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ABSTRACT
Differential privacy has become a primary standard for pro-
tecting individual data while supporting flexible data anal-
ysis. Despite the adaptation of differential privacy to a wide
variety of applications and tasks, visualizing the output of
differentially private algorithms has rarely been considered.
Visualization is one of the primary means by which humans
understand and explore an unknown dataset and therefore
supporting visualization is an important goal to advance the
practical adoption of differential privacy.

In this initial work on private data visualization we explore
key challenges and propose solution approaches. We use
two-dimensional location data as an example domain, and
consider the challenges of plotting noisy output, the impact
of visual artifacts caused by noise, and the proper way to
present known uncertainty about private output.

1. INTRODUCTION
Differential privacy seeks to enable the analysis of sensitive

datasets while protecting the individuals who provide the
data. It has become the the state of the art standard for
private data analysis and there has been a flood of research
into the design algorithms that meet this guarantee.

Despite the wide variety of analysis tasks that have been
studied in the context of differential privacy, there has been
little or no attention to the problem of producing useful,
accurate visualizations which satisfy the privacy standard.

Visualization can be used as a presentation tool, where the
goal is to convey information already extracted from data.
Or it may also be used in an exploratory phase, prior to
more rigorous statistical analysis. In either case, we main-
tain that visualization plays a central role in many real-world
data analysis workflows and therefore should be supported
by private methods.

In this short paper, we identify some main challenges in
the visualization of differentially private algorithms and also
discuss potential solutions. We consider obstacles to plot-
ting noisy output, the impact of visual artifacts caused by
noise, and the proper way to convey the inherent uncertainty
in the data being visualized. We hope these challenges will
motivate future work on algorithm design targeted to effec-
tive visualization.

2. BACKGROUND
Informally, differential privacy is a property of an algo-

rithm that takes as input a collection of records. It guar-
antees that the algorithm output is statistically indistin-
guishable (governed by a privacy parameter ε) from the out-
put that would have been published had any one individual
opted out of the collection. Formally, a randomized algo-
rithm A satisfies ε-differential privacy [5] if for all databases
D andD′ that differ on one record, and for any subset of out-
puts S ⊆ Range(A), Pr(A(D) ∈ S) ≤ eε × Pr(A(D′) ∈ S).

Although accurate visualization of private data is impor-
tant for a variety of problem domains, we focus on two-
dimensional (2D) location data. Analyzing 2D location data
has been studied in the privacy literature [3, 15, 18, 6, 9]
and it is also a rich enough application to make visualiza-
tion challenges evident. In this paper, we use a 2D dataset of
taxi pickup information in Beijing during a single month [1].
Each tuple records a pickup location of a taxi ride in the form
of a (longitude, latitude) pair. This data may be sensitive
as it has the potential to reveal an individual’s location.

In practice, an individual may contribute multiple records
to this dataset (one per taxi ride taken in the month) and
thus an ideal application of differential privacy would ex-
tend the definition above to encompass any set of records
associated with a single individual [8]. However, a practical
limitation of this dataset is that multiple pickups by an in-
dividual taxi are not linkable in the data. Thus, we apply
the standard definition of differential privacy and note that
this still protects individuals who take multiple rides, albeit
at a lower ε.

A number of algorithms have been proposed for publish-
ing 2D data. A common strategy is to construct a grid
(equi-width partition) over the 2D domain and then use the
Laplace mechanism [4] to compute noisy counts within each
grid cell (essentially, a noisy histogram). In recent years, this
simple approach has been improved upon by more sophis-
ticated algorithms [3, 15, 18, 6, 9]. Some algorithms also
take as input a workload of linear queries expressed over
the histogram counts, for which the workload query answers
are released as output. Even when a workload is provided,
most algorithms produce as a by-product a noisy histogram
suitable for visualization.

3. CHALLENGES
In this section, we present some of the main challenges



(a) Scatter plot of non-private data (b) Heat map of a private output of the
Laplace mechanism

Figure 1: Plotting non-private data and private output

faced in visualizing differentially private data. We justify
challenges with examples and discuss potential solution ap-
proaches.

3.1 Plotting private algorithm output
The visualization techniques used in the absence of pri-

vacy concerns may not be applicable to private algorithm
output. For 2D location data, the original data is often vi-
sualized using a scatter plot, where each mark represents the
exact location of an individual.

But directly plotting any individual’s information is in-
compatible with differential privacy. Instead, as mentioned
in Section 2, a common strategy is to impose a grid, count
the number of records within each grid cell, and add noise.
To visualize the resulting noisy counts, one can use a heat
map rather than a scatter plot.

These two approaches are compared in Fig. 1. A scatter
plot of the Beijing Taxi data introduced in Section 2 is shown
in Fig. 1(a) while in Fig. 1(b) a heat map is used to visualize
the private output of the Laplace mechanism. Each grid cell
is assigned a color scaled to the logarithm of its noisy count.

This immediately causes visual differences in the presen-
tation of the true data and the private data and causes a
loss of fidelity even in the absence of noise from the pri-
vacy mechanism. The true data consists of longitude and
latitude measured to a precision of 0.00001◦in a 0.46280◦by
0.30534◦area, plotted here over a region of 4166 px by 4166
px, resulting in maximum resolution of 0.00011◦ × 0.00007◦

per pixel, although it is unlikely that the full resolution is
perceptible in the Fig. 1(a). For the private data, we are im-
mediately faced with a choice about the grid size of the 2D.
It is 256 x 256 in Fig. 1(b). A finer grid could be selected
for greater resolution, but the counts in each cell will be
smaller and may be overwhelmed by noise from the privacy
mechanism.

3.2 Visual artifacts
The output of a differentially private algorithm may in-

clude visual artifacts which obscure true features or lead to
false conclusions. For example, the noise introduced by the
algorithm may result in negative counts for grid cells (which
are clearly impossible) and can have a significant impact on
a visualization if not corrected. For example, the blue cells
in Fig. 1(b) represent negative counts.

Negative counts can be easily corrected by rounding, but

such adjustments sometimes have their own consequences.
Simply rounding all negative values to zero boosts the over-
all sum across the grid cells leading to a biased output
which may have its own visual impacts. More sophisticated
ways to handle negative values have been proposed [10] and
some mechanisms, like the Multiplicative Weights Exponen-
tial Mechanism [6], output non-negative counts directly. Is-
sues such as non-negativity can sometimes be ignored when
the private output is used to compute query answers, but
are likely to become much more important in the context of
visualization.

In addition to negative counts, there are other algorithm-
specific artifacts that obscure the interpretation of the visu-
alization. For example, the visualization in Fig. 2(b), pro-
duced by the DAWA algorithm, includes large blocky uni-
form regions, especially on the periphery of the figure where
the density is lower. The algorithm intentionally estimates
these regions uniformly and avoids estimating sub-regions
or cells internal to the region. This feature of the algorithm
is quite effective in reducing numerical measures of error
that are commonly used in the research literature, but may
mislead the viewer when the results are presented visually.
This is especially true for the non-expert viewer unfamil-
iar with the algorithm’s mechanics who may mistake algo-
rithmic artifacts for structure in the data. This may call
for re-thinking some of the advanced algorithmic techniques
which are currently used to reduce error when measured by
standard error metrics.

3.3 Specifying and achieving “visual utility”
The above discussion shows that effective data visualiza-

tion is a utility goal which is potentially very different than
the utility goals considered to-date in the literature on differ-
ential privacy. It is not clear how to make a notion of “visual
utility” precise. For now, we stay with an informal definition
based on perceived visual similarity to the true data.1

The extent to which recent algorithm advancements will
prove beneficial to visualization is unknown. For our setting,
there are many differentially private algorithms that can be
applied to 2D data. Some algorithms produce a noisy his-

1Ultimately, we believe this notion should probably be task-
based, in which a specific task is specified for the user to
carry out with the visualization and success rates are com-
pared across the true data and the private data [13].



(a) Output of MWEM (b) Output of DAWA

Figure 2: Outputs with equal query-based error

togram targeting a general class of queries (e.g. sums over
all rectangles in the 2D domain) [4, 7, 15, 16] and some ac-
cept as input a user-specified workload of queries and tailor
the output to accuracy for the workload queries [6, 9]. In
either case, error is commonly measured using metrics like
L1 or L2 error on some set of queries of interest. We refer
to this as query-based error.

Query-based error is not a reliable measure of visual util-
ity. We show in the following example that two noisy out-
puts with query-based equal error may have very different
visual utility.

For plotting 2D data, we measure query-based error as
the average, per-cell L2 error of the 256 × 256 histogram
output. This seems like the most natural metric because
the user is seeing a colored representation of noisy values in
each cell and we are comparing this representation to the
true heat map. Fig. 2(a) and Fig. 2(b) are noisy outputs of
two different algorithms named MWEM [6] and DAWA [9]
with the same input data as shown in Fig. 1(a). We have
used different epsilons for each algorithm in order to make
the query-based error of the algorithms equal (here MWEM
uses ε = 1, while DAWA uses ε = 0.0065). Clearly these two
figures have very different visual properties, demonstrating
that visual utility is not captured by query-based error.

3.4 Visualizing uncertainty
The examples above plot a single output of a randomized

private algorithm. Although the effects of noise are visible,
the uncertainty in the output is not presented to the user
in a manner that can be properly interpreted. Appropriate
visualization of uncertainty is a key challenge in visualizing
differentially private data. This is similar to the challenge
of visualizing statistical uncertainty, in which a practitioner
is encouraged to not directly trust data (since there is un-
certainty in statistical inference), or forecasts from a com-
putational model like climate simulations [17] (since there is
uncertainty in the model’s accuracy).

Fig. 3 illustrates some of these challenges with the Bei-
jing taxi data. Part (A) shows original data, plotted using
the heat map approach described earlier, with cell colored
mapped to the counts on a log scale. Dense road networks
can be seen in the city, as well as some less-traveled roads in
less dense areas, such as those that connect to the airport.

The Laplace mechanism (ε = 0.1) is used to obtain the noisy
version (B) which would be given to a data analyst. Some of
the high-frequency structures are preserved, but low-density
regions are substantially changed in a random manner. For
three selected cells, plot (C) shows the original true values
(red triangles), versus noisy versions (blue dots). The fact
that cell (1) has a higher frequency than (2) is preserved in
the noisy data. But cells (2) and (3) have a sign error—their
relative ordering is flipped in the data.

For 1d data, uncertainty can be summarized with error
bars. Fig. 3(C) shows 95% intervals as vertical lines.
These are constructed from a noisy data point x̂i as
[x̂i+F−1(0.025), x̂i+F−1(0.975)], where F−1 is the inverse
CDF of the Laplace (yielding intervals of approximately
x̂i± 30 for this setting of ε); by construction, these intervals
contain the true value 95% of the time. These error bars
could be presented to a user, to be interpreted in a similar
manner as confidence intervals from statistical inference;
and helpfully, unlike the case of statistical inference where
modeling assumptions may not hold, in this setting the
confidence intervals are guaranteed to have correct coverage
since the noise distribution is known.

But for 2D data, uncertainty visualization is less straight-
forward due to limitations on space and visual channels in
a 2D setting (e.g. (A) or (B)). Researchers have explored
methods to represent uncertainty on the same 2D figure with
the data, such as summary plots [14], modifying the color to
use hue or saturation to encode uncertainty [12], and show-
ing uncertain data out of focus [11]. Alternatively, one can
use interactivity. For example, in a linked-displays approach
[2], a user could click to select one or a few cells from the
(B) map, then be shown the cells’ values in a second display
(like (C)) with room to show error bars. These approaches
deserve further consideration for visualizing private data.

Another approach to the faithful representation of uncer-
tainty is to match the imprecision inherent to visual per-
ception to the imprecision introduced by the privacy mech-
anism. The proposed principle is that statistically indistin-
guishable counts should be visually indistinguishable. The
visual limitations in a heatmap stem from the fact that the
human eye cannot distinguish colors that are close to one
another in the colormap. For algorithms like the Laplace
mechanism, in which independent noise is added to each
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Figure 3: Illustration of uncertainty due to the Laplace mechanism, on taxi frequency data from northeast Beijing
(Section 3.4). (A) Original data. (B) Noisy output, which preserves some structures but introduces spurious phenomena.
(C) For three selected cells, original data values (red triangles), noisy versions (blue dots), and 95% confidence intervals
(vertical lines). Cell (2) has a negative valued output, and the comparison between cells (2) and (3) has a sign error.

count, it is straightforward to impose a threshold on the
probability that two different noisy counts reflect a true dif-
ference in the underlying data. Then, to obey the above
principle, we seek a color mapping in which differences that
do not meet the distinguishability standard are mapped to
imperceptible color differences.

Overall, for visualizing uncertainty, we hope to benefit
from the fact that the error in estimates is coming from a
well understood process (the privacy mechanism). Yet for
some state-of-the-art algorithms, reliable error bounds are
hard to establish because these algorithms adapt the noise
distribution to the data. While it is possible to release noisy
measure of error, this adds an additional level of uncertainty
that must be reconciled.

3.5 Visualization for exploration
The previous challenges are faced when producing a single

static plot. A range of additional challenges will be faced in
supporting interactive data exploration while satisfying dif-
ferential privacy. Data exploration is an iterative process
in which a sequence of visualizations must be produced pri-
vately from the data. Multiple views of the data will tend to
consume the privacy budget and require increased noise. In
addition, users may begin exploring data with only a vague
idea of what interests them, making ineffective the algo-
rithmic techniques which specialize the output to a known
workload.
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