboratory for Perceptual Robotics (LPR) at UMassstMdents and | are rapidly adding
capabilities like visual tracking [33], object recognition [22], visualve@ng [19], motion segmentation
[13], and depth estimation [18] to the lab’s humanoid robot system, Dexerause the basic hardware,
control software, and architecture for the robot has been in plageefos, adding these capabilities is not
much more difficult than implementing “software-only” vision algorithms. Dextégxible hardware and
communications architecture allows the addition of a virtually unlimited number ob\ddmputing nodes,
which receive digital FireWire video inputs and publish results of their caatfmns asynchronously using
a standard communications protocol (NDDS). Any control algorithm césaibe to these communica-
tions and use the published information with minimal computational overheads, Thsi straightforward
to add new capabilities to the robot. In addition, the author’s recent NSipragat grant with robotics
Professor Oliver Brock and others provides funding for a new visiaaibled mobile manipulation platform
for dedicated research (Figure 9).

Since the inception of Al, it has been argued not only that implementing visica mbot would be
the ultimate test for computer vision, but that is mayneeessaryo embody a vision system in order to
duplicate human levels of performance. While this point of view faded into éls&dround for the last 20
years, it is starting to re-emerge [8, 15, 14, 13, 1].

It seems an opportune time to reconsider the marriage of robotics, comisiter, @nd modern learning
techniques to achieve more sophisticated ends. This work has alredsy stakJMass, for example in
learning visual features to develop categories of objects for spec#gpgi[8, 31], and elsewhere in using
egomotion to segment objects [13] as well as correlating periodic signalssadsual and other sensors [1].

The interplay between vision and robotics, especially for robots that caa era manipulate, is so rich
that dozens of fundamental investigations could be described. Haveeskort list of our first projects will
include

e manipulating objects to autonomously study invariances,

e manipulating objects to separate specular (reflective) and matte compohapfearance,

e correlating specular components of an object with grasp slip,

e improving visual servoing using our own hyper-feature object reitiognsoftware and other recent

object recognition algorithms, and

e using motion-on-contact to establish the depth of an object and autononearsiglepth cues (similar

to [13]).

Some of these tasks support the others. For example, it is difficult tosgezgoecular and non-specular
components of an object without manipulating it, but if we can manipulate it to\aethes, then we can use
the specularity as a feature to try to predict grasp slip. Thus, the basibiliies obtained by leveraging
vision and object manipulation immediately contribute to higher level goals.

Some may see a foray into robotics as an unnecessary distraction from ithevark of Computer
Vision. On the contrary, we see it as a critical source of real problenatsaa opportunity for finding new
solutions based upon the ability to probe the world and see immediate feedbdmk self-taught, one must



Figure 9:L eft. The UMass stationary upper torso humanoid robot, DeRight. The mobile manipulation
platform to be assembled from a mobile base and a Barrett Whole Arm Matdputader the author’s recent
NSF CRI award.

havesomesource of actions and feedback, and thus real-world mobile manipulaimssan ideal platform
to achieve many of the goals of this research.

Self-Taught Character Recognition. As a final example of my approach, I return to a classic problem,
optical character recognition (OCR). Commercial systems for opticabctearrecognition are typically
programmed with hundreds or thousands of fonts, so that when a dotismseanned, characters can be
immediately recognized with high accuracy before any context is used &elthtively simplelanguage
modelsaugment these systems to disambiguate characters that are still difficult tguishiue to the
original document’s degradation or poor scanning quality. These conah®CR systems have impressive
accuracy when used on documents with known fonts or with relatively littleendiswever, when the font
is unknown, or when the documents or scanning have been significagtiydiel, these methods still have
unacceptable accuracy.

It may be surprising to learn that humans can often do perfect &@R when the characters that make
up a font arecompletely unknown and have arbitrary shaped.hat is, they can do OCR witkero training
exampleof a new font even though they cannot recognize any of the individttalsein isolation. This is
evidenced by the fact that humans can easily sotyptogramsin which each letter has been substituted
(consistently) with some other letter. Clearly the shape of a character moesaao direct information about
its identity. Rather, it is thaimilarity among characters that provides a clue. In particular, a cryptogram
can be solved by clustering characters into equivalent categorieth@mdtudying the frequency and joint
occurrence of characters in each cluster. This approach of visiséting, followed by statistical decoding,
has been suggested in the OCR literature [5, 3, 4]. It is appealing in tHiwisknowledge learned from
one task (the study of language statistics for a known character set) ppledtn solving a problem where
no labeled training data are available, hence allowing the computer to essdrtalyitself a new font.

While this approach has been pioneered by others (Breuel, in particiiarg is still lots of room for
its improvement in the analysis of highly degraded documents and handwritipgrticular, | propose to

e collaborate with the Machine Learning group at UMass to use the mosttréeeglopments in sta-

tistical text and document analysis (e.g. [2]) to increase the power oftigedge model decoding (|
have already started a collaboration with Professor Andrew McCallumispttbject),

e use more sophisticated visual clustering techniques to improve perforroartie visual component

of this problem, including the “skimming” technique described below, and



¢ develop accurate and fast approximation techniques to make the resulssroéthod competitive (in

speed) with faster but less accurate training based approaches.

My idea of “skimming” is to cluster only characters that can be clustered with bapfidence. An
iterative procedure is used in which initial clusters are reduced in sizeiing elements by likelihood
within their own cluster, and “skimming off” all but the most typical members. Tdea is to produce
clusters with near-perfect purity (having only a single character petarueven in noisy environments.
Subsequently, a new cluster model is developed, and high-confidents pre slowly added. With a
strong language model and highly pure clusters, | speculate that it ieoessary to cluster every character,
but only to cluster a subset of the characters with high confidence. $aisfypure clusters can be compared
to methods people use to understand sloppy handwriting, focusing fiestgynto group characters, using
these to do inference, and building from these high confidence regions.

5 Educational Initiatives

| propose educational initiatives in two areas. The first is in the area ofrityiramd low-income outreach,
involving a group of students at an urban Massachusetts school. Thadsarea involves curriculum
development and curriculum guidance at the college and graduate leuNsaas, Amherst.

AVID outreach. The Advancement Via Individual Determination (AVID) program is a mwafit or-
ganization started 25 years ago in the San Diego public schools. Its goahiw¢ase the percentage of
historically underserved teenagers who apply, attend, and remain inetilegtain college degrees. AVID
has been remarkably successful in achieving this goal—minority and lowriecudents who enter the
program go to college and stay in collegighe same rate as middle class white studeBsecifically, more
than90% go to college, and of those, 89% remain after two years

My wife, Carole Learned-Miller, is principal of the Dr. Martin Luther Kintynior School in Cambridge,
Massachusetts, where she manages the AVID program for gradeBr&-&ing school has a large minority
population (e.g. 65% of students are black, both African American ands)tlend more than 70% have
“free lunch” status, which is to say that they come from low-income familie® King school is the first
school in Massachusetts to adopt AVID.

AVID recommends that students be frequently exposed to opportunity>aniithg careers through a
series of speakers and field trips. As part of my educational outréadh Jead an annual field trip from
Cambridge to Amherst and Northampton for the eighth grade of the Kirmpschhe free trip will comprise

e tours of and hands-on demonstrations in the Computer Vision LaboratdryhanLaboratory for
Perceptual Robotics,

e presentations by at least one minority graduate student and one pradbssit a career in science,

e a presentation about successful minorities in Artificial Intelligence, higtifightop minority re-
searchers and professors in Al throughout the country, and

e a visit to the Engineering Program at the all-women Smith College campus (Ngptba, MA) as a
special motivation for girls to get involved in science and engineering.

There are ample funds available through the Cambridge Public Schools todisach field trips, making
them free for students. In addition, both my wife (a Smith alumna) and the URiastepartment have nu-
merous contacts at Smith College to facilitate the coordination of the Smith Collegérvisitdition, | have
already received a commitment from a senior African American UMasaugtadgtudent, Gary Holness, to



speak the first year. My wife and her colleagues at the King schooMedlimt these are among the most
important events for teenagers, and that this event will provide an impent@hexciting piece of support
for the well-regarded AVID program at the King school.

Curriculum Development and Guidance. In developing the type of capabilities discussed in this
proposal, the field of Computer Vision must incorporate more sophisticateditgees from mathematics,
statistics, and other fields. Today’s computer science students areneoathewell-equipped to understand
these latest developments. To prepare students for these new directi@msjputer Vision, | would like to
address three curriculum issues. | will

e developand advertiséwo graduate “sub-curricula”, one for Machine Learning and oné&/fsion,

e develop a new undergraduate course in computer vision that emphasizatetidisciplinary nature

of the subject and the modern material,

e develop a new graduate level seminar called “Learning to See”, whichasizas the type of projects

presented in this proposal.

Graduate sub-curriculaPreparing to do top quality research in Computer Vision today is a demanding
enterprise. In addition to learning traditional computer science skills in algasittheory of computation,
and programming, students may find that they need sophisticated knowlesggistics, probability and
other areas of higher math (e.g. differential geometry) that they havenmountered. Organizing an ap-
proach to learning this huge array of material is daunting for new gradtizdents, especially when they
may not even know what they are missing.

| will lay out sub-curricula specifically geared toward machine learningcamdputer science to address
these issues. The curricula will be organized around the idea of fillingdkgoaund in order to understand
a sequence of real, carefully selected research papers, ratheirtifzn a course sequence. Students will
evaluate for themselves whether or not they need a particular courseibyriderstanding of these papers.
As an example, many incoming students have had little exposure to signasgiragand linear systems. If
they cannot understand completely a paper that uses concepts likerfi@msforms and linear superposi-
tion, it will be suggested that they fill in this background with a signal prsiogscourse in the Electrical
Engineering Department. | developed such a “curriculum map” in gradiciteol and it was used and
appreciated by a number of my peers there. | plan to expand this and pitiblistihe web for general use.
Finally, the idea is not for these courses to be required, but for stuttehése a complete understanding of
the broad background required in modern Computer Vision, and onefamaequiring it.

Undergraduate visionl have taught and will continue to teach at both the undergraduate addagea
levels at UMass. Computer vision has experienced rapid change in therlastars, and like any immature
subject, needs to be continuously adapted to new research and devei@pribis year, | co-taught an
undergraduate course in computer vision. My colleague handled mang wfdte traditional aspects while
| focussed on incorporating probabilistic, statistical, and machine learrshgitpies. A major challenge is
to cover recent developments without sacrificing essential classicaliahater

Graduate vision.n the fall of 2005, | will teach a course entitled “Learning to See”. Thiw @eurse
is dedicated to understanding the type of work presented in this propbeail. fbcus not only on modern
learning techniques, but on all aspects of learning to see, such agfdratation sources are available in
the environment from which we can learn, and how humans achieve soerkable results in visual tasks.

A major part of the course will be an introduction to non-parametric statistidsrdarmation theory,
essential aspects of this type of work that are difficult for most studemqsrsue due to the large numbers
of prerequisites.

Prior NSF Support: None
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