Overview and Summary

- Variational Inference minimizes KL(q||p).
- Could target alpha-divergence

\[D_{\alpha}(p||q) = \frac{1}{\alpha(\alpha-1)} E_q \left[\frac{(p(x)/q(x))^{\alpha-1}}{1 + (p(x)/q(x))^{\alpha-1}} \right] \]

- Previous work: use unbiased reparameterization gradients
- We observe this often fails in high dimensions and high alpha
- Why? Estimator's SNR decreases exponentially with dimension.

Motivating example

- p and q factorized Gaussians with mean zero and variances \(\sigma_p^2 = 1, \sigma_q^2 = 4 \).
- Find parameters \(\sigma_p^2 \) that minimize alpha-divergence.
- [Solution easy, just want simple empirical test for estimator]

\[g \sim \mathcal{N}(0, \Sigma), \quad q \sim \mathcal{N}(0, \Sigma_q) \]

Variance alone does not explain failure. SNR does:

Fully Factorized Distributions

Theorem. Let \(p(z) = \prod_{i=1}^d p_i(z_i) \) and \(q(z) = \prod_{i=1}^d q_i(z_i) \), and let \(g(p, q) \) be the unbiased reparameterization estimator of the alpha-divergence between \(p \) and \(q \). Then

\[\text{SNR}(g(p, q)) = \text{SNR}(g(p_i, q_i)) \quad \text{if} \quad \alpha \to 0 \]

\[\text{SNR}(g(p, q)) = \prod_{i=1}^d \text{SNR}(D_{\alpha}(p_i, q_i)) \quad \text{if} \quad \alpha \neq 0, \]

where \(D_{\alpha}(p_i, q_i) \) is an unbiased estimator (up to constants) of \(D_{\alpha}(p_i, q_i) \).

Simply put:
- If \(\alpha \to 0 \) the SNR is just the SNR of the gradient estimator of a divergence between two 1-dimensional distributions.
- If \(\alpha \neq 0 \) the SNR includes the product of \(d \) terms, all less than one (unless \(p_i = q_i \)).

Corollary: Let \(p \) and \(q \) be mean-zero factorized Gaussians with variances \(\sigma_p^2, \sigma_q^2 \). Let \(\lambda_i \sim \sigma_i^2 \). Then, if all expectations exist,

\[\text{SNR}(g(p, q)) = \frac{1 + 2\alpha(\lambda_i - 1)}{\text{SNR}(g(p_i, q_i))} \prod_{i=1}^d f(\lambda_i, \alpha) \]

where

\[f(\lambda, \alpha) = \frac{1}{\lambda^{2\alpha} \text{SNR}(D_{\alpha}(p_i, q_i))} \]

Simply put, the SNR contains the product of \(d \) terms all less than one, which get smaller for alpha far from zero and for \(p \) and \(q \) very different.

Full Rank Gaussians

Theorem. Let \(p \) and \(q \) be mean-zero Gaussians with covariances \(\Sigma_p \) and \(\Sigma_q \). Let \(\lambda_1, \ldots, \lambda_d \) be the eigenvalues of \(\Sigma_p \). Then, if all expectations exist,

\[\text{SNR}(g(p, q)) = \frac{1}{\lambda^{2\alpha}} \quad \text{if} \quad \alpha \to 0, \]

\[\text{SNR}(g(p, q)) \leq \left(\frac{1 + 2\alpha(\lambda_{\text{max}} - 1)}{1 + 2\alpha(\lambda_{\text{min}} - 1)} \right)^2 \prod_{i=1}^d f(\lambda_i, \alpha) \quad \text{if} \quad \alpha > 0. \]

Empirical Evaluation

- Bayesian logistic regression.
- Two datasets: iris \((d = 4) \) and australian \((d = 14) \).

Figure 1: SNR along a single optimization trace.

Final thoughts

- Optimization theory suggests that an exponential amount of computation time would be needed to optimize the objectives.
- One might hope to guarantee a good SNR under some assumptions about the target. For example, if the log-posterior were fully-factorized, concave, strongly concave, Lipschitz smooth, or Gaussian. Our results show that, for general alpha-divergences, no such guarantee is possible.
- A general-purpose algorithm for optimizing an alpha-divergence based on currently available unbiased gradient estimators may be unachievable.
- Other optimizers [e.g. Adam] do not fix the issue.